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Abstract

Sentences with gapping, such as Paul likes cof-
fee and Mary tea, lack an overt predicate to
indicate the relation between two or more ar-
guments. Surface syntax representations of
such sentences are often produced poorly by
parsers, and even if correct, not well suited
to downstream natural language understanding
tasks such as relation extraction that are typi-
cally designed to extract information from sen-
tences with canonical clause structure. In this
paper, we present two methods for parsing to a
Universal Dependencies graph representation
that explicitly encodes the elided material with
additional nodes and edges. We find that both
methods can reconstruct elided material from
dependency trees with high accuracy when the
parser correctly predicts the existence of a gap.
We further demonstrate that one of our meth-
ods can be applied to other languages based on
a case study on Swedish.

1 Introduction

Sentences with gapping (Ross, 1970) such as Paul
likes coffee and Mary tea are characterized by hav-
ing one or more conjuncts that contain multiple
arguments or modifiers of an elided predicate. In
this example, the predicate likes is elided for the
relation Mary likes tea. While these sentences ap-
pear relatively infrequently in most written texts,
they are often used to convey a lot of factual in-
formation that is highly relevant for language un-
derstanding (NLU) tasks such as open informa-
tion extraction and semantic parsing. For example,
consider the following sentence from the WSJ por-
tion of the Penn Treebank (Marcus et al., 1993).

(1) Unemployment has reached 27.6% in
Azerbaijan, 25.7% in Tadzhikistan, 22.8%
in Uzbekistan, 18.8% in Turkmenia, 18%
in Armenia and 16.3% in Kirgizia, [...]

Paul likes coffee and Mary tea

Paul likes coffee and Mary tea Paul likes coffee and Mary tea

nsubj obj

conj>cc

conj>nsubj

conj>obj

nsubj obj cc

conj

orphan

Paul likes coffee and Mary likes′ tea

nsubj obj
cc

nsubj

conj

obj

Figure 1: Overview of our two approaches. Both
methods first parse a sentence with gapping to one of
two different dependency tree representations and then
reconstruct the elided predicate from this tree.

To extract the information about unemployment
rates in the various countries, an NLU system has
to identify that the percentages indicate unemploy-
ment rates and the locational modifiers indicate the
corresponding country. Given only this sentence,
or this sentence and a strict surface syntax repre-
sentation that does not indicate elided predicates,
this is a challenging task. However, given a depen-
dency graph that reconstructs the elided predicate
for each conjunct, the problem becomes much eas-
ier and methods developed to extract information
from dependency trees of clauses with canonical
structures are much more likely to extract the cor-
rect information from a gapped clause.

While gapping constructions receive a lot of at-
tention in the theoretical syntax literature (e.g.,
Ross 1970; Jackendoff 1971; Steedman 1990;
Coppock 2001; Osborne 2006; Johnson 2014;
Toosarvandani 2016; Kubota and Levine 2016),
they have been almost entirely neglected by the
NLP community so far. The Penn Treebank ex-
plicitly annotates gapping constructions, by co-
indexing arguments in the clause with a predicate
and the clause with the gap, but these co-indices
are not included in the standard parsing metrics
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and almost all parsers ignore them.1 Despite
the sophisticated analysis of gapping within CCG
(Steedman, 1990), sentences with gapping were
deemed too difficult to represent within the CCG-
Bank (Hockenmaier and Steedman, 2007). Simi-
larly the treebanks for the Semantic Dependencies
Shared Task (Oepen et al., 2015) exclude all sen-
tences from the Wall Street Journal that contain
gapping. Finally, while the tectogrammatical layer
of the Prague Dependency Treebank (Bejček et al.,
2013) as well as the enhanced Universal Depen-
dencies (UD) representation (Nivre et al., 2016)
provide an analysis with reconstructed nodes for
gapping constructions, there exist no methods to
automatically parse to these representations.

Here, we provide the first careful analysis of
parsing of gapping constructions, and we present
two methods for reconstructing elided predicates
in sentences with gapping within the UD frame-
work. As illustrated in Figure 1, we first parse to
a dependency tree and then reconstruct the elided
material. The methods differ in how much infor-
mation is encoded in the dependency tree. The
first method adapts an existing procedure for pars-
ing sentences with elided function words (Seeker
et al., 2012), which uses composite labels that
can be deterministically turned into dependency
graphs in most cases. The second method is a
novel procedure that relies on the parser only to
identify a gap, and then employs an unsupervised
method to reconstruct the elided predicates and
reattach the arguments to the reconstructed pred-
icate. We find that both methods can reconstruct
elided predicates with very high accuracy from
gold standard dependency trees. When applied to
the output of a parser, which often fails to iden-
tify gapping, our methods achieve a sentence-level
accuracy of 32% and 34%, significantly outper-
forming the recently proposed constituent parser
by Kummerfeld and Klein (2017).

2 Background

2.1 Gapping constructions

Gapping constructions in English come in many
forms that can be broadly classified as follows.

1 To the best of our knowledge, the parser by Kummer-
feld and Klein (2017) is the only parser that tries to output
the co-indexing of constituents in clauses with gapping but
they lack an explicit evaluation of their co-indexing predic-
tion accuracy.

(2) Single predicate gaps:
John bought books, and Mary flowers.

(3) Contiguous predicate-argument gap
(including ACCs):
Eve gave flowers to Al and Sue to Paul.
Eve gave a CD to Al and roses to Sue.

(4) Non-contiguous predicate-argument gap:
Arizona elected Goldwater Senator, and
Pennsylvania Schwelker .

(Jackendoff, 1971)

(5) Verb cluster gap:
I want to try to begin to write a novel and

... Mary a play.
... Mary to write a play.

... Mary to begin to write a play.
... Mary to try to begin to write a play.

(Ross, 1970)

The defining characteristic of gapping construc-
tions is that there is a clause that lacks a predicate
(the gap) but still contains two or more arguments
or modifiers of the elided predicate (the remnants
or orphans). In most cases, the remnants have
a corresponding argument or modifier (the corre-
spondent) in the clause with the overt predicate.

These types of gapping also make up the ma-
jority of attested constructions in other languages.
However, Wyngaerd (2007) notes that Dutch per-
mits gaps in relative clauses, and Farudi (2013)
notes that Farsi permits gaps in finite embedded
clauses even if the overt predicate is not embed-
ded.2

2.2 Target representation

We work within the UD framework, which aims to
provide cross-linguistically consistent dependency
annotations that are useful for NLP tasks. UD de-
fines two types of representation: the basic UD
representation which is a strict surface syntax de-
pendency tree and the enhanced UD representa-
tion (Schuster and Manning, 2016) which may be
a graph instead of a tree and may contain addi-
tional nodes. The analysis of gapping in the en-
hanced representation makes use of copy nodes for
elided predicates and additional edges for elided
arguments, which we both try to automatically re-
construct in this paper. In the simple case in which
only one predicate was elided, there is exactly one

2See Johnson (2014) or Schuster et al. (2017) for a more
comprehensive overview of cross-linguistically attested gap-
ping constructions.
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copy node for the elided predicate, which leads to
a structure that is identical to the structure of the
same sentence without a gap.3

John bought books and Mary bought′ flowers

nsubj obj
cc

nsubj

conj

obj

If a clause contains a more complex gap, the en-
hanced representation contains copies for all con-
tent words that are required to attach the remnants.

... and Mary wanted′ try′ begin′ write′ a play

cc
conj

xcomp xcomp xcomp det

obj

The motivation behind this analysis is that the
semantically empty markers to are not needed for
interpreting the sentence and minimizing the num-
ber of copy nodes leads to less complex graphs.

Finally, if a core argument was elided along
with the predicate, we introduce additional depen-
dencies between the copy nodes and the shared ar-
guments, as for example, the open clausal com-
plement (xcomp) dependency between the copy
node and Senator in the following example.

AZ elected G. Senator and PA elected′ S.

nsubj obj

xcomp cc

nsubj

conj

obj

xcomp

The rationale for not copying all arguments is
again to keep the graph simple, while still encod-
ing all relations between content words. Argu-
ments can be arbitrarily complex and it seems mis-
guided to copy entire subtrees of arguments which,
e.g., could contain multiple adverbial clauses.
Note that linking to existing nodes would not work
in the case of verb clusters because they do not sat-
isfy the subtree constraint.

3 Methods

3.1 Composite relations
Our first method adapts one of the procedures
by Seeker et al. (2012), which represents gaps in
dependency trees by attaching dependents of an
elided predicate with composite relations. These
relations represent the dependency path that would

3To enhance the readability of our examples, we place the
copy node in the sentence where the elided predicate would
have been pronounced. However, as linear order typically
does not matter for extracting information with dependency
patterns, our procedures only try to recover the structure of
canonical sentences but not their linear order.

have existed if nothing had been elided. For ex-
ample, in the following sentence, the verb bought,
which would have been attached to the head of
the first conjunct with a conj relation, was elided
from the second conjunct and hence all nodes that
would have depended on the elided verb, are at-
tached to the first conjunct using a composite rela-
tion consisting of conj and the type of argument.

John bought books and Mary flowers

nsubj
obj

conj>cc

conj>nsubj

conj>obj

The major advantage of this approach is that the
dependency tree contains information about the
types of arguments and so it should be straight-
forward to turn dependency trees of this form into
enhanced UD graphs. For most dependency trees,
one can obtain the enhanced UD graph by split-
ting the composite relations into its atomic parts
and inserting copy nodes at the splitting points.4

At the same time, this approach comes with the
drawback of drastically increasing the label space.
For sentences with more complex gaps as in (5),
one has to use composite relations that consist of
more than two atomic relations and theoretically,
the number of composite relations is unbounded:

... and Mary a play

det

conj>xcomp>xcomp>xcomp>obj

conj>nsubj

conj>cc

3.2 Orphan procedure

Our second method also uses a two-step approach
to resolve gaps, but compared to the previous
method, it puts less work on the parser. We first
parse sentences to the basic UD v2 representation,
which analyzes gapping constructions as follows.
One remnant is promoted to be the head of the
clause and all other remnants are attached to the
promoted phrase. For example, in this sentence,
the subject of the second clause, Mary, is the head
of the clause and the other remnant, flowers, is at-
tached to Mary with the special orphan relation:

John bought books and Mary flowers

nsubj obj cc
conj

orphan

4Note that this representation does not indicate conjunct
boundaries, and for sentences with multiple gapped con-
juncts, it is thus unclear how many copy nodes are required.
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This analysis can also be used for more complex
gaps, as in the example with a gap that consists of
a chain of non-finite embedded verbs in (5).

... and Mary a play

cc

conj

det

orphan

When parsing to this representation, the parser
only has to identify that there is a gap but does
not have to recover the elided material or deter-
mine the type of remnants. As a second step, we
use an unsupervised procedure to determine which
nodes to copy and how and where to attach the
remnants. In developing this procedure, we made
use of the fact that in the vast majority of cases,
all arguments and modifiers that are expressed in
gapped conjunct are also expressed in the full con-
junct. The problem of determining which nodes to
copy and which relations to use can thus be re-
duced to the problem of aligning arguments in the
gapped conjunct to arguments in the full conjunct.
We apply the following procedure to all sentences
that contain at least one orphan relation.

1. Create a list F of arguments of the head of
the full conjunct by considering all core ar-
gument dependents of the conjunct’s head as
well as clausal and nominal non-core depen-
dents, and adverbial modifiers.

2. Create a list G of arguments in the gapped
conjunct that contains the head of the gapped
conjunct and all its orphan dependents.

3. Find the highest-scoring monotonic align-
ment of arguments in G to arguments in F .

4. Copy the head of the full conjunct and attach
the copy node c to the head of the full con-
junct with the original relation of the head of
the gapped conjunct (usually conj).

5. For each argument g ∈ G that has been
aligned to f ∈ F , attach g to c with the same
relation as the parent relation of f , e.g., if f is
attached to the head of the full conjunct with
an nsubj relation, also attach g to c with an
nsubj relation. Attach arguments g′ ∈ G
that were not aligned to any token in F to c
using the general dep relation.

6. For each copy node c, add dependencies to
all core arguments of the original node which
do not have a corresponding remnant in the
gapped clause. For example, if the full con-
junct contains a subject, an object, and an

oblique modifier but the clause with the gap,
only a subject and an oblique modifier, add
an object dependency between the copy node
and the object in the full conjunct.

A crucial step is the third step, determining
the highest-scoring alignment. This can be done
straightforwardly with the sequence alignment al-
gorithm by Needleman and Wunsch (1970) if one
defines a similarity function sim(g, f) that returns
a similarity score between the arguments g and f .
We defined sim based on the intuitions that often,
parallel arguments are of the same syntactic cat-
egory, that they are introduced by the same func-
tion words (e.g., the same preposition), and that
they are closely related in meaning. The first in-
tuition can be captured by penalizing mismatch-
ing POS tags, and the other two by computing the
distance between argument embeddings. We com-
pute these embeddings by averaging over the 100-
dim. pretrained GloVe (Pennington et al., 2014)
embeddings for each token in the argument. Given
the POS tags tg and tf and the argument embed-
dings vg and vf , sim is defined as follows.5

sim(g, f) = −‖vg − vf‖2 + 1 [tg = tf ]

× pos_mismatch_penalty

We set pos_mismatch_penalty, a parameter
that penalizes mismatching POS tags, to −2.6

This procedure can be used for almost all sen-
tences with gapping constructions. However, if
parts of an argument were elided along with the
main predicate, it can become necessary to copy
multiple nodes. We therefore consider the align-
ment not only between complete arguments in the
full clause and the gapped clause but also between
partial arguments in the full clause and the com-
plete arguments in the gapped clause. For exam-
ple, for the sentence “Mary wants to write a play
and Sue a book” the complete arguments of the
full clause are {Mary, to write a play} and the ar-
guments of the gapped clause are {Sue, a book}.
In this case, we also consider the partial arguments
{Mary, a play} and if the arguments of the gapped

5As suggested by one of the reviewers, we also ran a post-
hoc experiment with a simpler similarity score function with-
out the embedding distance term, which only takes into ac-
count whether the POS tags match. We found that quantita-
tively, the embeddings do not lead to significant better scores
on the test set according to our metrics but qualitatively, they
lead to better results for the examples with verb cluster gaps.

6We optimized this parameter on the training set by trying
integer values from −1 to −15.
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EWT GAPPING EWT + GAPPING (COMBINED)
Train Dev Test Train Dev Test Train Dev Test

sentences 12,543 2,002 2,077 164 79 79 12,707 2,081 2,156

tokens 204,585 25,148 25,096 4,698 2,383 2,175 209,283 27,531 27,271

sentences with 21 1 1 164 79 79 185 80 80
gapping 0.15% 0.05% 0.05% 100% 100% 100% 1.46% 3.84% 3.71%

copy nodes 22 2 1 201 96 102 223 98 103

unique composite 16 6 2 41 29 31 46 29 31
relations

Table 1: Treebank statistics. The copy nodes row lists the number of copy nodes and the unique composite rela-
tions row lists the number of unique composite relations in the treebanks annotated according to the COMPOSITE
analysis. The percentages are relative to the total number of sentences.

Gap type Frequency

Single predicate 172
Contiguous predicate-argument 140
Non-contiguous predicate-argument 9
Verb cluster 24

Table 2: Distribution of gap types in our corpus. The
classification is according to the four types of gaps that
we discussed in Section 2.1.

conjunct align better to the partial arguments, we
use this alignment. However, now that the token
write is part of the dependency path between want
and play, we also have to make a copy of write to
reconstruct the UD graph of the gapped clause.

4 Experiments

Both methods rely on a dependency parser fol-
lowed by a post-processing step. We evaluated the
individual steps and the end-to-end performance.

4.1 Data

We used the UD English Web Treebank v2.1
(henceforth EWT; Silveira et al., 2014; Nivre et al.,
2017) for training and evaluating parsers. As the
treebank is relatively small and therefore only con-
tains very few sentences with gapping, we also ex-
tracted gapping constructions from the WSJ and
Brown portions of the PTB (Marcus et al., 1993)
and the GENIA corpus (Ohta et al., 2002). Fur-
ther, we copied sentences from the Wikipedia page
on gapping7 and from published papers on gap-
ping. The sentences in the EWT already contain
annotations with the orphan relation and copy
nodes for the enhanced representation, and we
manually added both of these annotations for the
remaining examples. The composite relations can

7https://en.wikipedia.org/wiki/Gapping,
accessed on Aug 24, 2017.

be automatically obtained from the enhanced rep-
resentation by removing the copy nodes and con-
catenating the dependency labels, which we did to
build the training and test corpus for the compos-
ite relation procedure. Table 1 shows properties of
the data splits of the original treebank, the addi-
tional sentences with gapping, and their combina-
tion; Table 2 shows the number of sentences in our
corpus for each of the gap types.

4.2 Parsing experiments

Parser We used the parser by Dozat and Man-
ning (2017) for parsing to the two different inter-
mediate dependency representations. This parser
is a graph-based parser (McDonald et al., 2005)
that uses a biLSTM to compute token representa-
tions and then uses a multi-layer perceptron with
biaffine attention to compute arc and label scores.

Setup We trained the parser on the COMBINED

training corpus with gold tokenization, and pre-
dicted fine-grained and universal part-of-speech
tags, for which we used the tagger by Dozat et al.
(2017). We trained the tagger on the COMBINED

training corpus. As pre-trained embeddings, we
used the word2vec (Mikolov et al., 2013) embed-
dings that were provided for the CoNLL 2017
Shared Task (Zeman et al., 2017), and we used the
same hyperparameters as Dozat et al. (2017).

Evaluation We evaluated the parseability of the
two dependency representations using labeled and
unlabeled attachment scores (LAS and UAS). Fur-
ther, to specifically evaluate how well parsers are
able to parse gapping constructions according to
the two annotation schemes, we also computed the
LAS and UAS just for the head tokens of rem-
nants (LASg and UASg). For all our metrics, we
excluded punctuation tokens. To determine sta-
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EWT GAPPING
UAS LAS UAS LAS

Dev ORPHAN 90.57 87.32 89.34 85.69**
COMPOSITE 90.46 87.37 88.86 84.21

Test ORPHAN 90.42 87.06 87.44 83.97**
COMPOSITE 90.54 87.33 86.51 81.69

Table 3: Labeled (LAS) and unlabeled attachment
score (UAS) of parsers trained and evaluated on the UD
representation (ORPHAN) and the composite relations
representation (COMPOSITE) on the development and
test sets of the EWT and the GAPPING treebank. ** in-
dicates that results differ significantly at p < 0.01.

Development Test
UASg LASg UASg LASg

ORPHAN 72.36 64.73*** 72.56* 65.79***
COMPOSITE 68.36 49.45 62.41 46.24

Table 4: Labeled (LASg) and unlabeled attach-
ment score (UASg) of head tokens of remnants for
parsers trained and evaluated on the UD representation
(ORPHAN) and the composite relations representation
(COMPOSITE) on the development and test sets of the
COMBINED treebank. Results that differ significantly
are marked with * (p < 0.05) or *** (p < 0.001).

tistical significance of pairwise comparisons, we
performed two-tailed approximate randomization
tests (Noreen, 1989; Yeh, 2000) with an adapted
version of the sigf package (Padó, 2006).

Results Table 3 shows the overall parsing re-
sults on the development and test sets of the two
treebanks. There was no significant difference be-
tween the parser that was trained on the UD rep-
resentation (ORPHAN) and the parser trained on
the composite representation (COMPOSITE) when
tested on the EWT data sets, which is not surpris-
ing considering that there is just one sentence with
gapping each in the development and the test split.
When evaluated on the GAPPING datasets, the OR-
PHAN parser performs significantly better (p <
0.01) in terms of labeled attachment score, which
suggests that the parser trained on the COMPOS-
ITE representation is indeed struggling with the
greatly increased label space. This is further con-
firmed by the attachment scores of the head tokens
of remnants (Table 4). The labeled attachment
score of remnants is significantly higher for the
ORPHAN parser than for the COMPOSITE parser.
Further, the unlabeled attachment score on the test
set is also higher for the ORPHAN parser, which
suggests that the COMPOSITE parser is sometimes
struggling with finding the right attachment for the

multiple long-distance composite dependencies.

4.3 Recovery experiments

Our second set of experiments concerns the re-
covery of the elided material and the reattachment
of the orphans. We conducted two experiments:
an oracle experiment that used gold standard de-
pendency trees and an end-to-end experiment that
used the output of the parser as input. For all ex-
periments, we used the COMBINED treebank.

Evaluation Here, we evaluated dependency
graphs and therefore used the labeled and unla-
beled precision and recall metrics. However, as
our two procedures are only changing the attach-
ment of orphans, we only computed these met-
rics for copy nodes and their dependents. Fur-
ther, we excluded punctuation and coordinating
conjunctions as their attachment is usually trivial
and including them would inflate scores. Lastly,
we computed the sentence-level accuracy for all
sentences with gapping. For this metric, we con-
sidered a sentence to be correct if all copy nodes
and their dependents of a sentence were attached
to the correct head with the correct label.

Oracle results The top part of Table 5 shows the
results for the oracle experiment. Both methods
are able to reconstruct the elided material and the
canonical clause structure from gold dependency
trees with high accuracy. This was expected for
the COMPOSITE procedure, which can make use
of the composite relations in the dependency trees,
but less so for the ORPHAN procedure which has
to recover the structure and the types of relations.
The two methods work equally well in terms of
all metrics except for the sentence-level accuracy,
which is significantly higher for the COMPOSITE

procedure. This difference is caused by a differ-
ence in the types of mistakes. All errors of the
COMPOSITE procedure are of a structural nature
and stem from copying the wrong number of nodes
while the dependency labels are always correct be-
cause they are part of the dependency tree. The
majority of errors of the ORPHAN procedure stem
from incorrect dependency labels, and these mis-
takes are scattered across more examples, which
leads to the lower sentence-level accuracy.

End-to-end results The middle part of Table 5
shows the results for the end-to-end experiment.
The performance of both methods is considerably
lower than in the oracle experiment, which is pri-
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Development Test

UP UR LP LR SAcc. UP UR LP LR SAcc.

oracle COMPOSITE 91.32 88.20 91.32 88.20 91.14** 90.71 86.81 90.71 86.81 86.08*
ORPHAN 94.08 93.79 87.54 87.27 72.15 92.02 92.02 87.12 87.12 72.15

end-to-end COMPOSITE 70.48 49.69* 65.64 46.27* 31.65 67.39 47.55 61.74 43.56 31.65
ORPHAN 71.73 42.55 65.45 38.82 30.38 78.92** 44.78 68.11 38.65 34.18

K&K 2017 - - - - 0.00 - - - - 0.00

Table 5: Labeled and unlabeled precision and recall as well as sentence-level accuracy of the two gapping recon-
structions methods and the K&K parser on the development and test set of the COMBINED treebank. Results that
differ significantly from the other result within the same section are marked with * (p < 0.05) or ** (p < 0.01).

marily driven by the much lower recall. Both
methods assume that the parser detects the exis-
tence of a gap and if the parser fails to do so,
neither method attempts to reconstruct the elided
material. In general, precision tends to be a bit
higher for the ORPHAN procedure whereas recall
tends to be a bit higher for the COMPOSITE method
but overall and in terms of sentence-level accuracy
both methods seem to perform equally well.

Error analysis For both methods, the primary
issue is low recall, which is a result of parsing
errors. When the parser correctly predicts the
orphan relation, the main sources of error for the
ORPHAN procedure are missing correspondents
for remnants (e.g., [for good] has no correspon-
dent in They had left the company, many for good)
or that the types of argument of the remnant and
its correspondent differ (e.g., in She was convicted
of selling unregistered securities in Florida and of
unlawful phone calls in Ohio, [of selling unregis-
tered securities] is an adverbial clause whereas
[of unlawful phone calls] is an oblique modifier).

Apart from the cases where the COMPOSITE

procedure leads to an incorrect structure, the re-
maining errors are all caused by the parser pre-
dicting the wrong composite relation.

4.4 Comparison to Kummerfeld and Klein

Kummerfeld and Klein (henceforth K&K; 2017)
recently proposed a one-endpoint-crossing graph
parser that is able to directly parse to PTB-style
trees with traces. They also briefly discuss gap-
ping constructions and their parser tries to out-
put the co-indexing that is used for gapping con-
structions in the PTB. The EWT and all the sen-
tences that we took from the WSJ, Brown, and
GENIA treebanks already come with constituency
tree annotations, and we manually annotated the
remaining sentences according to the PTB guide-

lines (Bies et al., 1995). This allowed us to train
the K&K parser with exactly the same set of sen-
tences that we used in our previous experiments.
As this parser outputs constituency trees, we could
not compute dependency graph metrics for this
method. For the sentence-level accuracy, we con-
sidered an example to be correct if a) each argu-
ment in the gapped conjunct was the child of a sin-
gle constituent node, which in return was the sib-
ling of the full clause/verb phrase, and b) the co-
indexing of each argument in the gapped conjunct
was correct. For example, the following bracket-
ing would be considered correct despite the incor-
rect internal structure of the first conjunct:
[S[S[NP-1 Al ] likes [NP-2 coffee ]] and [S[NP=1 Sue ][NP=2 tea ]]]

The last row of Table 5 shows the results of the
K&K parser. The parser failed to output the cor-
rect constituency structure or co-indexing for ev-
ery single example in the development and test
sets. The parser struggled in particular with out-
putting the correct co-indices: For 32.5% of the
test sentences with gapping, the bracketing of the
gapped clause was correct but one or more of the
co-indices were missing from the output.

Overall these results suggest that our depend-
ency-based approach is much more reliable at
identifying gapping constructions than the parser
by K&K, which, in their defense, was optimized
to output traces for other phenomena. Our method
is also faster and took only seconds to parse the
test set, while the K&K parser took several hours.

5 Resolving gaps in other languages

One of the appeals of the ORPHAN procedure is
that it can be easily applied to other languages
even if there exist no annotated enhanced depen-
dency graphs.8 On the one hand, this is because

8There is no theoretical reason that would prevent one
from using the COMPOSITE procedure for other languages

1162



our method does not make use of lexical informa-
tion, and on the other hand, this is because we de-
veloped our method on top of the UD annotation
scheme, which has already been applied to many
languages and for which many treebanks exist.

Currently, all treebanks but the English one
lack copy nodes for gapping constructions and
many of them incorrectly use the orphan rela-
tion (Droganova and Zeman, 2017) and therefore
we could not evaluate our method on a large va-
riety of languages. In order to demonstrate that
our method can be applied to other languages, we
therefore did a case study on the Swedish UD
treebank. The Swedish UD treebank is an auto-
matic conversion from a section of the Talbanken
(Einarsson, 1976) with extensive manual correc-
tions. While the treebank is overall of high qual-
ity, we noticed conversion errors that led to in-
correct uses of the orphan relation in 11 of the
29 sentences with orphan relations, which we
excluded from our evaluation. We applied our
gapping resolution procedure without any modi-
fications to the remaining 18 sentences. We used
the Swedish word2vec embeddings that were pre-
pared for the CoNLL 2017 Shared Task. Our
method correctly predicts the insertion of 29 copy
nodes and is able to predict the correct structure of
the enhanced representation in all cases, including
complex ones with elided verb clusters such as the
example in Figure 2. It also predicts the correct
dependency label for 108/110 relations, leading to
a labeled precision and labeled recall of 98.18%,
which are both higher than the English numbers
despite the fact that we optimized our procedure
for English. The main reason for the higher perfor-
mance seems to be that many of the Swedish ex-
amples come from informational texts from public
organizations, which are more likely to be written
to be clear and unambiguous. Further, the Swedish
data does not contain challenging examples from
the linguistic literature.

As Swedish is a Germanic language like En-
glish and thus shares many structural properties,
we cannot conclude that our method is applica-
ble to any language based on just this experiment.
However, given that our method does not rely on
language-specific structural patterns, we expect it
to work well for a wide range of languages.

but given that UD treebanks are annotated with orphan re-
lations, using the the COMPOSITE procedure would require
additional manual annotations in practice.

6 Related work

Gapping constructions have been little studied
in NLP, but several approaches (e.g., Dukes and
Habash 2011; Simkó and Vincze 2017) parse
to dependency trees with empty nodes. Seeker
et al. (2012) compared three ways of parsing
with empty heads: adding a transition that in-
serts empty nodes, using composite relation la-
bels for nodes that depend on an elided node,
and pre-inserting empties before parsing. These
papers all focus on recovering nodes for elided
function words such as auxiliaries; none of them
attempt to recover and resolve the content word
elisions of gapping. Ficler and Goldberg (2016)
modified PTB annotations of argument-cluster co-
ordinations (ACCs), i.e., gapping constructions
with two post-verbal orphan phrases, which make
up a subset of the gapping constructions in the
PTB. While the modified annotation style leads
to higher parsing accuracy of ACCs, it is specific
to ACCs and does not generalize to other gap-
ping constructions. Moreover, they did not recon-
struct gapped ACC clauses. Traditional grammar-
based chart parsers (Kay, 1980; Klein and Man-
ning, 2001) did handle empty nodes and so could
in principle provide a parse of gapping sentences
though additional mechanisms would be needed
for reconstruction. In practice, though, dealing
with gapping in a grammar-based framework is
not straightforward and can lead to a combinato-
rial explosion that slows down parsing in general,
as has been noted for the English Resource Gram-
mar (Flickinger, 2017, p.c.) and for an HPSG
implementation for Norwegian (Haugereid, 2017).
The grammar-based parser built with augmented
transition networks (Woods, 1970) provided an ex-
tension in the form of the SYSCONJ operation
(Woods, 1973) to parse some gapping construc-
tions, but also this approach lacked explicit recon-
struction mechanisms and provided only limited
coverage.

There also exists a long line of work on post-
processing surface-syntax constituency trees to re-
cover traces in the PTB (Johnson, 2002; Levy
and Manning, 2004; Campbell, 2004; Gabbard
et al., 2006), pre-processing sentences such that
they contain tokens for traces before parsing (Di-
enes and Dubey, 2003b), or directly parsing sen-
tences to either PTB-style trees with empty el-
ements or pre-processed trees that can be deter-
ministically converted to PTB-style trees (Collins,
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tänks Ullnaområdet öka med 9000 , tänks′ Märsta industriområde öka′ med 7000 , tänks′′ Jordbro öka′′ med 4000 , ...
is-thought Ullna-area increase with 9000 , is-thought Märsta industrial-area increase with 7000 , is-thought Jordbro increase with 4000 , ....

nsubj:pass

xcomp
obl

conj

nsubj:pass

xcomp

obl

conj

xcomp

nsubj:pass
obl

‘The Ullna area is expected to grow by 9,000 (new workplaces), the Märsta industrial area by 7,000, Jordbro by 4,000, ...’

Figure 2: Dependency graph for part of the sentence sv-ud-train-1102 as output by the ORPHAN procedure.
The system correctly predicts the copy nodes for the matrix and the embedded verb, and correctly attaches the
arguments to the copy nodes.

1997; Dienes and Dubey, 2003a; Schmid, 2006;
Cai et al., 2011; Hayashi and Nagata, 2016; Kato
and Matsubara, 2016; Kummerfeld and Klein,
2017). However, all of these works are primarily
concerned with recovering traces for phenomena
such as Wh-movement or control and raising con-
structions and, with the exception of Kummerfeld
and Klein (2017), none of these works attempt to
output the co-indexing that is used for analyzing
gapping constructions. And again, none of these
works try to reconstruct elided material.

Lastly, several methods have been proposed for
resolving other forms of ellipsis, including VP el-
lipsis (Hardt, 1997; Nielsen, 2004; Lappin, 2005;
McShane and Babkin, 2016) and sluicing (Anand
and Hardt, 2016) but none of these methods con-
sider gapping constructions.

7 Conclusion

We presented two methods to recover elided pred-
icates in sentences with gapping. Our experiments
suggest that both methods work equally well in a
realistic end-to-end setting. While in general, re-
call is still low, the oracle experiments suggest that
both methods can recover elided predicates from
correct dependency trees, which suggests that as
parsers become more and more accurate, the gap
recovery accuracy should also increase.

We also demonstrated that our method can be
used to automatically add the enhanced UD rep-
resentation to UD treebanks in other languages
than English. Apart from being useful in a pars-
ing pipeline, we therefore also expect our method
to be useful for building enhanced UD treebanks.
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Kim Harris, Dag Haug, Barbora Hladká, Jaroslava
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Nikolaev, Hanna Nurmi, Stina Ojala, Petya Osen-
ova, Robert Östling, Lilja Øvrelid, Elena Pascual,

1166



Marco Passarotti, Cenel-Augusto Perez, Guy Per-
rier, Slav Petrov, Jussi Piitulainen, Emily Pitler,
Barbara Plank, Martin Popel, Lauma Pretkalnin, a,
Prokopis Prokopidis, Tiina Puolakainen, Sampo
Pyysalo, Alexandre Rademaker, Loganathan Ra-
masamy, Taraka Rama, Vinit Ravishankar, Livy
Real, Siva Reddy, Georg Rehm, Larissa Rinaldi,
Laura Rituma, Mykhailo Romanenko, Rudolf Rosa,
Davide Rovati, Benoît Sagot, Shadi Saleh, Tanja
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Jaroslava Hlaváčová, Václava Kettnerová, Zdenka
Urešová, Jenna Kanerva, Stina Ojala, Anna Missilä,
Christopher D. Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martínez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual parsing from raw text to Universal De-
pendencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies. pages 1–19. https:
//doi.org/10.18653/v1/K17-3001.

1168


