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Abstract
A major challenge for video captioning is
to combine audio and visual cues. Exist-
ing multi-modal fusion methods have shown
encouraging results in video understanding.
However, the temporal structures of multi-
ple modalities at different granularities are
rarely explored, and how to selectively fuse the
multi-modal representations at different lev-
els of details remains uncharted. In this pa-
per, we propose a novel hierarchically aligned
cross-modal attention (HACA) framework to
learn and selectively fuse both global and lo-
cal temporal dynamics of different modali-
ties. Furthermore, for the first time, we vali-
date the superior performance of the deep au-
dio features on the video captioning task. Fi-
nally, our HACA model significantly outper-
forms the previous best systems and achieves
new state-of-the-art results on the widely used
MSR-VTT dataset.

1 Introduction

Video captioning, the task of automatically gener-
ating a natural-language description of a video, is a
crucial challenge in both NLP and vision commu-
nities. In addition to visual features, audio features
can also play a key role in video captioning. Fig-
ure 1 shows an example where the caption system
made a mistake analyzing only visual features. In
this example, it could be very hard even for a hu-
man to correctly determine if the girl is singing or
talking by only watching without listening. Thus
to describe the video content accurately, a good
understanding of the audio signature is a must.

In the multi-modal fusion domain, many ap-
proaches attempted to jointly learn temporal fea-
tures from multiple modalities (Wu et al., 2014a),
such as feature-level (early) fusion (Ngiam et al.,
2011; Ramanishka et al., 2016), decision-level
(late) fusion (He et al., 2015), model-level fu-
sion (Wu et al., 2014b), and attention fusion (Chen

Ground	Truth:	 A	girl	is	singing.
A	girl	sings	to	a	song.

Video	Only:	 A	woman	is	talking	in	a	room.
Video	+	Audio: A	girl	is	singing	a	song.

Figure 1: A video captioning example.

and Jin, 2016; Yang et al., 2017), etc. But these
techniques do not learn the cross-modal atten-
tion and thus fail to selectively attend to a certain
modality when producing the descriptions.

Another issue is that little efforts have been ex-
erted on utilizing temporal transitions of the dif-
ferent modalities with varying analysis granulari-
ties. The temporal structures of a video are inher-
ently layered since the video usually contains tem-
porally sequential activities (e.g. a video where a
person reads a book, then throws it on the table.
Next, he pours a glass of milk and drinks it). There
are strong temporal dependencies among those ac-
tivities. Meanwhile, to understand each of them
requires understanding many action components
(e.g., pouring a glass of milk is a complicated ac-
tion sequence). Therefore we hypothesize that it
is beneficial to learn and align both the high-level
(global) and low-level (local) temporal transitions
of multiple modalities.

Moreover, prior work only employed hand-
crafted audio features (e.g. MFCC) for video cap-
tioning (Ramanishka et al., 2016; Xu et al., 2017;
Hori et al., 2017). While deep audio features have
shown superior performance on some audio pro-
cessing tasks like audio event classification (Her-
shey et al., 2017), their use in video captioning
needs to be validated.

795



ResNet Visual	Features VGGish Audio	Features
Attention	Module	
in	encoding	stage

Attention	Module	
in	decoding	stage

Cross-modal	
Attention

LSTM	Cell

LSTM	Cell	at	
current	step	!
Nueral Operation

Hierarchical	
Attentive	Encoder Local	

Decoder
Global	
Decoder

Encoding	
Stage

Decoding	
Stage

Figure 2: Overview of our HACA framework. Note that in the encoding stage, for the sake of simplicity, the
step size of high-level LSTM in both hierarchical attentive encoders is 2 here, but in practice usually they are set
much longer. In the decoding stage, we only show the computations of the time step t (the decoders have the same
behavior at other time steps).

In this paper, we propose a novel hierarchically
aligned cross-modal attentive network (HACA)
to learn and align both global and local contexts
among different modalities of the video. The goal
is to overcome the issues mentioned above and
generate better descriptions of the input videos.
Our contributions are fourfold: (1) we invent
a hierarchical encoder-decoder network to adap-
tively learn the attentive representations of mul-
tiple modalities, including visual attention, audio
attention, and decoder attention; (2) our proposed
model is capable of aligning and fusing both the
global and local contexts of different modalities
for video understanding and sentence generation;
(3) we are the first to utilize deep audio features for
video captioning and empirically demonstrate its
effectiveness over hand-crafted MFCC features;
and (4) we achieve the new state of the art on the
MSR-VTT dataset.

Among the network architectures for video cap-
tioning (Yao et al., 2015; Venugopalan et al.,
2015b), sequence-to-sequence models (Venu-
gopalan et al., 2015a) have shown promising re-
sults. Pan et al. Pan et al. (2016) introduced a
hierarchical recurrent encoder to capture the tem-
poral visual features at different levels. Yu et al.
(2016) proposed a hierarchical decoder for para-
graph generation, and most recently Wang et al.
(2018) invented a hierarchical reinforced frame-
work to generate the caption phrase by phrase.
But none had tried to model and align the global

and local contexts of different modalities as we do.
Our HACA model does only learn the representa-
tions of different modalities at different granulari-
ties, but also align and dynamically fuse them both
globally and locally with hierarchically aligned
cross-modal attentions.

2 Proposed Model

Our HACA model is an encoder-decoder frame-
work comprising multiple hierarchical recurrent
neural networks (see Figure 2). Specifically, in
the encoding stage, the model has one hierarchical
attentive encoder for each input modality, which
learns and outputs both the local and global rep-
resentations of the modality. (In this paper, vi-
sual and audio features are used as the input and
hence there are two hierarchical attentive encoders
as shown in Figure 2; it should be noted, how-
ever, that the model seamlessly extends to more
than two input modalities.)

In the decoding stage, we employ two cross-
modal attentive decoders: the local decoder and
the global decoder. The global decoder attempts
to align the global contexts of different modalities
and learn the global cross-modal fusion context.
Correspondingly, the local decoder learns a local
cross-modal fusion context, combines it with the
output from the global decoder, and predicts the
next word.
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2.1 Feature Extractors
To exploit visual and audio cues, we use the pre-
trained convolutional neural network (CNN) mod-
els to extract deep visual features and deep au-
dio features correspondingly. More specifically,
we utilize the ResNet model for image classifica-
tion (He et al., 2016) and the VGGish model for
audio classification (Hershey et al., 2017).

2.2 Attention Mechanism
For a better understanding of the following sec-
tions, we first introduce the soft attention mech-
anism. Given a feature sequence (x1,x2, ...,xn)
and a running recurrent neural network (RNN), the
context vector ct at time step t is computed as a
weighted sum over the sequence:

ct =
n∑

k=1

αtkxk , (1)

These attention weights {αtk} can be learned by
the attention mechanism proposed in (Bahdanau
et al., 2014), which gives higher weights to cer-
tain features that allow better prediction of the sys-
tem’s internal state.

2.3 Hierarchical Attentive Encoder
Inspired by Pan et al. (2016), the hierarchical at-
tentive encoder consists of two LSTMs and the in-
put to the low-level LSTM is a sequence of tem-
poral features {f eLi } and i ∈ {1, ..., n}:

oeLi ,heL
i = eL(f

eL
i ,heL

i−1) , (2)

where eL is the low-level encoder LSTM, whose
output and hidden state at step i are oeLi and
heL
i respectively. As shown in Figure 2, differ-

ent from a stacked two-layer LSTM, the high-level
LSTM here operates at a lower temporal resolu-
tion and runs one step every s time steps. Thus
it learns the temporal transitions of the segmented
feature chunks of size s. Furthermore, an attention
mechanism is employed between the connection
of these two LSTMs. It learns the context vec-
tor of the low-level LSTM’s outputs of the current
feature chunk, which is then taken as the input to
the high-level LSTM at step j. In formula,

f eHj =
sj∑

k=s(j−1)+1

αjko
eL
k , (3)

oeHj ,heH
j = eH(f eHj ,heH

j−1) , (4)

where eH denotes the high-level LSTM whose
output and hidden state at j are oeHj and heH

j .
Since we are utilizing both the visual and au-

dio features, there are two hierarchical attentive
encoders (v for visual features and a for audio
features). Hence four sets of representations are
learned in the encoding stage: high-level and low-
level visual feature sequences ({ovHj } and {ovLi }),
and high-level and low-level audio feature se-
quences ({oaHj } and {oaLi }).

2.4 Globally and Locally Aligned
Cross-modal Attentive Decoder

In the decoding stage, the representations of differ-
ent modalities at the same granularity are aligned
separately with individual attentive decoders. That
is, one decoder is employed to align those high-
level features and learn a high-level (global) cross-
modal embedding. Since the high-level features
are the temporal transitions of larger chunks and
focus on long-range contexts, we call the corre-
sponding decoder as global decoder (dG). Simi-
larly, the companion local decoder (dL) is used to
align the low-level (local) features that attend to
fine-grained and local dynamics.

At each time step t, the attentive decoders learn
the corresponding visual and audio contexts using
the attention mechanism (see Figure 2). In addi-
tion, our attentive decoders also uncover the at-
tention over their own previous hidden states and
learn aligned decoder contexts cdLt and cdGt :

cdLt =
t−1∑

k=1

αdL
tk h

dL
k , cdGt =

t−1∑

k=1

αdG
tk hdG

k . (5)

Paulus et al. (2017) also show that decoder atten-
tion can mitigate the phrase repetition issue.

Each decoder is equipped with a cross-modal
attention, which learns the attention over contexts
of different modalities. The cross-modal attention
module selectively attends to different modalities
and outputs a fusion context cft :

cft = tanh(βtvWvc
v
t+βtaWac

a
t+βtdWdc

d
t+b),

(6)
where cvt , cat , and cdt are visual, audio and decoder
contexts at step t respectively; Wv, Wa and Wd

are learnable matrices; βtv, βta and βtd can be
learned in a similar manner of the attention mech-
anism in Section 2.2.

The global decoder dG directly takes as the in-
put the concatenation of the global fusion con-
text cfGt and the word embedding of the generated
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word wt−1 at previous time step:

odGt ,hdG
t = dG([c

fG
t , emb(wt−1)],h

dG
t−1). (7)

The global decoder’s output odGt is a latent embed-
ding which represents the aligned global tempo-
ral transitions of multiple modalities. Differently,
the local decoder dL receives the latent embedding
odGt , mixes it with the local fusion context cfLt ,
and then learns a uniform representation odLt to
predict the next word. In formula,

odLt ,hdL
t = dL([c

fL
t , emb(wt−1),o

dG
t ],hdL

t−1).
(8)

2.5 Cross-Entropy Loss Function

The probability distribution of the next word is

p(wt|w1:t−1) = softmax(Wp[o
dL
t ]), (9)

where Wp is the projection matrix. w1:t−1 is the
generated word sequence before step t. θ be the
model parameters and w∗

1:T be the ground-truth
word sequence, then the cross entropy loss

L(θ) = −
T∑

t=1

log p(w∗
t |w∗

1:t−1, θ). (10)

3 Experimental Setup

Dataset and Preprocessing We evaluate our
model on the MSR-VTT dataset (Xu et al., 2016),
which contains 10,000 videos clips (6,513 for
training, 497 for validation, and the remaining
2,990 for testing). Each video contains 20 human
annotated reference captions collected by Amazon
Mechanical Turk. To extract the visual features,
the pretrained ResNet model (He et al., 2016) is
used on the video frames which are sampled at
3fps. For the audio features, we process the raw
WAV files using the pretrained VGGish model as
suggested in Hershey et al. (2017)1.

Evaluation Metrics We adopt four diverse au-
tomatic evaluation metrics: BLEU, METEOR,
ROUGE-L, and CIDEr-D, which are computed us-
ing the standard evaluation code from MS-COCO
server (Chen et al., 2015).

1https://github.com/tensorflow/models/
tree/master/research/audioset

Models BLEU-4 METEOR ROUGE-L CIDEr
Top-3 Results from MSR-VTT Challenge 2017

v2t navigator 40.8 28.2 60.9 44.8
Aalto 39.8 26.9 59.8 45.7
VideoLAB 39.1 27.7 60.6 44.1

State Of The Arts
CIDEnt-RL 40.5 28.4 61.4 51.7
Dense-Cap 41.4 28.3 61.1 48.9
HRL 41.3 28.7 61.7 48.0

Our Models
ATT(v) 39.6 27.4 59.7 45.8
CM-ATT(va) 41.7 28.6 61.2 48.2
CM-ATT(vad) 41.9 29.1 61.5 48.0
HACA(w/o align) 42.8 29.0 61.8 48.9
HACA 43.4 29.5 61.8 49.7

Table 1: Results on the MSR-VTT dataset.

Training Details All the hyperparameters are
tuned on the validation set. The maximum num-
ber of frames is 50, and the maximum number of
audio segments is 20. For the visual hierarchical
attentive encoders (HAE), the low-level encoder
is a bidirectional LSTM with hidden dim 512 (128
for the audio HAE), and the high-level encoder is
an LSTM with hidden dim 256 (64 for the audio
HAE), whose chunk size s is 10 (4 for the audio
HAE). The global decoder is an LSTM with hid-
den dim 256 and the local decoder is an LSTM
with hidden dim 1024. The maximum step size
of the decoders is 16. We use word embedding
of size 512. Moreover, we adopt Dropout (Sri-
vastava et al., 2014) with a value 0.5 for regular-
ization. The gradients are clipped into the range
[-10, 10]. We initialize all the parameters with
a uniform distribution in the range [-0.08, 0.08].
Adadelta optimizer (Zeiler, 2012) is used with
batch size 64. The learning rate is initially set as 1
and then reduced by a factor 0.5 when the current
CIDEr score does not surpass the previous best
for 4 epochs. The maximum number of epochs is
set as 50, and the training data is shuffled at each
epoch. Schedule sampling (Bengio et al., 2015) is
employed to train the models. Beam search of size
5 is used during the test time inference.

4 Results

4.1 Comparison with State Of The Arts

In Table 1, we first list the top-3 results from
the MSR-VTT Challenge 2017: v2t navigator (Jin
et al., 2016), Aalto (Shetty and Laaksonen, 2016),
and VideoLAB (Ramanishka et al., 2016). Then
we compare with the state-of-the-art methods on
the MSR-VTT dataset: CIDEnt-RL (Pasunuru and
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Features BLEU-4 METEOR ROUGE-L CIDEr
video only 39.6 27.4 59.7 45.8
video + MFCC 40.3 28.5 60.8 47.5
video + VGGish 41.7 28.6 61.2 48.2

Table 2: Performance of the cross-modal attention
model with various audio features.

Bansal, 2017), Dense-Cap (Shen et al., 2017), and
HRL (Wang et al., 2018). Our HACA model sig-
nificantly outperforms all the previous methods
and achieved the new state of the art on BLEU-4,
METEOR, and ROUGE-L scores. Especially, we
improve the BLEU-4 score from 41.4 to 43.1. The
CIDEr score is the second best and only lower than
that of CIDEnt-RL which directly optimizes the
CIDEr score during training with reinforcement
learning. Note that all the results of our HACA
method reported here are obtained by supervised
learning only.

4.2 Result Analysis

We also evaluate several baselines to validate the
effectiveness of the components in our HACA
framework (see Our Models in Table 1). ATT(v) is
a generic attention-based encoder-decoder model
that specifically attends to the visual features only.
CM-ATT is a cross-modal attentive model, which
contains one individual encoder for each input
modality and employs a cross-modal attention
module to fuse the contexts of different modalities.
CM-ATT(va) denotes the CM-ATT model consist-
ing of visual attention and audio attention, while
CM-ATT(vad) has an additional decoder attention.

As presented in Table 1, our ATT(v) model
achieves comparable results with the top-ranked
results from MSR-VTT challenge. Comparing be-
tween ATT(v) and CM-ATT(va), we observe a
substantial improvement by exploiting the deep
audio features and adding cross-modal attention.
The results of CM-ATT(vad) further demonstrates
that decoder attention was beneficial for video
captioning. Note that to test the strength of the
aligned attentive decoders, we provide the results
of HACA(w/o align) model, which shares almost
same architecture with the HACA model, except
that it only has one decoder to receive both the
global and local contexts. Apparently, our HACA
model obtains superior performance, which there-
fore proves the effectiveness of the context align-
ment mechanism.

Figure 3: Learning curves of the CIDEr scores on the
validation set. Note that greedy decoding is used during
training, while beam search is employed at test time,
thus the testing scores are higher than the validation
scores here.

4.3 Effect of Deep Audio Features
In order to validate the superiority of the deep au-
dio features in video captioning, we illustrate the
performance of different audio features applied in
the CM-ATT model in Table 2. Evidently, the deep
VGGish audio features work better than the hand-
crafted MFCC audio features for the video cap-
tioning task. Besides, it also shows the importance
of understanding and describing a video with the
help of audio features.

4.4 Learning Curves
For a more intuitive view of the model capacity,
we plot the learning curves of the CIDEr scores
on the validation set in Figure 3. Three models are
presented: HACA, HACA(w/o align), and CM-
ATT. They are trained on same input modalities
and all paired with visual, audio and decoder at-
tentions. We can observe that the HACA model
performs consistently better than others and has
the largest model capacity.

5 Conclusion

We introduce a generic architecture for video cap-
tioning which learns the aligned cross-modal at-
tention globally and locally. It can be plugged
into the existing reinforcement learning methods
for video captioning to further boost the perfor-
mance. Moreover, in addition to the deep visual
and audio features, features from other modalities
can also be incorporated into the HACA frame-
work, such as optical flow and C3D features.
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