@inproceedings{budhkar-rudzicz-2019-augmenting,
title = "Augmenting word2vec with latent {D}irichlet allocation within a clinical application",
author = "Budhkar, Akshay and
Rudzicz, Frank",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1414",
doi = "10.18653/v1/N19-1414",
pages = "4095--4099",
abstract = "This paper presents three hybrid models that directly combine latent Dirichlet allocation and word embedding for distinguishing between speakers with and without Alzheimer{'}s disease from transcripts of picture descriptions. Two of our models get F-scores over the current state-of-the-art using automatic methods on the DementiaBank dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="budhkar-rudzicz-2019-augmenting">
<titleInfo>
<title>Augmenting word2vec with latent Dirichlet allocation within a clinical application</title>
</titleInfo>
<name type="personal">
<namePart type="given">Akshay</namePart>
<namePart type="family">Budhkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Rudzicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-jun</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents three hybrid models that directly combine latent Dirichlet allocation and word embedding for distinguishing between speakers with and without Alzheimer’s disease from transcripts of picture descriptions. Two of our models get F-scores over the current state-of-the-art using automatic methods on the DementiaBank dataset.</abstract>
<identifier type="citekey">budhkar-rudzicz-2019-augmenting</identifier>
<identifier type="doi">10.18653/v1/N19-1414</identifier>
<location>
<url>https://aclanthology.org/N19-1414</url>
</location>
<part>
<date>2019-jun</date>
<extent unit="page">
<start>4095</start>
<end>4099</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Augmenting word2vec with latent Dirichlet allocation within a clinical application
%A Budhkar, Akshay
%A Rudzicz, Frank
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 jun
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F budhkar-rudzicz-2019-augmenting
%X This paper presents three hybrid models that directly combine latent Dirichlet allocation and word embedding for distinguishing between speakers with and without Alzheimer’s disease from transcripts of picture descriptions. Two of our models get F-scores over the current state-of-the-art using automatic methods on the DementiaBank dataset.
%R 10.18653/v1/N19-1414
%U https://aclanthology.org/N19-1414
%U https://doi.org/10.18653/v1/N19-1414
%P 4095-4099
Markdown (Informal)
[Augmenting word2vec with latent Dirichlet allocation within a clinical application](https://aclanthology.org/N19-1414) (Budhkar & Rudzicz, NAACL 2019)
ACL