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Abstract

Citation sentences (citances) to a reference ar-
ticle have been extensively studied for sum-
marization tasks. However, citances might not
accurately represent the content of the cited
article, as they often fail to capture the con-
text of the reported findings and can be af-
fected by epistemic value drift. Following
the intuition behind the TAC (Text Analysis
Conference) 2014 Biomedical Summarization
track, we propose a system that identifies text
spans in the reference article that are related
to a given citance. We refer to this problem
as citance-reference spans matching. We ap-
proach the problem as a retrieval task; in this
paper, we detail a comparison of different ci-
tance reformulation methods and their combi-
nations. While our results show improvement
over the baseline (up to 25.9%), their absolute
magnitude implies that there is ample room for
future improvement.

1 Introduction

The size of scientific literature has increased dra-
matically during recent decades. In biomedical do-
main for example, PubMed – the largest repository
of biomedical literature – contains more than 24 mil-
lion articles. Thus, there is a need for concise pre-
sentation of important findings in the scientific arti-
cles being published. Text summarization of scien-
tific articles is a method for such presentation. One
obvious form of scientific summaries, is the abstract
of the articles. Another type of scientific summaries
relates to citance-based summaries which are sum-
maries created using the set of citations to a refer-
ence article. This kind of summary covers some
aspects of the reference article which might not be
present in its abstract (Elkiss et al., 2008).

Citances often cover important and novel insights
about findings or aspects of a paper that others

Reference Article
(Voorhoeve et al., 2006): “These miRNAs neutralize p53-mediated
CDK inhibition, possibly through direct inhibition of the expression
of the tumor suppressor LATS2.”

Citing Article
(Okada et al., 2011): “Two oncogenic miRNAs, miR-372 and miR-
373, directly inhibit the expression of Lats2, thereby allowing tu-
morigenic growth in the presence of p53 (Voorhoeve et al., 2006).”

Figure 1: Example of epistemic value drift from
(De Waard and Maat, 2012). The claim in (Voorhoeve
et al., 2006) becomes fact in (Okada et al., 2011).

have found interesting; thus, they capture contribu-
tions that had an impact on the research community
(Elkiss et al., 2008; Qazvinian and Radev, 2008).

In the past, many have focused on citance extrac-
tion and citance-based summarization. Example of
citance extraction include (Siddharthan and Teufel,
2007), who used a machine learning approach with
linguistic, lexical, statistical and positional features,
and (Kaplan et al., 2009), who studied a coreference
resolution based approach. Citance extraction has
been also studied in the context of automatic sum-
marization. For example, (Qazvinian and Radev,
2010) proposed a framework based on probabilis-
tic inference to identify citances, while (Abu-Jbara
and Radev, 2011) approached the problem as a clas-
sification task. In the biomedical domain, the use of
citances was first studied by (Nakov et al., 2004).

While useful, citances by themselves lack the ap-
propriate evidence to capture the exact content of
the original paper, such as circumstances, data and
assumptions under which certain findings were ob-
tained. Citance-based summaries might also modify
the epistemic value of a claim presented in the cited
work (De Waard and Maat, 2012); that is, they might
report a preliminary result or a claim as a definite
fact (example in figure 1).

Recently, a new track at TAC has been introduced
to explore ways to generate better citance-based
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summaries1. One way to achieve this, is to link ci-
tances to text spans in the reference article to ob-
tain a more informative collection of sentences rep-
resenting the reference article (figure 2). A frame-
work designed to solve such problem requires two
components: (i) a method to identify the most rel-
evant spans of text in the reference text and (ii) a
system to automatically generate a summary given a
set of citances and reference spans.

In this paper, we propose an information retrieval
approach designed to address the first task. We ex-
plore the impact of several query reformulation tech-
niques – some domain independent, others tailored
to biomedical literature – on the performance of the
system. Furthermore, we apply combined refor-
mulations, which yields an additional improvement
over any single method (25% over the baseline).

As a related area, passage retrieval in biomedical
articles has been studied in the context of the ge-
nomics track (Hersh et al., 2006; Hersh et al., 2007)
and in following efforts (Urbain et al., 2008; Urbain
et al., 2009; Chen et al., 2011). In these works, the
goal is to find passages that relate to a given term
or keyword (e.g. GeneRIF). In contrast, our system
considers citances as queries, which are substan-
tially longer than keyword-based queries and have
a syntactical structure.

In summary, our contributions are: (i) A
search-based, unsupervised (thus easily scalable to
other domains) approach to citance-reference spans
matching and (ii) adaptation of various query refor-
mulation techniques for the citatnce-refrence span
matching.

2 Methodology

The goal of the proposed system is to retrieve text
spans from the reference paper that match the find-
ing(s) each citance is referring to. We approach this
problem as a search task. That is we consider the ci-
tance as a query and the reference text spans as doc-
uments. Then, using a retrieval model along with
query reformulation, we find the most relevant text
spans to a given citance. Our methodology consist
of the following steps:

1. Create sentence level index from the reference
article.

1http://www.nist.gov/tac/2014/BiomedSumm/

Citing Article Reference Article
...Indeed, shRNA knockdown of Myc in iKras 
PDAC cells significantly downregulated the 
expression of metabolism genes in the glycolysis, 
HBP, and nonoxidative PPP pathways (Figures 
S7E and S7F). Another possible candidate 
mediator of Kras-induced transcriptional changes 
of metabolism genes was HIF1α. Although there 
was some enrichment of HIF1α promoter 
elements in the Kras transcriptional changes, 
knockdown of HIF1α had only minimal impact 
on metabolic enzyme expression (data not 
shown). Together, our data indicates that the 
MAPK pathway and Myc-directed transcriptional 
control play key roles for KrasG12D-mediated 
metabolic reprogramming in PDAC…

…There has been much interest recently in the 
revival of the suggestion that altered metabolism 
can contribute to, as well as respond to, 
oncogenic transformation. Several elegant studies 
have illustrated the importance of metabolic 
transformation in cancer development (Freed-
Pastor et al., 2012; Locasale et al., 2011; Schafer 
et al., 2009; Ying et al., 2012), although there is 
limited information about how these metabolic 
changes may impact on tumorigenicity in vivo. 
The regulation of glucose metabolism by TIGAR 
may have several important consequences; while 
the contribution of TIGAR to antioxidant activity 
has been shown in several cell systems (Bensaad 
et al., 2006; Li and Jogl, 2009; Wanka et al., 
2012)… 

Citance Article Reference Article

(Cheung et al., 2013) (Ying et al., 2012)

Figure 2: Example of a citance/reference article pair from
the TAC training set1. The text in the red box on the left is
referred to as the citance text, while the text in the green
boxes on the right is referred to as the reference text.

2. Apply query reformulation to the given citance
and retrieve the most relevant spans.

3. Rerank and merge the retrieved spans that cor-
rectly describe the citance.

We will describe each step in the following sections.

2.1 Creating the index
To create an index of spans, each reference arti-

cle is tokenized at a sentence level using the Punkt
tokenize (Kiss and Strunk, 2006). Because each
relevant reference span in the reference text can be
formed by several consecutive sentences (according
to the annotation guidelines, each span can consist
of one up to five consecutive sentences), we index
text spans comprised of one up to five sentences.

2.2 Retrieval model
We evaluated the performance of several retrieval

models during experimentation, i.e. vector space
model (Salton et al., 1975), probabilistic BM25
(Robertson and Zaragoza, 2009), divergence from
randomness (DFR) (Amati and Van Rijsbergen,
2002), and language models (Ponte and Croft, 1998)
with Dirichlet priors. All models showed very sim-
ilar performances (with only DFR constantly under-
performing all other models) and we did not observe
any statistically significant differences between each
set of runs. Therefore, we opted for the vector space
model as our retrieval model.

2.3 Query reformulation
We apply several query reformulation techniques

to the citance to better retrieve the related text
spans. We leverage both general and domain specific
query reformulations for this purpose. Specifically,
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we use biomedical concepts, ontology information,
keyphrases and the syntactic structure of the citance.

2.3.1. Unmodified query (baseline): The citance
after removing stop words, numeric values and cita-
tion markers (i.e. the actual indicator of the citation)
serves as our baseline.

2.3.2. Biomedical concepts (UMLS-reduce): We
remove from the query those terms that do not map
to any medical concept in the UMLS1 metathesaurus.
We use MetaMap (Aronson, 2001) to map biomed-
ical expressions in the citances to UMLS concepts.
More specifically, our heuristic greedily matches the
longest expressions in the citance to concepts in
the UMLS metathesaurus; such strategy was deemed
the most appropriate after experimenting with var-
ious matching approaches. We limited the scope
of UMLS-reduce to SNOMED Clinical Terms (Bos
et al., 2006) collection of UMLS and the “preferred
concepts” (i.e., concepts that are determined by the
National Library of Medicine to provide the best
representation for a concept); terms that are not
mapped to any UMLS concept were removed.

2.3.3. Noun phrases (NP): Citances include many
important biological concepts, often appearing as
noun phrases. For this reason, we reformulate ci-
tance by only keeping noun phrases and filtering out
other parts of speech. We retain noun phrases that
consist of up to 3 terms, as longer phrases were em-
pirically determined to be too specific. Stopwords
are removed from noun phrases.

2.3.4. Keyword based (KW): We consider a statis-
tical measure for identifying key terms in the ci-
tance. Specifically, we computed the idf 2 of the
terms in the citance in a domain-specific corpus to
evaluate their importance. Given the domain of our
dataset, we used the Open Access Subset of PubMed
Central3. We filter out the terms whose idf value is
less than a fixed threshold (after empirical evalua-
tion, this threshold was set to 2.5).

2.3.5. Biomedical expansion (UMLS-expand): The
terminology used by the citing author and the refer-
enced author is not necessarily identical. Multiple
1http://www.nlm.nih.gov/research/umls/
2Inverted Document Frequency
3http://www.ncbi.nlm.nih.gov/pmc/

terms or multi-word expressions can be mapped to
the same concepts and each author might use their
own choice of terms for describing a concept. In this
approach, we add related terminology to the impor-
tant concepts in the citance to solve this issue. Since
our dataset consists of articles from biomedical lit-
erature, we took advantage of the UMLS metathe-
saurus to expand terms or multi-word expressions
with their synonyms. We did not enforce any thresh-
old for the number of terms added by UMLS-expand.
However, in order to prevent query drift, we ex-
panded citances using only UMLS’s ”preferred con-
cepts” and concepts from the ”SNOMED Clinical
Terms” (SNOMED CT) terminology.

2.3.6. Combined reformulation: Due to the nar-
rative structure of citances and their relative long
length, using all citance terms for expansion is likely
to cause query drift. Therefore, we first reduce the
citance using one of previously described reduction
approaches and then apply query expansion. In de-
tail, we evaluated the combination of noun phrases
and UMLS expansion, as well as UMLS reduction and
expansion.

2.4 Combining retrieved spans
Due to our indexing strategy described in sec-

tion 2.1, some text spans retrieved by the search
engine could overlap with each other. Intuitively,
if a span containing multiple contiguous sentences
{s1, . . . , sl} is retrieved alongside any of its con-
stituent sentences si, its relevance score should be
increased to account for the relevance of si.

We exploited such intuition by adding the score
of each span with the score of any of the constituent
sentences or sub-spans retrieved alongside it. Af-
ter the score is updated, the constituent sentences or
sub-spans are removed from the list of retrieved re-
sults. Finally, because the number of reference spans
indicated by the annotators in our data set is at most
three, the system returns the top three results.

It is worth mentioning that we also looked at
some other query reformulation approaches such as
pseudo relevance feedback (Buckley et al., 1995)
and Wikipedia based biomedical term filtering (Co-
han et al., 2014); however, our experimentations
should that these methods performed substantially
worse than the baseline, consequently, we do not re-
port those results nor their relevant discussions.
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Type of agreement Count Average overlap
Full agreement 2 100%
Partial agreement between
all annotators 66 21.7± 15.4%
Partial agreement between
a majority of annotators 121 19.2± 11.4%
Partial agreement between
a minority of annotators 113 27.0± 15.9%
No agreement at all 11 0%

Table 1: Levels of agreement between annotators. The
4 annotators fully agree on just 2 of the 313 annotations.
In most cases, a majority (3 annotators) or a minority (2
annotators) agrees on a portion of reference spans, indi-
cating that the task is not trivial even for domain experts.

3 Evaluation and Dataset

The system was evaluated on TAC 2014 Biomedi-
cal Summarization track training dataset. It consists
of 20 topics, each of which contains between 10 to
20 citing articles and 1 reference article. For each
topic, four domain experts were asked to identify
the appropriate reference spans for each citance in
the reference text. To better understand the dataset,
we analyzed the agreement between annotators (ta-
ble 1). This table shows that the overall agreement
is relatively low.

We used two sets of metrics for evaluation of the
task. The first one is based on the weighted overlaps
between the retrieved spans and the correct spans
designated by annotators and is meant to reward
spans overlapping with the ground truth. Weighted
recall and precision for a system returning span S
with respect to a set of M annotators, consisting of
gold spans G1, ..., GM are defined as follows:

Recall def=
∑M

i=1 |S ∩Gi|∑M
i=1 |Gi|

Prec def=
∑M

i=1 |S ∩Gi|
M × |S| (1)

The overall score of the system is the mean F-1
(harmonic mean of the weighted precision and re-
call) over all the topics.

Based on the weighted F-1 score, a method could
be penalized for retrieving any spans that are not
indicated as gold spans by the annotators. Even
if those spans are semantically similar to the gold
spans, they will not receive any score. This is not
ideal because, as the high disagreement shown in
table 1 implies, gold spans by offset locations are
highly controversial. For this reason, we also con-
sidered ROUGE-L (Lin, 2004) as another evalua-

tion metric, as it rewards a method for retrieving
spans that are similar to the gold spans. Specifically,
ROUGE-L, takes into account the sentence similar-
ity by considering the longest in sequence n-grams
between the retrieved spans and gold spans.

4 Results and discussion

The problem of matching citations with cited spans
in scientific articles is a new task and to the best
of our knowledge, there is no prior work on this
task. Thus to evaluate the effectiveness of our differ-
ent methods, we compared the performance of our
proposed approaches against the unmodified query
baseline. The results are shown in Table 2.

Interestingly, we observe that UMLS-reduce per-
forms worse than the baseline in terms of F-1. This
can be attributed to the fact that multiple expressions
in the biomedical literature can be used to refer to
the same concept. Such diversity is not captured by
UMLS-reduce, as it only performs query reduction.
Moreover, a citance often contains expressions that,
while not mapping to any biomedical concepts, pro-
vide useful context and therefore are fundamental in
conveying the meaning of the citance (we will re-
fer to such expressions as supporting expressions in
the reminder of the paper). These supporting expres-
sions are not captured by UMLS-reduce.

NP outperforms the baseline (+18.8% F-1). This
outcome is expected, as most important biomedical
concepts in the citance are noun phrases. Moreover,
supporting expressions are also captured, as most of
them are noun phrases.

KW also shows promising results (+11.5% F-1
and +15.2% ROUGE-L F-1 improvement), proving
that the idf of the terms in citance over a large
biomedical corpus is a valid measure of their infor-
mativeness for this task.

When comparing KW and NP, we notice that the
former obtains higher precision values than the lat-
ter; this outcome is reversed with respect to recall
(i.e., NP’s recall is higher than KW’s). Such behav-
ior can be motivated by the fact that NP, as it ex-
tracts noun phrases that are likely to appear in the
gold reference span, has a higher chance of retriev-
ing relevant sections of the reference text. However,
NP is more likely to retrieve non-relevant spans, as
the extracted noun phrases, which are often describ-
ing the main findings of the cited paper, are preva-
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Recall Precision F-1 ROUGE-L Recall ROUGE-L Prec ROUGE-L F-1
baseline 0.169 0.152 0.156 0.496 0.200 0.280
UMLS-reduce 0.132 (-22.0%) 0.146 (-4.08%) 0.136 (-12.5%) 0.496 (0.0%) 0.224* (12.0%) 0.293 (4.8%)
KW 0.173* (3.0%) 0.193** (27.6%) 0.174** (11.5%) 0.491 (-0.1%) 0.273** (36.3%) 0.323** (15.2%)
NP 0.199** (18.3%) 0.178** (17.6%) 0.185** (18.8%) 0.550** (11.1 %) 0.211* (5.5 %) 0.280 (0.0%)
UMLS-expand 0.182** (8.1%) 0.148 (-2.1%) 0.160* (3.2 %) 0.498 (0.5%) 0.245** (22.2%) 0.315** (12.3%)

UMLS-reduce +
UMLS-expand 0.201** (19.6%) 0.179** (18.0%) 0.187** (20.0%) 0.558** (12.6 %) 0.209** (4.4 %) 0.293* (4.4%)

NP +
UMLS-expand 0.180* (7.1%) 0.224** (47.8%) 0.196** (25.9%) 0.501 (1.13%) 0.280** (39.9%) 0.333** (18.8%)

Table 2: Results for reference span matching; KW: reduction using KeyWords; NP: reduction using Noun Phrases;
UMLS-expand: expansion using UMLS; UMLS-reduce: reduction using UMLS; * (**) indicates statistical significance
at p < 0.05 (p < 0.01) using student’s t-test over the baseline.

lent throughout the reference article. On the other
hand, KW selects highly discriminative terms which
are highly effective in retrieving some relevant ref-
erence spans, but might not appear in others.

We observe that UMLS-expand, by adding related
concepts to the query, achieves significant improve-
ment over the baseline in terms of recall (+8.1%).
Such improvement is expected, as UMLS-expand
augments the citance with all possible formulations
of the detected biomedical concepts. However, its
precision is only comparable with the baseline, as it
does not remove any noisy terms from the citance.
Interestingly, we notice that its ROUGE-L precision
greatly outperforms the baseline (+22.2%). This be-
havior is motivated by the fact that UMLS-expand,
even when not retrieving all the correct reference
spans, extracts certain parts of the reference articles
that share many biomedical concepts with the gold
spans, thus achieving high structural similarity.

The two combined methods (NP + UMLS-expand
and UMLS-reduce + UMLS-expand) obtain the best
overall performance compared to the baseline.
UMLS-reduce + UMLS-expand obtains the highest
recall among all methods. This outcome directly
depends on the fact that all the synonyms of a cer-
tain biomedical concept are captured using UMLS-
expand. However, unlike UMLS-expand, this com-
bined method also achieves statistically significant
improvement in terms of precision, as UMLS-reduce
removes terms that can cause query drift.

NP + UMLS-expand has the highest overall per-
formance, achieving a 25.9% increase over the base-
line in terms of F-1, and an 18.8% increase in terms
of ROUGE-L F-1. As previously mentioned, noun
phrases are highly effective in identifying relevant
biomedical concepts, as well as supporting expres-

sions. Given the addition of UMLS-expand, syn-
onyms of the extracted noun phrases are also con-
sidered, further increasing the chance of retrieving
relevant reference spans.

The limited performance of all methods in terms
of the overall weighted F-1 and ROUGE-L scores is
expected due to the difficulty of the task, as further
corroborated by the low agreement between annota-
tors. As previously stated, this makes the task partic-
ularly challenging for any system, as identifying the
most appropriate reference spans is highly nontriv-
ial even for domain experts. Nevertheless, while full
agreement between domain experts is not present,
as it is shown in table 1, more than 60% of the time,
annotators agree – at least partially – on the position
of the reference spans. This makes the task worth
exploring.

5 Conclusion

In this paper, we propose an information retrieval
approach for the problem of matching reference text
spans with citances. Our approach takes advan-
tage of several general and domain specific query
reformulation techniques. Our best performing
method obtains a significant increase over the base-
line (25.9% F-1). However, as the absolute perfor-
mance of the system indicates, the task of identify-
ing matching reference spans to a given citance is
highly non trivial. This fact is also reflected by the
high disagreement between domain experts annota-
tions and suggests that further exploration of the task
is needed.
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