
Proceedings of NAACL-HLT 2016, pages 221–231,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

LSTM CCG Parsing

Mike Lewis Kenton Lee Luke Zettlemoyer
Computer Science & Engineering

University of Washington
Seattle, WA 98195

{mlewis,kentonl,lsz}@cs.washington.edu

Abstract

We demonstrate that a state-of-the-art parser
can be built using only a lexical tagging model
and a deterministic grammar, with no ex-
plicit model of bi-lexical dependencies. In-
stead, all dependencies are implicitly encoded
in an LSTM supertagger that assigns CCG lex-
ical categories. The parser significantly out-
performs all previously published CCG re-
sults, supports efficient and optimal A∗ de-
coding, and benefits substantially from semi-
supervised tri-training. We give a detailed
analysis, demonstrating that the parser can re-
cover long-range dependencies with high ac-
curacy and that the semi-supervised learning
enables significant accuracy gains. By run-
ning the LSTM on a GPU, we are able to parse
over 2600 sentences per second while improv-
ing state-of-the-art accuracy by 1.1 F1 in do-
main and up to 4.5 F1 out of domain.

1 Introduction

Combinatory Categorial Grammar (CCG) is a
strongly lexicalized formalism—the vast majority of
attachment decisions during parsing are specified by
the selection of lexical entries for words (see Fig-
ure 1 for examples). State-of-the-art parsers typi-
cally include a supertagging model, to select possi-
ble lexical categories, and a bi-lexical dependency
model, to resolve the remaining parse attachment
ambiguities. In this paper, we introduce a long short-
term memory (LSTM) CCG parsing model that has
no explicit model of bi-lexical dependencies, but in-
stead relies on a bi-directional recurrent neural net-
work (RNN) supertagger to capture all long distance

dependencies. This approach has a number of ad-
vantages: it is conceptually simple, allows for the
reuse of existing optimal and efficient parsing algo-
rithms, benefits significantly from semi-supervised
learning, and is highly accurate both in and out of
domain. The parser is publicly released.1

Neural networks have shown strong performance
in a range of NLP tasks; however they can break the
dynamic programs for structured prediction prob-
lems, such as parsing, when vector embeddings are
recursively computed for subparts of the output. Ex-
isting neural net parsers either (1) use greedy in-
ference techniques including shift-reduce parsing
(Henderson et al., 2013; Chen and Manning, 2014;
Weiss et al., 2015; Dyer et al., 2015), constituency
parse re-ranking (Socher et al., 2013), and string-
to-string transduction (Vinyals et al., 2015), or (2)
avoid recursive computations entirely (Durrett and
Klein, 2015). Our approach gives a simple alterna-
tive: we only train a model for tagging decisions,
where we can easily use recurrent architectures such
as LSTMs (Hochreiter and Schmidhuber, 1997), and
rely on the highly lexicalized nature of the CCG
grammar to allow this tagger to specify nearly ev-
ery aspect of the complete parse.

Our LSTM supertagger is bi-directional and in-
cludes a softmax potential over tags for each word
in the sentence. During training, we jointly opti-
mize all LSTM parameters, including the word em-
beddings, to maximize the conditional likelihood of
supertag sequences. For inference, we use a recently
introduced A* CCG parsing algorithm (Lewis and
Steedman, 2014a), which efficiently searches for the

1http://github.com/mikelewis0/EasySRL
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Figure 1: Four examples of prepositional phrase attachment in CCG. In the upper two parses, the attachment
decision is determined by the choice of supertags. In the lower parses, the attachment is ambiguous given
the supertags. In such cases, our parser deterministically attaches low (i.e. preferring the lower-right parse).

highest probability sequence of tags that combine to
produce a complete parse tree. Whenever there is
parsing ambiguity not specified by the supertags, the
model attaches low (see Figure 1).

This approach is not only conceptually simple but
also highly effective, as we demonstrate with exten-
sive experiments. Because the A* algorithm is ex-
tremely efficient and the LSTMs can be run in par-
allel on GPUs, the end-to-end parser can process
over 2600 sentences per second. This is more than
three times the speed of any publicly available parser
for any formalism. Apart from Hall et al. (2014),
we are not aware of efficient algorithms for running
other state-of-art-parsers on GPUs. The LSTM pa-
rameters also benefit from semi-supervised training,
which we demonstrate by employing a recently in-
troduced tri-training scheme (Weiss et al., 2015).
Finally, the recurrent nature of the LSTM allows
for effective modelling of long distance dependen-
cies, as we show empirically. Our approach signif-
icantly advances the state-of-the-art on benchmark
datasets—improving accuracy by 1.1 F1 in domain
and up to 4.5 F1 out of domain.

2 Background

Combinatory Categorial Grammar (CCG)
Compared to a phrase-structure grammar, CCG
contains a much smaller set of binary rules (we
use 11), but a much larger set of lexical tags (we
use 425). The binary rules are conjectured to be
language-universal, and most language-specific

information is lexicalized (Steedman, 2000). The
large tag set means that most (but not all) attachment
decisions are determined by tagging decisions. Fig-
ure 1 shows how a prepositional phrase attachment
decision can be encoded in the choice of tags.

The process of assigning CCG categories to
words is called supertagging. All supertaggers used
in practice are probabilistic, providing a distribu-
tion over possible tags for each word. Parsing mod-
els either use these scores directly (Auli and Lopez,
2011b), or as a form of beam search (Clark and Cur-
ran, 2007), typically in conjunction with models of
the dependencies or derivation.

Supertag-Factored A∗ CCG Parsing Lewis and
Steedman (2014a) introduced supertag-factored
CCG parsers, in which the score for a parse is sim-
ply the sum of the scores of its supertags. The parser
takes in a distribution over supertags for each word,
and outputs the highest scoring parse—subject to
the hard constraint that the parse only uses stan-
dard CCG combinators (resolving any remaining
ambiguity by attaching low). One advantage of the
supertag-factored model is that it allows a simple A∗

parsing algorithm, which provably finds the highest
scoring supertag sequence that can be combined to
construct a complete parse.

In A∗ parsing, partial parses yi,j of span i . . . j
are maintained in a sorted agenda and added to the
chart in order of their cost, which is the sum of
their Viterbi inside score g(yi,j) and an upper bound
on their Viterbi outside score h(yi,j). When yi,j is
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Figure 2: Visualization of our supertagging model,
based on stacked bi-directional LSTMs. Each word
is fed into stacked LSTMs reading the sentence in
each direction, the outputs of the LSTMs are com-
bined, and there is a final softmax over categories.

added to the chart, the agenda is updated with any
new partial parses that can be created by combining
yi,j with existing chart items (Algorithm 1). If h is
a monotonic upper bound on the outside score, the
first chart entry for a span with a given category is
guaranteed to be optimal—all other possible com-
pletions of the competing partial parses provably
have lower scores, due to the outside score bounds.
There is no guarantee this certificate of optimality is
achieved efficiently for parses of the whole sentence,
and in the worst case the algorithm could fill the en-
tire parse chart. However, as we will see later, A*
parsing is very efficient in practice for the models
we present in this paper.

In the supertag-factored model, g and h are com-
puted as follows, where g(yk) is the score for word
k having tag yk.

g(yi,j) =
j∑

k=i

g(yk) (1)

h(yi,j) =
i−1∑
k=1

max
yk

g(yk) +
N∑

k=j+1

max
yk

g(yk) (2)

where Eq. 1 follows from the definition of the su-
pertag factored model and Eq. 2 combines this def-
inition with the fact that the max score over all su-
pertags for a word is an upperbound on the score for
the actual supertag used in the best parse.

3 LSTM CCG Supertagging Model

Supertagging is almost parsing (Bangalore and
Joshi, 1999)—consequently the task is very chal-

Algorithm 1 Agenda-based parsing algorithm
Definitions x1...N is the input words, and y variables
denote scored partial parses. TAG(x1...N ) returns a
set of scored pre-terminals for every word. ADD(C,
y) adds partial parse y to chart C. RULES(C, y) re-
turns the set of scored partial parses that can be cre-
ated by combining y with existing entries in C. The
agenda A is ordered as described in Section 2.

1: function PARSE(x1...N )
2: A← ∅ . Empty agenda A
3: for y ∈ TAG(x1...N ) do
4: PUSH(A, y)
5: C ← ∅ . Empty chart C
6: while C1,N = ∅ ∧A 6= ∅ do
7: y← EXTRACT_MAX(A)
8: if y /∈ C then
9: ADD(C, y)

10: for y′ ∈ RULES(C, y) do
11: INSERT(A, y′)
12: return C1,N

lenging, with hundreds of tags, and the correct as-
signment often depending on long-range dependen-
cies. For example, in The doctor sent for the patient
arrived, the category for sent depends on the final
word. Recent work has made dramatic progress, us-
ing feed-forward neural networks (Lewis and Steed-
man, 2014b) and RNNs (Xu et al., 2015).

We make several extensions to previous work on
supertagging. Firstly, we use bi-directional models,
to capture both previous and subsequent sentence
context into supertagging decisions. Secondly, we
use LSTMs, rather than RNNs. Many tagging de-
cisions rely on long-range context, and RNNs typ-
ically struggle to account for sequences of longer
than a few words (Hochreiter and Schmidhuber,
1997). Finally, we use a deep architecture, to allow
the modelling of complex interactions in the context.

Our supertagging model is summarized in Figure
2. Each word is mapped to an embedding vector.
This vector is a concatenation of an embedding for
the word (lower-cased), and embeddings for features
of the word (we use 1 to 4 character prefixes and
suffixes). The embedding vector is used as input to
two stacked LSTMs (with depth 2), one processing
the sentence left-to-right, and the other right-to-left.
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The outputs from the LSTMs are projected into a
further hidden layer, a bias is added, and a RELU
non-linearity is applied. This layer gives a context-
dependent representation of the word that is fed into
a softmax over supertags.

We use a variant on the standard LSTM with cou-
pled ‘input’ and ‘forget’ gates, and peephole con-
nections. Each LSTM cell at position t takes three
inputs: a cell state vector ct−1 and hidden state vec-
tor ht−1 from the cell at position t− 1, and xt from
the layer below. It outputs ht to the layer above, and
ct and ht to the cell at t+ 1. ct and ht are computed
as follows, where σ is the component-wise logistic
sigmoid, and ◦ is the component-wise product:

it =σ(Wi[ct−1, ht−1, xt] + bi) (3)

c̃t = tanh(Wc[ht−1, xt] + bc̃) (4)

ot =σ(Wo[c̃t, ht−1, xt] + bo) (5)

ct =it ◦ c̃t + (1− it)ct−1 (6)

ht =ot ◦ tanh(ct) (7)

We train the model using stochastic gradient de-
scent, with a minibatch size of 1, a learning rate of
0.01, and using momentum with µ = 0.7. We then
fine-tune models using a larger minibatch size of 32.
Gradients whose L2 norm exceeds 5 are clipped.
Training was run for 30 epochs, shuffling the or-
der of sentences after each epoch, and we used the
model parameters with the highest development su-
pertagging accuracy. The input layer uses dropout
with a rate of 0.5. All trainable parameters have
L2 regularization of Λ = 10−6. Word embedding
are initialized using 50-dimensional pre-trained val-
ues from Turian et al. (2010). For prefix and suf-
fix embeddings, we use randomly initialized 32-
dimensional vectors—features occurring less than 3
times are replaced with an ‘unknown’ embedding.
We add special start and end tokens to each sen-
tence, with trainable parameters. The LSTM state
size is 128 and the RELU layer has a size of 64.

4 Parsing Models

Our experiments focus on two parsing models:

Supertag-Factored We use the supertagging
model described in Section 3 to build a supertag-
factored parser, closely following the approach
described in Section 2. We also add a penalty of 0.1

(tuned on development data) for every time a unary
rule is applied in a parse. The attach-low heuristic
is implemented by adding a small penalty of −εd
at every binary rule instantiation, where d is the
absolute distance between the heads of the left and
right children, and ε is a small constant. We increase
the penalty to 10ε for clitics, to encourage these to
attach locally. Because these penalties are ≤ 0, they
do not affect the A* upper bound calculations.

Dependencies We also train a model with depen-
dency features, to investigate how much they im-
prove accuracy beyond the supertag-factored model.
We adapt a joint CCG and SRL model (Lewis et
al., 2015) to CCGbank parsing, by assigning every
CCGbank dependency a role based on its argument
number (i.e., the first argument of every category has
role ARG0). A global log-linear model is trained
to maximize the marginal likelihood of the gold de-
pendencies. We use the same features and hyper-
parameters as Lewis et al. (2015), except that we
do not use the supertagger score feature (to separate
the effect of the dependencies features from the su-
pertagger). We choose this model because it has an
A∗ parsing algorithm, meaning that we do not need
to use aggressive beam search.

5 Semi-supervised Learning

A number of papers have shown that strong parsers
can be improved by exploiting text without gold-
standard annotations. Recent work suggests tri-
training, in which the output of two parsers is in-
tersected to create training data for a third parser, is
highly effective (Weiss et al., 2015).

We perform the first application of tri-training to
a lexicalized formalism. Following Weiss et al., we
parse the corpus of Chelba et al. (2013) with a shift-
reduce parser and a chart-based model. We use the
shift-reduce parser from Ambati et al. (2016) and
our dependency model (without using a supertag-
ger feature, to limit the correlation with our tag-
ging model). On development sentences where the
parsers produce the same supertags (40%), supertag-
ging accuracy is 98.0%. This subset is considerably
easier than general text—our CCGbank-trained su-
pertagger is 97.4% accurate on this data—but tri-
training still provides useful additional training data.

In total, we include 43 million words of text that
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the parsers annotate with the same supertags and 15
copies of the gold CCGbank training data. Our ex-
periments show that tri-training improves both su-
pertagging and parsing accuracy.

6 GPU Parsing

Our parser makes an unusual trade-off, by combin-
ing a complex tagging model with a deterministic
parsing model. The A∗ parsing algorithm is ex-
tremely efficient, and the overall time required to
process a sentence is dominated by the supertagger.

GPUs can improve performance over CPUs by
computing many vector operations in parallel. There
are two major obstacles to using GPUs for parsing.
First, most models use sparse rather than dense fea-
tures, which are difficult to compute efficiently on
GPUs. The most successful implementation we are
aware of exploits the fact that the Berkeley parser
is unlexicalized to run parsing operations in parallel
(Hall et al., 2014). Second, most neural models have
features that depend on the current parse or stack
state (e.g. Chen and Manning (2014)). This makes it
difficult to exploit the parallelism of GPUs, because
these data structures are typically built incrementally
on CPU. It may be possible to write GPU-specific
code that maintains the entire parse state on GPU,
but we are not aware of any such implementations.

In contrast, our supertagger only uses matrix op-
erations, and does not take any parse state as input—
meaning it is straightforward to run on a GPU.
To exploit the parallelism of GPUs, we process
thousands of sentences simultaneously—improving
parsing efficiency by an order-of-magnitude over
CPU. A major advantage of our model is that it al-
lows all of the computationally intensive decisions
to occur on GPUs. Unlike existing GPU parsers, the
LSTM can be run with generic library code.2

7 Experiments

7.1 Experimental setup
We trained our parser on Sections 02-21 of CCG-
bank (Hockenmaier and Steedman, 2007), using
Section 00 for development, and Section 23 for test.
Our experiments use a supertagger beam of 10−4—
which does not affect the final scores, but reduces
overheads such as building the initial agenda.
2We use TensorFlow (Abadi et al., 2015).

Model Dev Test
C&C tagger 91.5 92.0
NN 91.3 91.6
RNN 93.1 93.0
LSTM 94.1 94.3
LSTM + Tri-training 94.9 94.7

Table 1: Supertagging accuracy on CCGbank.

Model P R F1
C&C 86.2 84.2 85.2
C&C + RNN 87.7 86.4 87.0
EASYCCG 83.7 83.0 83.3
Dependencies 86.5 85.8 86.1
LSTM 87.7 86.7 87.2
LSTM + Dependencies 88.2 87.3 87.8
LSTM + Tri-training 88.6 87.5 88.1
LSTM + Tri-training + Dependencies 88.2 87.3 87.8

Table 2: Labelled F1 for CCGbank dependencies
on the CCGbank test set (Section 23).

Where results are available, we compare our work
with the following models: EASYCCG, which has
the same parsing model as our parser, but uses
a feed-forward neural-network supertagger (NN);
the C&C parser (Clark and Curran, 2007), and
C&C+RNN (Xu et al., 2015), which is the C&C
parser with an RNN supertagger. All results are for
100% coverage of the test data.

We refer to the models described in Section 4 as
LSTM and DEPENDENCIES respectively. We also
report the performance of LSTM+DEPENDENCIES,
which combines the model scores (weighting the
LSTM score by 1.8, tuned on development data).

7.2 Supertagging Results
The most direct measure of the effectiveness of our
LSTM and tri-training is on the supertagging task.
Results are shown in Table 1. The improvement
of our deep LSTM over the RNN model is greater
than the improvement of the RNN over C&C model.
Further gains follow from tri-training, improving the
state-of-the-art by 1.7%.

7.3 English Parsing Results
Parsing results are shown in Figure 2. Surpris-
ingly, our CCGBank-trained LSTM outperforms
any previous approach.3 The ensemble of the LSTM
3We cannot compare directly with Fowler and Penn (2010)’s
adaptation of the Berkeley parser to CCG, or Auli and Lopez
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Model QUESTIONS BIOINFER

P R F1 P R F1

C&C - - 86.6 77.8 71.4 74.5
EASYCCG 78.1 78.2 78.1 76.8 77.6 77.2
C&C + RNN - - - 80.1 75.5 77.7
LSTM 87.6 87.4 87.5 80.1 80.9 80.5
LSTM + Dependencies 88.2 87.9 88.0 77.8 80.1 79.4
LSTM + Tri-training - - - 81.8 82.6 82.2

Table 3: Out-of-domain experiments.

and the Dependency model outperforms the LSTM
alone, showing that dependency features are cap-
turing some generalizations that the LSTM does
not. However, semi-supervised learning substan-
tially improves the LSTM, matching the accuracy of
the ensemble—showing that the LSTM is expressive
enough to compensate given sufficient data.

7.4 Out-of-domain Experiments
We also evaluate on two out-of-domain datasets
used by Rimell and Clark (2008), but did no devel-
opment on this data. In both cases, we use Rimell
and Clark’s scripts for converting CCG parses to the
target dependency representations. The datasets are:

QUESTIONS 500 questions from
TREC (Rimell and Clark, 2008). Questions
frequently contain very long range dependencies,
providing an interesting test of the LSTM supertag-
ger’s ability to capture unbounded dependencies.
We follow Rimell and Clark by re-training the
supertagger on the concatenation of the CCGbank
training data and 10 copies of the QUESTIONS
training data.

BIOINFER 500 sentences from biomedical ab-
stracts. This dataset tests the parser’s robustness to a
large amount of unseen vocabulary.

Results are shown in Table 3. Our LSTM
parser outperforms existing work on question pars-
ing, showing that it can successfully model the long-
range dependencies found in questions. Adding de-
pendency features yields only a small improvement.

On the BIOINFER corpus, our tri-trained LSTM
parser is 4.5 F1 better than the previous state-of-
the-art. Dependency features appear to be much

(2011b)’s joint parsing and supertagging model, due to differ-
ences in the experimental setup. These models are 0.3 and 1.5
F1 more accurate than the C&C baseline respectively, which is
well within the margin of improvement obtained by our model.

Parser Sentences
per second

SpaCy*4 778
Berkeley GPU* (Hall et al., 2014) 687
Chen and Manning (2014)* 391
C&C 66
EASYCCG 606
LSTM 214
LSTM + Dependencies 58
LSTM GPU 2670

Table 4: Sentences parsed per second on our hard-
ware. Parsers marked * use non-CCG formalisms
but are the fastest available CPU and GPU parsers.

less robust to unseen words than the LSTM tagging
model, and are unhelpful. Because the parser was
not trained or developed on this domain, it is likely
to perform similarly well on other domains.

7.5 Efficiency Experiments

In contrast to standard parsing algorithms, the effi-
ciency of our model depends directly on the accu-
racy of the supertagger in guiding the search. We
therefore measure the efficiency empirically.

Results are shown in Table 4.5 Our parser runs
more slowly than EASYCCG on CPU, due to the
more complex tagging model (but is 4.8 F1 more
accurate). Adding dependencies substantially re-
duces efficiency, due to calculating sparse features.
Without dependencies, the run time is dominated
by the LSTM supertagger. Running the supertag-
ger on a GPU reduces parsing times dramatically—
outperforming SpaCy, the fastest publicly available
parser (Choi et al., 2015). Roughly half the pars-
ing time is spent on GPU supertagging, and half on
CPU parsing. To better exploit batching in the GPU,
our implementation dynamically buckets sentences
by length (bins of width 10), and tags batches when
the bucket size reaches 3072 (the number of threads
on our GPU). We are not aware of any GPU im-
plementations of shift-reduce parsers or lexicalized
chart parsers, so it is unclear if most other state-of-
the-art parsers can be adapted to exploit GPUs.

4honnibal.github.io/spaCy
5All timing experiments use a single 3.5GHz core and (where
applicable) a single NVIDIA TITAN X GPU.
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Supertagger Accuracy
Bidirectional RNNs 93.4
Forward LSTM only 83.5
Backward LSTM only 89.5
Bidirectional LSTMs 94.1

Table 5: Development supertagging accuracy.

Word Class NN LSTM LSTM+
Tri-training

All 91.32 94.14 94.90
Unseen Words 90.39 94.21 95.26
Unseen Usages 45.80 59.37 62.46
Prepositions 78.11 84.40 85.98
Verbs 82.55 87.85 89.24
Wh-words 90.47 92.09 94.16
Long range 74.80 83.99 86.31

Table 6: Development supertagging accuracy on
several classes of words. Long range refers to words
taking an argument at least 5 words away.

8 Ablations

We also measure performance while removing dif-
ferent aspects of the full parsing model.

8.1 Supertagger Model Architecture

Numerous variations are possible on our supertag-
ging architecture. Apart from tri-training, the major
differences from the previous state-of-the-art (Xu et
al., 2015) are that we use LSTMs rather than RNNs,
and that we use bidirectional networks rather than
only a forward-directional RNN. These modifica-
tions lead to a 1.3% improvement in accuracy. Table
5 shows performance while ablating these changes;
they all contribute substantially to tagging accuracy.

Table 6 shows several classes of words where the
LSTM model outperforms the baseline neural net-
work that uses only local context (NN). The perfor-
mance increase on unseen words is likely due to the
fact that the LSTM can model more context to de-
termine the category for a word. Unsurprisingly,
this leads to a large improvement in accuracy for
words taking non-local arguments. Finally, we see
a large improvement in prepositional phrase attach-
ment. This improvement is likely to be due to the
deep architecture, which can better take into account
the interaction between the preposition, its argument

Relaxation LSTM+
Tri-train F1

LSTM+
Dependencies F1

- 87.9 87.9
{NP , N } 87.8 87.7
{NP , PP} 87.7 87.6
{NP , PP , N , Nnum} 87.4 87.2
* 78.3 79.3

Table 7: Effect of simulating weaker grammars, by
allowing the specified atomic categories to unify. *
allows all atomic categories to unify, except con-
junctions and punctuation. Results are on develop-
ment sentences of length ≤40.

noun phrase, and its nominal or verbal attachment.

8.2 Semi-supervised learning
Table 6 also shows cases where the semi-supervised
models perform better. Accuracy improves on un-
seen words—showing that tri-training can be a more
effective way of generalizing to unseen words than
pre-trained word embeddings alone. We also see
improvement in accuracy on wh-words, which we
attribute to the training data containing more exam-
ples of rare categories used for wh-words in pied-
piping and similar constructions. One case where
performance remains weak for all models is on un-
seen usages—where words occur in the CCGbank
training data, but not with the category required in
the test data. The improvement from tri-training is
limited, likely due to the weakness of the baseline
parses, and new techniques will be required to cor-
rect such errors.

8.3 Effect of Grammar
A subtle but crucial point is that our method depends
on the strictness of the CCGbank grammar to ex-
clude ungrammatical derivations. Because there is
no dependency model, we rely on the determinis-
tic CCG grammar as a hard constraint. There is a
trade-off between restrictive grammars which may
be brittle on noisy text, and weaker grammars that
may overgenerate ungrammatical sentences.

We measure this trade-off by testing weaker
grammars, which merge categories that are normally
distinct. For example, if we merge PP and NP , then
an S\NP can take either a PP or NP argument.

Table 7 shows that relaxing the grammar signif-
icantly hurts performance; the deterministic con-
straints are crucial to training a high quality LSTM
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CCG parser. With a very relaxed grammar in
which all atoms can unify, dependencies features
help compensate for the weakened grammar. Fu-
ture work should explore further strengthening the
grammar—-e.g. marking plurality on NPs to en-
force plural agreement, or using slash-modalities
to prevent over-generation arising from composition
(Baldridge and Kruijff, 2003).

8.4 Effect of Dependency Features
Perhaps our most surprising result is that high accu-
racy can be achieved with a rule-based grammar and
no dependency features. We performed several ex-
periments to verify whether the model can capture
long-range dependencies, and the extent to which
dependency features are required to further improve
parsing performance.

Supertagging accuracy is still the bottleneck A
natural question is whether further improvements
to our model will require a more powerful pars-
ing model (such as adding dependency or derivation
features), or if future work should focus on the su-
pertagger. We found that on sentences where all the
supertags are correct in the final parse (51%), the F1
is very high: 97.7. On parses containing supertag
errors, the F1 drops to just 80.3. This result sug-
gests that parsing accuracy can be significantly in-
creased by improving the supertagger, and that very
high performance could be attained only using a su-
pertagging model.

‘Attach low’ heuristic is surprisingly effective
Given a sequence of supertags, our grammar is still
ambiguous. As explained in Section 2, we resolve
these ambiguities by attaching low. To investigate
the accuracy of this heuristic, we performed ora-
cle decoding given the highest scoring supertags—
and found that F1 improved by 1.3, showing that
there are limits to what can be achieved with a rule-
based grammar. In contrast, an ‘attach high’ heuris-
tic scores 5.2 F1 less than attaching low, suggesting
that these decisions are reasonably frequent, but that
attaching low is much more common.

Would adding a dependency model help here? We
consider several dependencies whose attachment is
often ambiguous given the supertags. Results are
shown in Table 8. Any improvements from the de-
pendency model are small—it is difficult to improve

Dependency Attach Low
Heuristic

Dependencies
Model

Relative clause 84.66 85.44
Adnominal PP 91.67 93.67
Adverbial PP 97.78 95.86
Adverb 99.09 98.09

Table 8: Per-relation accuracy for several dependen-
cies whose attachments are often ambiguous given
the supertags. Results are only on sentences where
the parsers assign the correct supertags.
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Figure 3: F1 on dependencies of various lengths.

on the ‘attach low’ heuristic with current models.

Supertag-factored model is accurate on long-
range dependencies One motivation for CCG
parsing is to recover long-range dependencies.
While we do not explicitly model these dependen-
cies, they can still be extracted from the parse. In-
stead, we rely on the LSTM supertagger to implicitly
model the dependencies—a task that becomes more
challenging with longer dependencies. We investi-
gate the accuracy of our parser for dependencies of
different lengths. Figure 3 shows that adding depen-
dencies features does not improve the recovery of
long-range dependencies over the LSTM alone; the
LSTM accurately models long-range dependencies.

9 Related Work

Recent work has applied neural networks to pars-
ing, mostly using neural classifiers in shift-reduce
parsers (Henderson et al., 2013; Chen and Manning,
2014; Dyer et al., 2015; Weiss et al., 2015). Un-
like our approach, none of these report both state-of-
the-art speed and accuracy. Vinyals et al. (2015) in-
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stead propose embedding entire sentences in a vec-
tor space, and then generating parse trees as strings.
Our model achieves state-of-the-art accuracy with a
non-ensemble model trained on the standard train-
ing data, whereas their model requires ensembles or
extra supervision to match the state of the art.

Most work on CCG parsing has either used CKY
chart parsing (Hockenmaier, 2003; Clark and Cur-
ran, 2007; Fowler and Penn, 2010; Auli and Lopez,
2011a) or shift-reduce algorithms (Zhang and Clark,
2011; Xu et al., 2014; Ambati et al., 2015). These
methods rely on beam-search to cope with the huge
space of possible CCG parses. Instead, we use
Lewis and Steedman (2014a)’s A∗ algorithm. By
using a semi-supervised LSTM supertagger, we im-
proved over Lewis and Steedman’s parser by 4.8 F1.

CCG supertagging was first attempted with
maximum-entropy Markov models (Clark, 2002)—
in practice, the combination of sparse features and
a large tag set makes such models brittle. Lewis
and Steedman (2014b) applied feed-forward neural
networks to supertagging, motivated by using pre-
trained work embeddings to reduce sparsity. Xu et
al. (2015) showed further improvements by using
RNNs to condition on non-local context. Concur-
rently with this work, Xu et al. (2016) explored bidi-
rectional RNN models, and Vaswani et al. (2016)
use bidirectional LSTMs with a different training
procedure.

Our tagging model is closely related to the bi-
directional LSTM POS tagging model of Ling et
al. (2015). We see larger gains over the state-of-
the-art—likely because supertagging involves more
long-range dependencies than POS tagging.

Other work has successfully applied GPUs to
parsing, but has required GPU-specific code and al-
gorithms (Yi et al., 2011; Johnson, 2011; Canny et
al., 2013; Hall et al., 2014). GPUs have also been
used for machine translation (He et al., 2015).

10 Conclusions and Future Work

We have shown that a combination of deep learn-
ing, linguistics and classic AI search can be used to
build a parser with both state-of-the-art speed and
accuracy. Future work will explore using our parser
to recover other representations from CCG, such as
Universal Dependencies (McDonald et al., 2013) or

semantic roles. The major obstacle is the mismatch
between these representations and CCGbank—we
will therefore investigate new techniques for obtain-
ing other representations from CCG parses. We will
also explore new A∗ parsing algorithms that explic-
itly model the global parse structure using neural
networks, while maintaining optimality guarantees.
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