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Abstract
We propose a multi-task learning framework
to learn a joint Machine Reading Compre-
hension (MRC) model that can be applied to
a wide range of MRC tasks in different do-
mains. Inspired by recent ideas of data se-
lection in machine translation, we develop a
novel sample re-weighting scheme to assign
sample-specific weights to the loss. Empiri-
cal study shows that our approach can be ap-
plied to many existing MRC models. Com-
bined with contextual representations from
pre-trained language models (such as ELMo),
we achieve new state-of-the-art results on a
set of MRC benchmark datasets. We re-
lease our code at https://github.com/
xycforgithub/MultiTask-MRC.

1 Introduction

Machine Reading Comprehension (MRC) has
gained growing interest in the research commu-
nity (Rajpurkar et al., 2016; Yu et al., 2018). In an
MRC task, the machine reads a text passage and
a question, and generates (or selects) an answer
based on the passage. This requires the machine
to possess strong comprehension, inference and
reasoning capabilities. Over the past few years,
there has been much progress in building end-to-
end neural network models (Seo et al., 2016) for
MRC. However, most public MRC datasets (e.g.,
SQuAD, MS MARCO, TriviaQA) are typically
small (less than 100K) compared to the model size
(such as SAN (Liu et al., 2018c,b) with around
10M parameters). To prevent over-fitting, recently
there have been some studies on using pre-trained
word embeddings (Pennington et al., 2014) and
contextual embeddings in the MRC model train-
ing, as well as back-translation approaches (Yu
et al., 2018) for data augmentation.

∗Most of this work was performed when the author was
interning at Microsoft.

Multi-task learning (Caruana, 1997) is a widely
studied area in machine learning, aiming at bet-
ter model generalization by combining training
datasets from multiple tasks. In this work, we
explore a multi-task learning (MTL) framework
to enable the training of one universal model
across different MRC tasks for better generaliza-
tion. Intuitively, this multi-task MRC model can
be viewed as an implicit data augmentation tech-
nique, which can improve generalization on the
target task by leveraging training data from aux-
iliary tasks.

We observe that merely adding more tasks can-
not provide much improvement on the target task.
Thus, we propose two MTL training algorithms to
improve the performance. The first method sim-
ply adopts a sampling scheme, which randomly
selects training data from the auxiliary tasks con-
trolled by a ratio hyperparameter; The second al-
gorithm incorporates recent ideas of data selection
in machine translation (van der Wees et al., 2017).
It learns the sample weights from the auxiliary
tasks automatically through language models.

Prior to this work, many studies have used up-
stream datasets to augment the performance of
MRC models, including word embedding (Pen-
nington et al., 2014), language models (ELMo)
(Peters et al., 2018) and machine translation (Yu
et al., 2018). These methods aim to obtain a ro-
bust semantic encoding of both passages and ques-
tions. Our MTL method is orthogonal to these
methods: rather than enriching semantic embed-
ding with external knowledge, we leverage exist-
ing MRC datasets across different domains, which
help make the whole comprehension process more
robust and universal. Our experiments show that
MTL can bring further performance boost when
combined with contextual representations from
pre-trained language models, e.g., ELMo (Peters
et al., 2018).
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To the best of our knowledge, this is the first
work that systematically explores multi-task learn-
ing for MRC. In previous methods that use lan-
guage models and word embedding, the external
embedding/language models are pre-trained sepa-
rately and remain fixed during the training of the
MRC model. Our model, on the other hand, can
be trained with more flexibility on various MRC
tasks. MTL is also faster and easier to train than
embedding/LM methods: our approach requires
no pre-trained models, whereas back translation
and ELMo both rely on large models that would
need days to train on multiple GPUs (Jozefowicz
et al., 2016; Peters et al., 2018).

We validate our MTL framework with two
state-of-the-art models on four datasets from dif-
ferent domains. Experiments show that our meth-
ods lead to a significant performance gain over
single-task baselines on SQuAD (Rajpurkar et al.,
2016), NewsQA (Trischler et al., 2017) and Who-
Did-What (Onishi et al., 2016), while achieving
state-of-the-art performance on the latter two. For
example, on NewsQA (Trischler et al., 2017),
our model surpassed human performance by 13.4
(46.5 vs 59.9) and 3.2 (72.6 vs 69.4) absolute
points in terms of exact match and F1.

The contribution of this work is three-fold.
First, we apply multi-task learning to the MRC
task, which brings significant improvements over
single-task baselines. Second, the performance
gain from MTL can be easily combined with ex-
isting methods to obtain further performance gain.
Third, the proposed sampling and re-weighting
scheme can further improve the multi-task learn-
ing performance.

2 Related Work

Studies in machine reading comprehension mostly
focus on architecture design of neural networks,
such as bidirectional attention (Seo et al., 2016),
dynamic reasoning (Xu et al., 2017), and paral-
lelization (Yu et al., 2018). Some recent work
has explored transfer learning that leverages out-
domain data to learn MRC models when no train-
ing data is available for the target domain (Golub
et al., 2017). In this work, we explore multi-task
learning to make use of the data from other do-
mains, while we still have access to target domain
training data.

Multi-task learning (Caruana, 1997) has been
widely used in machine learning to improve gen-

eralization using data from multiple tasks. For nat-
ural language processing, MTL has been success-
fully applied to low-level parsing tasks (Collobert
et al., 2011), sequence-to-sequence learning (Lu-
ong et al., 2015), and web search (Liu et al., 2015).
More recently, (McCann et al., 2018) proposes to
cast all tasks from parsing to translation as a QA
problem and use a single network to solve all of
them. However, their results show that multi-task
learning hurts the performance of most tasks when
tackling them together. Differently, we focus on
applying MTL to the MRC task and show signifi-
cant improvement over single-task baselines.

Our sample re-weighting scheme bears some re-
semblance to previous MTL techniques that assign
weights to tasks (Kendall et al., 2018). However,
our method gives a more granular score for each
sample and provides better performance for multi-
task learning MRC.

3 Model Architecture

We call our model Multi-Task-SAN (MT-SAN),
which is a variation of SAN (Liu et al., 2018c)
model with two main differences: i) we add a
highway network layer after the embedding layer,
the encoding layer and the attention layer; ii) we
use exponential moving average (Seo et al., 2016)
during evaluation. The SAN architecture and our
modifications are briefly described below and in
Section 5.2, and detailed description can be found
in (Liu et al., 2018c).

3.1 Input Format

For most tasks we consider, our MRC model
takes a triplet (Q,P,A) as input, where Q =
(q1, ..., qm), P = (p1, ..., pn) are the word index
representations of a question and a passage, re-
spectively , and A = (abegin, aend) is the index of
the answer span. The goal is to predict A given
(Q,P ).

3.2 Lexicon Encoding Layer

We map the word indices of P and Q into
their 300-dim Glove vectors (Pennington et al.,
2014). We also use the following additional in-
formation for embedding words: i) 16-dim part-
of-speech (POS) tagging embedding; ii) 8-dim
named-entity-recognition (NER) embedding; iii)
3-dim exact match embedding: fexact match(pi) =
I(pi ∈ Q), where matching is determined based
on the original word, lower case, and lemma form,
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respectively; iv) Question enhanced passage word
embeddings: falign(pi) =

∑
j γi,jh(GloVe(qj)),

where

γi,j =
exp(h(GloVe(pj)),h(GloVe(qi)))∑
j′ exp(h(GloVe(pj′ )),h(GloVe(qi)))

(1)

is the similarity between word pj and qi, and g(·)
is a 300-dim single layer neural net with Recti-
fied Linear Unit (ReLU) g(x) = ReLU(W1x); v)
Passage-enhanced question word embeddings: the
same as iv) but computed in the reverse direction.
To reduce the dimension of the input to the next
layer, the 624-dim input vectors of passages and
questions are passed through a ReLu layer to re-
duce their dimensions to 125.

After the ReLU network, we pass the 125-dim
vectors through a highway network (Srivastava
et al., 2015), to adapt to the multi-task setting:
gi = sigmoid(W2p

t
i), p

t
i = ReLU(W3p

t
i) � gi +

gi � pti, where pti is the vector after ReLU trans-
formation. Intuitively, the highway network here
provides a neuron-wise weighting, which can po-
tentially handle the large variation in data intro-
duced by multiple datasets.

3.3 Contextual Encoding Layer

Both the passage and question encodings go
through a 2-layer Bidirectional Long-Short Term
Memory (BiLSTM, Hochreiter and Schmidhuber,
1997) network in this layer. We append a 600-dim
CoVe vector (McCann et al., 2017) to the output
of the lexicon encoding layer as input to the con-
textual encoders. For the experiments with ELMo,
we also append a 1024-dim ELMo vector. Similar
to the lexicon encoding layer, the outputs of both
layers are passed through a highway network for
multi-tasking. Then we concatenate the output of
the two layers to obtainHq ∈ R2d×m for the ques-
tion and Hp = R2d×n the passage, where d is the
dimension of the BiLSTM.

3.4 Memory/Cross Attention Layer

We fuse Hp and Hq through cross attention
and generate a working memory in this layer.
We adopt the attention function from (Vaswani
et al., 2017) and compute the attention matrix
as C = dropout

(
fattention(Ĥ

q, Ĥp)
)
∈ Rm×n.

We then use C to compute a question-aware pas-
sage representation as Up = concat(Hp, HqC).
Since a passage usually includes several hun-
dred tokens, we use the method of (Lin et al.,

2017) to apply self attention to the represen-
tations of passage to rearrange its informa-
tion: Ûp = Updropdiag(fattention(U

p, Up)), where
dropdiag means that we only drop diagonal el-
ements on the similarity matrix (i.e., attention
with itself). Then, we concatenate Up and
Ûp and pass them through a BiLSTM: M =
BiLSTM([Up]; Ûp]). Finally, output of the BiL-
STM (after concatenating two directions) goes
through a highway layer to produce the memory.

3.5 Answer Module
The base answer module is the same as SAN,
which computes a distribution over spans in
the passage. Firstly, we compute an initial
state s0 by self attention on Hq: s0 ←

Highway
(∑

j

exp(w4H
q
j )∑

j′ expw4H
q

j′
·Hq

j

)
. The final an-

swer is computed through T time steps. At step
t ∈ {1, ..., T − 1}, we compute the new state
using a Gated Recurrent Unit (GRU, Cho et al.,
2014) st = GRU(st−1, xt), where xt is com-
puted by attention between M and st−1: xt =∑

j βjMj , βj = softmax(st−1W5M). Then each
step produces a prediction of the start and end of
answer spans through a bilinear function: P begin

t =
softmax(stW6M), P end

t = softmax(stW7M).
The final prediction is the average of each time
step: P begin = 1

T

∑
t P

begin
t , P end = 1

T

∑
t P

end
t .

We randomly apply dropout on the step level in
each time step during training, as done in (Liu
et al., 2018c). During training, the objective is the
log-likelihood of the ground truth: l(Q,P,A) =
logP begin(abegin) + logP end(aend).

4 Multi-task Learning Algorithms

We describe our MTL training algorithms in this
section. We start with a very simple and straight-
forward algorithm that samples one task and one
mini-batch from that task at each iteration. To im-
prove the performance of MTL on a target dataset,
we propose two methods to re-weight samples ac-
cording to their importance. The first proposed
method directly lowers the probability of sam-
pling from a particular auxiliary task; however,
this probability has to be chosen using grid search.
We then propose another method that avoids such
search by using a language model.

Suppose we haveK different tasks, the simplest
version of our MTL training procedure is shown
in Algorithm 1. In each epoch, we take all the
mini-batches from all datasets and shuffle them for
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Algorithm 1 Multi-task Learning of MRC
Input: k different datasets D1, ...,DK ,

max epoch
1: Initialize the modelM
2: for epoch= 1, 2, ..., max epoch do
3: Divide each dataset Dk into Nk mini-

batches Dk = {bk1, ..., bkNk
}, 1 ≤ k ≤ K

4: Put all mini-batches together and ran-
domly shuffle the order of them, to obtain a se-
quence B = (b1, ..., bL), where L =

∑
kNk

5: for each mini-batch b ∈ B do
6: Perform gradient update on M with

loss l(b) =
∑

(Q,P,A)∈b l(Q,P,A)
7: end for
8: Evaluate development set performance
9: end for

Output: Model with best evaluation performance

model training, and the same set of parameters is
used for all tasks. Perhaps surprisingly, as we will
show in the experiment results, this simple base-
line method can already lead to a considerable im-
provement over the single-task baselines.

4.1 Mixture Ratio
One observation is that the performance of our
model using Algorithm 1 starts to deteriorate as
we add more and more data from other tasks into
our training pool. We hypothesize that the external
data will inevitably bias the model towards auxil-
iary tasks instead of the target task.

To avoid such adverse effect, we introduce a
mixture ratio parameter during training. The train-
ing algorithm with the mixture ratio is presented
in Algorithm 2, with D1 being the target dataset.
In each epoch, we use all mini-batches from D1,
while only a ratio α of mini-batches from external
datasets are used to train the model. In our exper-
iment, we use hyperparameter search to find the
best α for each dataset combination. This method
resembles previous methods in multi-task learning
to weight losses differently (e.g., Kendall et al.,
2018), and is very easy to implement. In our ex-
periments, we use Algorithm 2 to train our net-
work when we only use 2 datasets for MTL.

4.2 Sample Re-Weighting
The mixture ratio (Algorithm 2) dramatically im-
proves the performance of our system. However,
it requires to find an ideal ratio by hyperparame-
ter search which is time-consuming. Furthermore,

Algorithm 2 Multi-task Learning of MRC with
mixture ratio, targeting D1

Input: K different datasets D1, ...,DK ,
max epoch, mixture ratio α

1: Initialize the modelM
2: for epoch= 1, 2, ..., max epoch do
3: Divide each dataset Dk into Nk mini-

batches Dk = {bk1, ..., bkNk
}, 1 ≤ k ≤ K

4: S ← {b11, ..., b1N1
}

5: Randomly pick bαN1c mini-batches from⋃K
k=2Dk and add to S

6: Assign mini-batches in S in a random or-
der to obtain a sequence B = (b1, ..., bL),
where L = N1 + bαN1c

7: for each mini-batch b ∈ B do
8: Perform gradient update on M with

loss l(b) =
∑

(Q,P,A)∈b l(Q,P,A)
9: end for

10: Evaluate development set performance
11: end for
Output: Model with best evaluation performance

the ratio gives the same weight to every auxiliary
data, but the relevance of every data point to the
target task can vary greatly.

We develop a novel re-weighting method to
resolve these problems, using ideas inspired by
data selection in machine translation (Axelrod
et al., 2011; van der Wees et al., 2017). We use
(Qk, P k, Ak) to represent a data point from the k-
th task for 1 ≤ k ≤ K, with k = 1 being the
target task. Since the passage styles are hard to
evaluate, we only evaluate data points based on
Qk and Ak. Note that only data from auxiliary
task (2 ≤ k ≤ K) is re-weighted; target task data
always have weight 1.

Our scores consist of two parts, one for ques-
tions and one for answers. For questions, we cre-
ate language models (detailed in Section 5.2) us-
ing questions from each task, which we represent
as LMk for the k-th task. For each question Qk

from auxiliary tasks, we compute a cross-entropy
score:

HC,Q(Q
k) = − 1

m

∑
w∈Qk

log(LMC(w)), (2)

where C ∈ {1, k} is the target or auxiliary task, m
is the length of question Qk, and w iterates over
all words in Qk.

It is hard to build language models for answers
since they are typically very short (e.g., answers
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Dataset SQuAD(v1) NewsQA MS MARCO(v1) WDW
# Training Questions 87,599 92,549 78,905 127,786

Text Domain Wikipedia CNN News Web Search Gigaword Corpus
Avg. Document Tokens 130 638 71 365

Answer type Text span Text span Natural sentence Cloze
Avg. Answer Tokens 3.5 4.5 16.4 N/A

Table 1: Statistics of the datasets. Some numbers come from (Sugawara et al., 2017).

on SQuAD includes only one or two words in most
cases). We instead just use the length of answers
as a signal for scores. Let lka be the length of Ak,
the cross-entropy answer score is defined as:

HC,A(A
k) = − log freqC(l

k
a), (3)

where freqC is the frequency of answer lengths in
task C ∈ {1, k}.

The cross entropy scores are then normalized
over all samples in task C to create a comparable
metric across all auxiliary tasks:

H ′C,Q(Q
k) =

HC,Q(Q
k)−min(HC,Q)

max(HC,Q)−min(HC,Q)
(4)

H ′C,A(A
k) =

HC,A(A
k)−min(HC,A)

max(HC,A)−min(HC,A)
(5)

for C ∈ {1, 2, ...,K}. For C ∈ {2, ...,K}, the
maximum and minimum are taken over all sam-
ples in task k. For C = 1 (target task), they are
taken over all available samples.

Intuitively, H ′C,Q and H ′C,A represents the sim-
ilarity of text Q,A to task C; a low H ′C,Q (resp.
H ′C,A) means that Qk (resp. Ak) is easy to pre-
dict and similar to C, and vice versa. We would
like samples that are most similar from data in the
target domain (low H ′1), and most different (infor-
mative) from data in the auxiliary task (high H ′k).
We thus compute the following cross-entropy dif-
ference for each external data:

CED(Qk, Ak) =(H ′1,Q(Q
k)−H ′k,Q(Qk))+

(H ′1,A(A
k)−H ′k,A(Ak)) (6)

for k ∈ {2, ...,K}. Note that a low CED score
indicates high importance. Finally, we transform
the scores to weights by taking negative, and nor-
malize between [0, 1]:

CED′(Qk, Ak) = 1− CED(Qk, Ak)−min(CED)

max(CED)−min(CED)
. (7)

Here the maximum and minimum are taken
over all available samples and task. Our training

algorithm is the same as Algorithm 1, but for mini-
batch b we instead use the loss

l(b) =
∑

(P,Q,A)∈b

CED′(Q,A)l(P,Q,A) (8)

in step 6. We define CED′(Q1, A1) ≡ 1 for all
target samples (P 1, Q1, A1).

5 Experiments

Our experiments are designed to answer the fol-
lowing questions on multi-task learning for MRC:
1. Can we improve the performance of existing
MRC systems using multi-task learning?
2. How does multi-task learning affect the perfor-
mance if we combine it with other external data?
3. How does the learning algorithm change the
performance of multi-task MRC?
4. How does our method compare with existing
MTL methods?
We first present our experiment details and results
for MT-SAN. Then, we provide a comprehensive
study on the effectiveness of various MTL algo-
rithms in Section 5.4. At last, we provide some
additional results on combining MTL with DrQA
(Chen et al., 2017) to show the flexibility of our
approach 1.

5.1 Datasets

We conducted experiments on SQuAD (Rajpurkar
et al., 2016), NewsQA(Trischler et al., 2017), MS
MARCO (v1, Nguyen et al.,2016) and WDW (On-
ishi et al., 2016). Dataset statistics is shown in
Table 1. Although similar in size, these datasets
are quite different in domains, lengths of text, and
types of task. In the following experiments, we
will validate whether including external datasets
as additional input information (e.g., pre-trained
language model on these datasets) helps boost the
performance of MRC systems.

1We include the results in the appendix due to space limi-
tations.
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Model Dev Set Performance

Single Model without Language Models EM,F1

BiDAF (Seo et al., 2016) 67.7, 77.3
SAN (Liu et al., 2018c) 76.24, 84.06
MT-SAN on SQuAD (single task, ours) 76.84, 84.54
MT-SAN on SQuAD+NewsQA(ours) 78.60, 85.87
MT-SAN on SQuAD+MARCO(ours) 77.79, 85.23
MT-SAN on SQuAD+NewsQA+MARCO(ours) 78.72, 86.10

Single Model with ELMo

SLQA+ (Wang et al., 2018a) 80.0, 87.0
MT-SAN on SQuAD (single task, ours) 80.04, 86.54
MT-SAN on SQuAD+NewsQA(ours) 81.36, 87.71
MT-SAN on SQuAD+MARCO(ours) 80.37, 87.17
MT-SAN on SQuAD+NewsQA+MARCO(ours) 81.58, 88.19
BERT (Devlin et al., 2018) 84.2, 91.1
Human Performance (test set) 82.30, 91.22

Table 2: Performance of our method to train SAN in multi-task setting, competing published results, leaderboard
results and human performance, on SQuAD dataset (single model). Note that BERT uses a much larger language
model, and is not directly comparable with our results. We expect our test performance is roughly similar or a bit
higher than our dev performance, as is the case with other competing models.

5.2 Experiment Details

We mostly focus on span-based datasets for
MT-SAN, namely SQuAD, NewsQA, and MS
MARCO. We convert MS MARCO into an
answer-span dataset to be consistent with SQuAD
and NewsQA, following (Liu et al., 2018c). For
each question, we search for the best span using
ROUGE-L score in all passage texts and use the
span to train our model. We exclude questions
with maximal ROUGE-L score less than 0.5 dur-
ing training. For evaluation, we use our model to
find a span in all passages. The prediction score is
multiplied with the ranking score, trained follow-
ing Liu et al. (2018a)’s method to determine the
final answer.

We train our networks using algorithms in Sec-
tion 4, using SQuAD as the target task. For ex-
periments with two datasets, we use Algorithm
2; for experiments with three datasets we find the
re-weighting mechanism in Section 4.2 to have a
better performance (a detailed comparison will be
presented in Section 5.4).

For generating sample weights, we build a
LSTM language model on questions following the
implementation of Merity et al. (2017) with the
same hyperparameters. We only keep the 10,000
most frequent words, and replace the other words

with a special out-of-vocabulary token.
Parameters of MT-SAN are mostly the same as

in the original paper (Liu et al., 2018c). We utilize
spaCy2 to tokenize the text and generate part-of-
speech and named entity labels. We use a 2-layer
BiLSTM with 125 hidden units as the BiLSTM
throughout the model. During training, we drop
the activation of each neuron with 0.3 probability.
For optimization, we use Adamax (Kingma and
Ba, 2014) with a batch size of 32 and a learning
rate of 0.002. For prediction, we compute an ex-
ponential moving average (EMA, Seo et al. 2016)
of model parameters with a decay rate of 0.995
and use it to compute the model performance. For
experiments with ELMo, we use the model imple-
mented by AllenNLP 3. We truncate passage to
contain at most 1000 tokens during training and
eliminate those data with answers located after the
1000th token. The training converges in around
50 epochs for models without ELMo (similar to
the single-task SAN); For models with ELMo, the
convergence is much faster (around 30 epochs).

5.3 Performance of MT-SAN
In the following sub-sections, we report our re-
sults on SQuAD and MARCO development sets,

2https://spacy.io
3https://allennlp.org/
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as well as on the development and test sets of
NewsQA 4. All results are single-model perfor-
mance unless otherwise noted.

The multi-task learning results of SAN on
SQuAD are summarized in Table 2. By using
MTL on SQuAD and NewsQA, we can improve
the exact-match (EM) and F1 score by (2%, 1.5%),
respectively, both with and without ELMo. The
similar gain indicates that our method is orthogo-
nal to ELMo. Note that our single-model perfor-
mance is slightly higher than the original SAN, by
incorporating EMA and highway networks. By in-
corporating with multi-task learning, it further im-
proves the performance. The performance gain by
adding MARCO is relatively smaller, with 1% in
EM and 0.5% in F1. We conjecture that MARCO
is less helpful due to its differences in both the
question and answer style. For example, ques-
tions in MS MARCO are real web search queries,
which are short and may have typos or abbrevia-
tions; while questions in SQuAD and NewsQA are
more formal and well written.

Using 3 datasets altogether provides another
marginal improvement. Our model obtains the
best results among existing methods that do not
use a large language model (e.g., ELMo). Our
ELMo version also outperforms any other mod-
els which are under the same setting. We note
that BERT (Devlin et al., 2018) uses a much larger
model than ours(around 20x), and we leave the
performance of combining BERT with MTL as in-
teresting future work.

The results of multi-task learning on NewsQA
are in Table 3. The performance gain with multi-
task learning is even larger on NewsQA, with over
2% in both EM and F1. Experiments with and
without ELMo give similar results. What is worth
noting is that our approach not only achieves new
state-of-art results with a large margin but also sur-
passes human performance on NewsQA.

Finally we report MT-SAN performance on MS
MARCO in Table 4. Multi-tasking on SQuAD and
NewsQA provides a similar performance boost in
terms of BLEU-1 and ROUGE-L score as in the
case of NewsQA and SQuAD. Our method does
not achieve very high performance compared to
previous work, probably because we do not ap-
ply common techniques like yes/no classification

4 The official submission for SQuAD v1.1 and MARCO
v1.1 are closed, so we report results on the development set.
According to their leaderboards, performances on develop-
ment and test sets are usually similar.

Model Dev Set Test Set
Model W/o ELMo EM,F1 EM, F1

Match-LSTM1 34.4, 49.6 34.9, 50.0
FastQA2 43.7, 56.1 42.8, 56.1
AMANDA3 48.4, 63.3 48.4, 63.7
MT-SAN (Single task) 55.8, 67.9 55.6, 68.0
MT-SAN (S+N) 57.8, 69.9 58.3, 70.7
Model With ELMo
MT-SAN (Single task) 57.7, 70.4 57.0, 70.4
MT-SAN (S+N) 60.1, 72.5 59.9, 72.6
Human Performance -,- 46.5, 69.4

Table 3: Performance of our method to train SAN
in multi-task setting, with published results and hu-
man performance on NewsQA dataset. All SAN results
are from our models. “S+N” means jointly training on
SQuAD and NewsQA References: 1: implemented by
Trischler et al. (2017). 2:Weissenborn et al.(2017). 3:
Kundu and Ng(2018).

Model Scores
Single Model W/o ELMo

FastQAExt1 (test set) 33.99, 32.09
Reasonet++2 38.62, 38.01
V-Net3 -, 45.65
SAN4 43.85, 46.14
MT-SAN 34.13, 42.65
MT-SAN: SQuAD+MARCO 34.29, 43.47
MT-SAN: 3 datasets 36.99, 43.64
Single Model With ELMo
MT-SAN 34.57, 42.88
MT-SAN: SQuAD+MARCO 37.02, 43.89
MT-SAN: 3 datasets 37.12, 44.12
Human Performance (test set) 48.02, 49.72

Table 4: Performance of our method to train SAN in
multi-task setting, competing published results and hu-
man performance, on MS MARCO dataset. The scores
stand for (BLEU-1, ROUGE-L) respectively. All SAN
results are our results. “3 dataset” means we train using
SQuAD+NewsQA+MARCO. References: 1: (Weis-
senborn et al., 2017). 2: implemented by (Shen et al.,
2017). 3:(Wang et al., 2018b). 4: (Liu et al., 2018c)

or cross-passage ranking (Wang et al., 2018b).
We also test the robustness of our algorithm

by performing another set of experiments on
SQuAD and WDW. WDW is much more different
than the other three datasets (SQuAD, NewsQA,
MS MARCO): WDW guarantees that the answer
is always a person, whereas the percentage of
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Model SQuAD WDW
MT-SAN (Single Task) 76.8, 84.5 77.5
MT-SAN (S+W) 77.6, 85.1 78.5
SOTA(Yang et al., 2016). 86.2, 92.2 71.7
Human Performance 82.3, 91.2 84

Table 5: Performance of MT-SAN on SQuAD Dev and
WDW test set. Accuracy is used to evaluate WDW.
“S+W” means jointly training on SQuAD and WDW.

Model EM, F1 +/-
QANet 73.6, 82.7 0.0, 0.0
QANet + BT 75.1, 83.8 +1.5,+1.1
SAN 76.8, 84.5 0.0, 0.0
MT-SAN 78.7, 86.0 +1.9,+1.5
SAN + ELMo 80.0, 86.5 +3.2,+2.0
MT-SAN + ELMo 81.6, 88.2 +4.8, +3.7

Table 6: Comparison of methods to use external data.
BT stands for back translation (Yu et al., 2018).

such questions in SQuAD is 12.9%. Moreover,
WDW is a cloze dataset, whereas in SQuAD and
NewsQA answers are spans in the passage. We use
a task-specific answer layer in this experiment and
use Algorithm 2; the WDW answer module is the
same as in AS Reader (Kadlec et al., 2016), which
we describe in the appendix for completeness. De-
spite these large difference between datasets, our
results (Table 5) show that MTL can still provide
a moderate performance boost when jointly train-
ing on SQuAD (around 0.7%) and WDW (around
1%).
Comparison of methods using external data. As
a method of data augmentation, we compare our
approach to previous methods for MRC in Table 6.
Our model achieves better performance than back
translation. We also observe that language models
such as ELMo obtain a higher performance gain
than multi-task learning, however, combining it
with multi-task learning leads to the most signifi-
cant performance gain. This validates our assump-
tion that multi-task learning is more robust and is
different from previous methods such as language
modeling.

5.4 Comparison of Different MTL
Algorithms

In this section, we provide ablation studies as well
as comparisons with other existing algorithms on
the MTL strategy. We focus on MT-SAN without

Model Performance
SQuAD + MARCO EM,F1
Simple Combine (Alg. 1) 77.1, 84.6
Loss Uncertainty 77.3, 84.7
Mixture Ratio 77.8, 85.2
Sample Re-weighting 77.9,85.3
SQuAD + NewsQA + MARCO
Simple Combine (Alg. 1) 77.6, 85.2
Loss Uncertainty 78.2, 85.6
Mixture Ratio 78.4, 85.7
Sample Re-weighting 78.8, 86.0

Table 7: Comparison of different MTL strategies on
MT-SAN. Performance is on SQuAD. Loss Uncer-
tainty is from Kendall et al. (2018).

ELMo for efficient training.
Table 7 compares different multi-task learning

strategies for MRC. Both the mixture ratio (Sec
4.1) and sample re-weighting (Sec 4.2) improves
over the naive baseline of simply combining all
the data (Algorithm 1). On SQuAD+MARCO,
they provide around 0.6% performance boost in
terms of both EM and F1, and around 1% on all
3 datasets. We note that this accounts for around a
half of our overall improvement. Although sample
re-weighting performs similar as mixture ratio, it
significantly reduces the amount of training time
as it eliminates the need for a grid searching the
best ratio. Kendal et al., (2018) use task uncer-
tainty to weight tasks differently for MTL; our ex-
periments show that this has some positive effect,
but does not perform as well as our proposed two
techniques. We note that Kendal et al. (as well as
other previous MTL methods) optimizes the net-
work to perform well for all the tasks, whereas our
method focuses on the target domain which we are
interested in, e.g., SQuAD.
Sensitivity of mixture ratio. We also investigate
the effect of mixture ratio on the model perfor-
mance. We plot the EM/F1 score on SQuAD dev
set vs. mixture ratio in Figure 1 for MT-SAN when
trained on all three datasets. The curve peaks at
α = 0.4; however if we use α = 0.2 or α =
0.5, the performance drops by around 0.5%, well
behind the performance of sample re-weighting.
This shows that the performance of MT-SAN is
sensitive to changes in α, making the hyperpa-
rameter search even more difficult. Such sensitiv-
ity suggests a preference for using our sample re-
weighting technique. On the other hand, the ratio
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Samples/Groups CED′ HQ HA

Examples

(NewsQA) Q: Where is the drought hitting?
0.824 0.732 0.951

A: Argentina
(MARCO) Q: thoracic cavity definition

0.265 0.332 0.240
A: is the chamber of the human body ... and fascia.

Averages

Samples in NewsQA 0.710 0.593 0.895
Samples in MARCO 0.587 0.550 0.669
MARCO Questions that start with “When” or “Who” 0.662 0.605 0.761
All samples 0.654 0.573 0.791

Table 8: Scores for examples from NewsQA and MS MARCO and average scores for specific groups of samples.
CED′ is as in (7), while HQ and HA are normalized version of question and sample scores. “Sum” are the actual
scores we use, and “LM”, “Answer” are scores from language models and answer lengths.
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Figure 1: Effect of the mixture ratio on the perfor-
mance of MT-SAN. Note that α = 0 is equivalent to
single task learning, and α = 1 is equivalent to simple
combining.

based approach is pretty straightforward to imple-
ment.
Analysis of sample weights. Dataset compar-
isons in Table 1 and performance in Table 2 sug-
gests that NewsQA share more similarity with
SQuAD than MARCO. Therefore, a MTL sys-
tem should weight NewsQA samples more than
MARCO samples for higher performance. We
try to verify this in Table 8 by showing examples
and statistics of the sample weights. We present
the CED′ scores, as well as normalized version
of question and answer scores (resp. (H ′1,Q −
H ′k,Q) and (H ′1,A−H ′k,A) in (6), and then negated
and normalized over all samples in NewsQA and
MARCO in the same way as in (7)). A high HQ

score indicates high importance of the question,
and HA of the answer; CED′ is a summary of the
two. We first show one example from NewsQA
and one from MARCO. The NewsQA question
is a natural question (similar to SQuAD) with a

short answer, leading to high scores both in ques-
tions and answers. The MARCO question is a
phrase, with a very long answer, leading to lower
scores. From overall statistics, we also find sam-
ples in NewsQA have a higher score than those in
MARCO. However, if we look at MARCO ques-
tions that start with “when” or “who” (i.e., prob-
ability natural questions with short answers), the
scores go up dramatically.

6 Conclusion

We proposed a multi-task learning framework
to train MRC systems using datasets from dif-
ferent domains and developed two approaches
to re-weight the samples for multi-task learning
on MRC tasks. Empirical results demonstrated
our approaches outperform existing MTL meth-
ods and the single-task baselines as well. Inter-
esting future directions include combining with
larger language models such as BERT, and MTL
with broader tasks such as language inference (Liu
et al., 2019) and machine translation.
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A Answer Module for WDW

We describe the answer module for WDW here
for completeness. For WDW we need to choose
an answer from a list of candidates; the candi-
dates are people names that have appeared in the
passage. We use the same way to summary in-
formation in questions as in span-based models:

s0 ← Highway
(∑

j

exp(w4H
q
j )∑

j′ expw4H
q

j′
·Hq

j

)
. We

then compute an attention score via simple dot
product: s = softmax(sT0M). The probability of
a candidate being the true answer is the aggrega-
tion of attention scores for all appearances of the
candidate:

Pr(c|Q,P ) ∝
∑

1≤i≤n
siI(pi ∈ C)
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Setup SQuAD (v1) SQuAD (v2) NewsQA WDW
Single Dataset 69.5,78.8 (paper) 61.9, 65.2 51.9, 64.6 75.8

68.6, 77.8 (ours)
MT-DrQA on Sv1+NA 70.2, 79.3 -,- 52.8, 65.8 -
MT-DrQA on Sv1+W 69.2, 78.4 -,- -,- 75.7
MT-DrQA on Sv1+N+W 70.2, 79.3 -,- 53.1, 65.7 75.4
MT-DrQA on Sv2+N -,- 63.6, 66.7 52.7, 65.7 -
MT-DrQA on Sv2+W -,- 63.5, 66.3 -,- 75.4
MT-DrQA on Sv2+N+W -,- 63.1, 66.3 52.5, 65.6 75.3
SOTA (Single Model) 80.0, 87.0 72.3, 74.8 48.4, 63.7 (test) 71.7 (test)
MT-DrQA Best Performance 70.2, 79.3 63.6, 66.7 53.0, 66.2(test) 75.4 (test)
Human Performance (test set) 82.3, 91.2 86.8, 89.5 46.5, 69.4 84

Table 9: Single model performance of our method to train DrQA on multi-task setting, as well as state-of-the-
art (SOTA) results and human performance. SQuAD and NewsQA performance are measured by (EM, F1), and
WDW by accuracy percentage. All results are on development set unless otherwise noted. Published SOTA results
come from (Wang et al., 2018a; Hu et al., 2018; Kundu and Ng, 2018; Yang et al., 2016) respectively.

for each candidate C. Recall that n is the length
of passage P , and pi is the i-th word; therefore
I(pi ∈ C) is the indicator function of pi appears in
candidate C. The candidate with the largest prob-
ability is chosen as the predicted answer.

B Experiment Results on DrQA

To demonstrate the flexibility of our approach, we
also adapt DrQA (Chen et al., 2017) into our MTL
framework. We only test DrQA using the basic
Algorithm 2, since our goal is mainly to test the
MTL framework.

B.1 Model Architecture

Similar to MT-SAN, we add a highway network
after the lexicon encoding layer and the contextual
encoding layer and use a different answer module
for each dataset. We apply MT-DrQA to a broader
range of datasets. For span-detection datasets
such as SQuAD, we use the same answer module
as DrQA. For cloze-style datasets like Who-Did-
What, we use the attention-sum reader (Kadlec
et al., 2016) as the answer module. For classifi-
cation tasks required by SQuAD v2.0 (Rajpurkar
et al., 2018), we apply a softmax to the last state
in the memory layer and use it as the prediction.

B.2 Performance of MT-DrQA

We apply MT-DrQA to SQuAD (v1.1 and v2.0),
NewsQA, and WDW. We follow the setup of
(Chen et al., 2017) for model architecture and hy-
perparameter setup. We use Algorithm 1 to train
all MT-DrQA models. Different than (Rajpurkar

et al., 2018), we do not optimize the evaluation
score by changing the threshold to predict unan-
swerable question for SQuAD v2.0; we just use
the argmax prediction. As a result, we expect
the gap between dev and test performance to be
lower for our model. The results of MT-DrQA
are presented in Table 9. The results of combin-
ing SQuAD and NewsQA obtain similar perfor-
mance boost as our SAN experiment, with a per-
formance boost between 1-2% in both EM and F1
for the two datasets. The results of MTL includ-
ing WDW is different: although adding WDW to
SQuAD still brings a marginal performance boost
to SQuAD, the performance on WDW drops af-
ter we add SQuAD and NewsQA into the training
process. We conjecture that this negative trans-
fer phenomenon is probably because of the drastic
difference between WDW and SQuAD/NewsQA,
both in their domain, answer type, and task type;
and DrQA might not be capable of caputuring all
these features using just one network. We leave
the problem of further preventing such negative
transfer to future work.


