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Abstract

Multi-Domain learning assumes that a sin-
gle metadata attribute is used in order to di-
vide the data into so-called domains. How-
ever, real-world datasets often have multi-
ple metadata attributes that can divide the
data into domains. It is not always apparent
which single attribute will lead to the best do-
mains, and more than one attribute might im-
pact classification. We propose extensions to
two multi-domain learning techniques for our
multi-attribute setting, enabling them to si-
multaneously learn from several metadata at-
tributes. Experimentally, they outperform the
multi-domain learning baseline, even when it
selects the single “best” attribute.

1 Introduction
Multi-Domain Learning (Evgeniou and Pontil,
2004; Daumé III, 2007; Dredze and Crammer, 2008;
Finkel and Manning, 2009; Zhang and Yeung, 2010;
Saha et al., 2011) algorithms learn when training in-
stances are spread across many domains, which im-
pact model parameters. These algorithms use exam-
ples from each domain to learn a general model that
is also sensitive to individual domain differences.

However, many data sets include a host of meta-
data attributes, many of which can potentially define
the domains to use. Consider the case of restaurant
reviews, which can be categorized into domains cor-
responding to the cuisine, location, price range, or
several other factors. For multi-domain learning, we
should use the metadata attribute most likely to char-
acterize a domain: a change in vocabulary (i.e. fea-
tures) that most impacts the classification decision

(Ben-David et al., 2009). This choice is not easy.
First, we may not know which metadata attribute is
most likely to fit this role. Perhaps the location most
impacts the review language, but it could easily be
the price of the meal. Second, multiple metadata
attributes could impact the classification decision,
and picking a single one might reduce classification
accuracy. Therefore, we seek multi-domain learn-
ing algorithms which can simultaneously learn from
many types of domains (metadata attributes).

We introduce the multi-attribute multi-domain
(MAMD) learning problem, in which each learning
instance is associated with multiple metadata at-
tributes, each of which may impact feature behavior.
We present extensions to two popular multi-domain
learning algorithms, FEDA (Daumé III, 2007) and
MDR (Dredze et al., 2009). Rather than selecting
a single domain division, our algorithms consider
all attributes as possible distinctions and discover
changes in features across attributes. We evaluate
our algorithms using two different data sets – a data
set of restaurant reviews (Chahuneau et al., 2012),
and a dataset of transcribed speech segments from
floor debates in the United States Congress (Thomas
et al., 2006). We demonstrate that multi-attribute al-
gorithms improve over their multi-domain counter-
parts, which can learn distinctions from only a single
attribute.

2 MAMD Learning
In multi-domain learning, each instance x is drawn
from a domain d with distribution x ∼ Dd over a
vectors space RD and labeled with a domain spe-
cific function fd with label y ∈ {−1,+1} (for bi-
nary classification). In multi-attribute multi-domain
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(MAMD) learning, we have M metadata attributes in
a data set, where the mth metadata attribute has Km

possible unique values which represent the domains
induced by that metadata attribute. Each instance xi

is drawn from a distribution xi ∼ Da specific to a
set of attribute values Ai associated with each in-
stance. Additionally, each unique set of attributes
indexes a function fA.1 Ai could contain a value for
each attribute, or no values for any attribute (which
would index a domain-agnostic “background” distri-
bution and labeling function). Just as a domain can
change a feature’s probability and behavior, so can
each metadata attribute.

Examples of data for MAMD learning abound. The
commonly used Amazon product reviews data set
(Blitzer et al., 2007) only includes product types, but
the original reviews can be attributed with author,
product price, brand, and so on. Additional exam-
ples include congressional floor debate records (e.g.
political party, speaker, bill) (Joshi et al., 2012). In
this paper, we use restaurant reviews (Chahuneau et
al., 2012), which have upto 20 metadata attributes
that define domains, and congressional floor de-
bates, with two attributes that define domains.

It is difficult to apply multi-domain learning algo-
rithms when it is unclear which metadata attribute
to choose for defining the “domains”. It is possible
that there is a single “best” attribute to use for defin-
ing domains, one that when used in multi-domain
learning will yield the best classifier. To find this
attribute, one must rely on one’s intuition about the
problem,2 or perform an exhaustive empirical search
over all attributes using some validation set. Both
these strategies can be brittle, because as the nature
of data changes over time so may the “best” do-
main distinction. Additionally, multi-domain learn-
ing was not designed to benefit from multiple helpful
attributes.

We note here that Eisenstein et al. (2011), as well
as Wang et al. (2012), worked with a “multifaceted
topic model” using the framework of sparse addi-
tive generative models (SAGE). Both those models
capture interactions between topics and multiple as-

1Distributions and functions that share attributes could share
parameters.

2Intuition is often critical for learning and in some cases can
help, such as in the Amazon product reviews data set, where
product type clearly corresponds to domain. However, for other
data sets the choice may be less clear.

pects, and can be adapted to the case of MAMD. While
our problem formulation has significant conceptual
overlap with the SAGE–like multifaceted topic mod-
els framework, our proposed methods are motivated
from a fast online learning perspective.

A naive approach for MAMD would be to treat ev-
ery unique set of attributes as a domain, including
unique proper subsets of different attributes to ac-
count for the case of missing attributes in some in-
stances.3 However, introducing an exponential num-
ber of domains requires a similar increase in train-
ing data, clearly an infeasible requirement. Instead,
we develop multi-attribute extensions for two multi-
domain learning algorithms, such that the increase
in parameters is linear in the number of metadata at-
tributes, and no special handling is required for the
case where some metadata attributes might be miss-
ing from an instance.

Multi-Attribute FEDA The key idea behind
FEDA (Daumé III, 2007) is to encode each domain
using its own parameters, one per feature. FEDA
maps a feature vector x in RD to RD(K+1). This
provides a separate parameter sub-space for every
domain k ∈ 1 . . .K, and also maintains a domain-
agnostic shared sub-space. Essentially, each feature
is duplicated for every instance in the appropriate
sub-space of RD(K+1) that corresponds to the in-
stance’s domain. We extend this idea to the MAMD
setting by using one parameter per attribute value.
The original instance x ∈ RD is now mapped into
RD(1+

∑
m Km); a separate parameter for each at-

tribute value and a shared set of parameters. In ef-
fect, for every metadata attribute a ∈ Ai, the original
features are copied into the appropriate sub-space.
This grows linearly with the number of metadata at-
tribute values, as opposed to exponentially in our
naive solution. While this is still substantial growth,
each instance retains the same feature sparsity as in
the original input space. In this new setup, FEDA al-
lows an instance to contribute towards learning the
shared parameters, and the attribute-specific param-
eters for all the attributes present on an instance. Just
like multi-domain FEDA, any supervised learning al-
gorithm can be applied to the transformed represen-
tation.

3While we used a similar setup for formulating our problem,
we did not rule out the potential for factoring the distributions.
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Multi-Attribute MDR We make a similar change
to MDR (Dredze et al., 2009) to extend it for
the MAMD setting. In the original formulation,
Dredze et al. used confidence-weighted (CW)
learning (Dredze et al., 2008) for learning shared
and domain-specific classifiers, which are combined
based on the confidence scores associated with the
feature weights. For training the MDR approaches in
a multi-domain learning setup, they found that com-
puting updates for the combined classifier and then
equally distributing them to the shared and domain-
specific classifiers was the best strategy, although it
approximated the true objective that they aimed to
optimize. In our multi-attribute setup confidence-
weighted (CW) classifiers are learned for each of the∑

mKm attribute values in addition to a shared CW
classifier. At classification time, a combined clas-
sifier is computed for every instance. However, in-
stead of combining the shared classifier and a single
domain-specific classifier, we combine the shared
CW classifier and |Ai| different attribute value-
specific CW classifiers associated with xi. The
combined classifier is found by minimizing the KL-
divergence of the combined classifier with respect to
each of the underlying classifiers.4

When learning the shared and domain-specific
classifiers, we follow the best result in Dredze et
al. and use the “averaged update” strategy (§7.3 in
Dredze et al.), where updates are computed for the
combined classifier, and are then distributed to the
shared and domain-specific classifiers. MDR-U will
indicate that the updates to the combined classifiers
are uniformly distributed to the underlying shared
and domain-specific classifiers.

Dredze et al. also used another scheme called
“variance” to distribute the combined update to the
underlying classifiers (§4, last paragraph in Dredze
et al.) Their idea was to give a lower portion
of the update to the underlying classifier that has
higher variance (or in their terminology, “less con-
fidence”) since it contributed less to the combined
classifier. We refer to this as MDR-V. However, this
conflicts with the original CW intuition that features
with higher variance (lower confidence) should re-
ceive higher updates; since they are more in need
of change. Therefore, we implemented a modi-
fied “variance” scheme, where the updates are dis-

4We also tried the l2 distance method of Dredze et al. (2009)
but it gave consistently worse results.

tributed to the underlying classifiers such that higher
variance features receive the larger updates. We re-
fer to this as MDR-NV. We observed significant im-
provements with this modified scheme.

3 Experiments
To evaluate our multi-attribute algorithms we con-
sider two datasets. First, we use two subsets of the
restaurant reviews dataset (1,180,308 reviews) intro-
duced by Chahuneau et al. (2012) with the goal of
labeling reviews as positive or negative. The first
subset (50K-RND) randomly selects 50,000 reviews
while the second (50K-BAL) is a class-balanced
sample. Following the approach of Blitzer et al.
(2007), scores above and below 3-stars indicated
positive and negative reviews, while 3-star reviews
were discarded. Second, we use the transcribed seg-
ments of speech from the United States Congress
floor debates (Convote), introduced by Thomas
et al. (2006). The binary classification task on this
dataset is that of predicting whether a given speech
segment supports or opposes a bill under discussion
in the floor debate.

In the WordSalad datasets, each restaurant re-
view can have many metadata attributes, including a
unique identifier, name (which may not be unique),
address (we extract the zipcode), and type (Italian,
Chinese, etc.). We select the 20 most common meta-
data attributes (excluding latitude, longitude, and the
average rating). 5 In the Convote dataset, each
speech segment is associated with the political party
affiliation of the speaker (democrat, independent, or
republican) and the speaker identifier (we use bill
identifiers for creating folds in our 10-fold cross-
validation setup).

In addition to our new algorithms, we evalu-
ate several baselines. All methods use confidence-
weighted (CW) learning (Crammer et al., 2012).

BASE A single classifier trained on all the data,
and which ignores metadata attributes and uses uni-
gram features. For CW, we use the best-performing
setting from Dredze et al. (2008) — the “variance”
algorithm, which computes approximate but closed–
form updates, which also lead to faster learning. Pa-
rameters are tuned over a validation set within each
training fold.

5Our method requires categorical metadata attributes, al-
though real-valued attributes can be discretized.
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metadata 1-META FEDA MDR-U MDR-V MDR-NV

5
0
K
-
R
N
D NONE (BASE) 92.29 (±0.14)

ALL (META) † 92.69 (±0.10)
CATEGORY † 92.48 (±0.11) 92.47 (±0.10) †‡ 92.99 (±0.12) 91.16 (±0.16) †‡ 93.24 (±0.13)

ZIPCODE 92.40 (±0.09) † 92.73 (±0.09) †‡ 92.99 (±0.12) 91.19 (±0.20) †‡ 93.22 (±0.11)
NEIGHBORHOOD 92.42 (±0.11) † 92.65 (±0.13) †‡ 93.02 (±0.13) 91.17 (±0.21) †‡ 93.21 (±0.12)

5
0
K
-
B
A
L NONE (BASE) 89.95 (±0.10)

ALL (META) † 90.39 (±0.09)
CATEGORY 90.09 (±0.11) † 90.50 (±0.11) † 90.60 (±0.11) 87.89 (±0.13) †‡ 91.33 (±0.08)

ZIPCODE 89.97 (±0.12) † 90.42 (±0.13) † 90.56 (±0.09) 87.78 (±0.16) †‡ 91.30 (±0.10)
ID † 90.42 (±0.11) †‡ 90.64 (±0.11) † 90.50 (±0.11) 87.78 (±0.25) †‡ 91.27 (±0.09)

Table 1: Average accuracy (± standard error) for the best three metadata attributes, when using a single attribute at
a time. Results that are numerically the best within a row are in bold. Results significantly better than BASE are
marked with †, and better than META are marked with ‡. Significance is measured using a two-tailed paired t-test with
α = 0.05.

#attributes FEDA MDR-U MDR-V MDR-NV

5
0
K
-
R
N
D MAMD †‡ 93.07 (±0.19) †‡ 93.12 (±0.11) 87.08 (±1.72) †‡ 93.19 (±0.12)

1-ORCL †‡ 93.06 (±0.11) †‡ 93.17 (±0.11) 92.37 (±0.11) †‡ 93.39 (±0.12)
1-TUNE † 92.64 (±0.12) † 92.81 (±0.16) 92.15 (±0.17) †‡ 93.07 (±0.14)
1-MEAN † 92.61 (±0.09) † 92.59 (±0.10) 91.41 (±0.12) † 92.58 (±0.10)

5
0
K
-
B
A
L MAMD †‡ 91.42 (±0.09) †‡ 91.06 (±0.04) 81.43 (±2.79) †‡ 91.40 (±0.08)

1-ORCL †‡ 90.89 (±0.10) †‡ 90.87 (±0.11) 89.33 (±0.13) †‡ 91.45 (±0.07)
1-TUNE † 90.33 (±0.10) †‡ 90.70 (±0.14) 89.13 (±0.16) †‡ 91.26 (±0.08)
1-MEAN † 90.30 (±0.06) 89.92 (±0.07) 88.25 (±0.07) 90.06 (±0.08)

Table 2: Average accuracy (± standard error) using 10-fold cross-validation for methods that use all attributes, either
directly (our proposed methods) or for selecting the “best” single attribute using one of the strategies described earlier.
Formatting and significance symbols are the same as in Table 1.

META Identical to BASEwith a unique bias feature
added for each attribute value (Joshi et al., 2012).
1-META A special case of META where a unique
bias feature is added only for a single attribute.

To use multi-domain learning directly, we could
select a single attribute as the domain. We consider
several strategies for picking this attribute and eval-
uate both FEDA and MDR in this setting.
1-MEAN Choose an attribute randomly, equivalent
to the expected (mean) error over all attributes.
1-TUNE Select the best performing attribute on a
validation set.
1-ORCL Select the best performing attribute on
the test set. Though impossible in practice, this gives
the oracle upper bound on multi-domain learning.

All experiments use ten-fold cross-validation. We
report the mean accuracy, along with standard error.

4 Results
Table 1 shows the results of single-attribute multi-
domain learning methods for the WordSalad
datasets. The table shows the three best-performing
metadata attributes (as decided by the highest accu-
racy among all the methods across all 20 metadata
attributes). Clearly, several of the attributes can pro-

vide meaningful domains, which demonstrates that
methods that can select multiple attributes at once
are desirable. We also see that our modification to
MDR (MDR-NV) works the best.

Table 3 shows the results of single-attribute multi-
domain learning methods for the Convote dataset.
The first observation to be made on this dataset is
that neither the PARTY, nor the SPEAKER attribute
individually achieve significant improvement over
the META baseline, which uses both these attributes
as features. This is in contrast with the results on
the WordSalad dataset, where some attributes by
themselves showed an improvement over the META
baseline. Thus, this dataset represents a more chal-
lenging setup for our multi–attribute multi–domain
learning methods — they need to exploit the two
weak attributes simultaneously.

We next demonstrate multi-attribute improve-
ments over the multi-domain baselines (Tables 2
and 4). For WordSalad datasets, our exten-
sions that can use all metadata attributes simul-
taneously are consistently better than both the
1-MEAN and the 1-TUNE strategies (except for
the case of the old variance scheme used by
(Dredze et al., 2009)). For the skewed subset
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metadata 1-META FEDA MDR-U MDR-V MDR-NV
NONE (BASE) 67.08 (±1.74)

ALL (META) † 82.60 (±1.95)
PARTY † 78.81 (±1.47) † 84.19 (±2.44) † 83.23 (±2.48) † 81.38 (±2.22) † 83.92 (±2.31)

SPEAKER † 77.49 (±1.75) † 82.88 (±2.43) † 78.32 (±1.91) 62.43 (±2.20) † 72.26 (±1.37)

Table 3: Convote: Average accuracy (± standard error) when using a single attribute at a time. Results that are
numerically the best within a row are in bold. Results significantly better than BASE are marked with †, and better
than META are marked with ‡. Significance is measured using a two-tailed paired t-test with α = 0.05.

#attributes FEDA MDR-U MDR-V MDR-NV
MAMD †‡ 85.71 (±2.74) † 84.12 (±2.56) 50.44 (±1.78) †‡ 86.19 (±2.49)

1-ORCL † 84.77 (±2.47) † 83.88 (±2.27) † 81.38 (±2.22) † 83.92 (±2.31)
1-TUNE † 84.19 (±2.44) † 83.23 (±2.48) † 81.38 (±2.22) † 83.92 (±2.31)
1-MEAN † 83.53 (±2.40) † 80.77 (±1.92) † 71.91 (±1.82) † 78.09 (±1.69)

Table 4: Convote: Average accuracy (± standard error) using 10-fold cross-validation for methods that use all
attributes, either directly (our proposed methods) or for selecting the “best” single attribute using one of the strategies
described earlier. Formatting and significance symbols are the same as in Table 3.

50K-RND, MAMD+FEDA is significantly better than
1-TUNE+FEDA; MAMD+MDR-U is significantly bet-
ter than 1-TUNE+MDR-U; MAMD+MDR-NV is not
significantly different from 1-TUNE+MDR-U. For
the balanced subset 50K-BAL, a similar pattern
holds, except that MAMD+MDR-NV is significantly
better than 1-TUNE+MDR-NV. Clearly, our multi-
attribute algorithms provide a benefit over existing
approaches. Even with oracle knowledge of the test
performance using multi-domain learning, we can
still obtain improvements (FEDA and MDR-U in the
50K-BAL set, and all the Convote results, except
MDR-V).

Although MAMD+MDR-NV is not significantly bet-
ter than 1-TUNE+MDR-NV on the 50K-RND set,
we found that in every single fold in our ten-
fold cross-validation experiments, the “best” single
metadata attribute decided using a validation set did
not match the best-performing single metadata at-
tribute on the corresponding test set. This shows
the potential instability of choosing a single best at-
tribute. Also, note that MDR-NV is a variant that we
have proposed in the current work, and in fact for
the earlier variant of MDR (MDR-U), as well as for
FEDA, we do see significant improvements when us-
ing all metadata attributes. Furthermore, the compu-
tational cost of evaluating every metadata attribute
independently to tune the single best metadata at-
tribute can be high and often impractical. Our ap-
proach requires no such tuning. Finally, observe
that for FEDA, the 1-TUNE strategy is not signifi-
cantly different from 1-MEAN, which just randomly
picks a single best metadata attribute. For MDR-U,

1-TUNE is significantly better than 1-MEAN on the
balanced subset 50K-BAL, but not on the skewed
subset 50K-RND.

As mentioned earlier, the Convote dataset is a
challenging setting for our methods due to the fact
that no single attribute is strong enough to yield im-
provements over the META baseline. In this setting,
both MAMD+FEDA and MAMD+MDR-NV achieve a
significant improvement over the META baseline,
with MDR-NV being the best (though not signif-
icantly better than FEDA). Additionally, both of
them are significantly better than their correspond-
ing 1-TUNE strategies. This result further supports
our claim that using multiple attributes in combi-
nation for defining domains (even when any single
one of them is not particularly beneficial for multi–
domain learning) is important.

5 Conclusions
We propose multi-attribute multi-domain learning
methods that can utilize multiple metadata attributes
simultaneously for defining domains. Using these
methods, the definition of “domains” does not have
to be restricted to a single metadata attribute. Our
methods achieve a better performance on two multi-
attribute datasets as compared to traditional multi-
domain learning methods that are tuned to use a sin-
gle “best” attribute.
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