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Abstract

We present a simple log-linear reparame-
terization of IBM Model 2 that overcomes
problems arising from Model 1’s strong
assumptions and Model 2’s overparame-
terization. Efficient inference, likelihood
evaluation, and parameter estimation algo-
rithms are provided. Training the model is
consistently ten times faster than Model 4.
On three large-scale translation tasks, systems
built using our alignment model outperform
IBM Model 4.

An open-source implementation of the align-
ment model described in this paper is available
from http://github.com/clab/fast align .

1 Introduction

Word alignment is a fundamental problem in statis-
tical machine translation. While the search for more
sophisticated models that provide more nuanced ex-
planations of parallel corpora is a key research activ-
ity, simple and effective models that scale well are
also important. These play a crucial role in many
scenarios such as parallel data mining and rapid
large scale experimentation, and as subcomponents
of other models or training and inference algorithms.
For these reasons, IBM Models 1 and 2, which sup-
port exact inference in time Θ(|f| · |e|), continue to
be widely used.

This paper argues that both of these models are
suboptimal, even in the space of models that per-
mit such computationally cheap inference. Model
1 assumes all alignment structures are uniformly

likely (a problematic assumption, particularly for
frequent word types), and Model 2 is vastly overpa-
rameterized, making it prone to degenerate behav-
ior on account of overfitting.1 We present a simple
log-linear reparameterization of Model 2 that avoids
both problems (§2). While inference in log-linear
models is generally computationally more expen-
sive than in their multinomial counterparts, we show
how the quantities needed for alignment inference,
likelihood evaluation, and parameter estimation us-
ing EM and related methods can be computed using
two simple algebraic identities (§3), thereby defus-
ing this objection. We provide results showing our
model is an order of magnitude faster to train than
Model 4, that it requires no staged initialization, and
that it produces alignments that lead to significantly
better translation quality on downstream translation
tasks (§4).

2 Model

Our model is a variation of the lexical translation
models proposed by Brown et al. (1993). Lexical
translation works as follows. Given a source sen-
tence f with length n, first generate the length of
the target sentence, m. Next, generate an alignment,
a = 〈a1, a2, . . . , am〉, that indicates which source
word (or null token) each target word will be a trans-
lation of. Last, generate the m output words, where
each ei depends only on fai .

The model of alignment configurations we pro-
pose is a log-linear reparameterization of Model 2.

1Model 2 has independent parameters for every alignment
position, conditioned on the source length, target length, and
current target index.
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Given : f, n = |f|, m = |e|, p0, λ, θ

h(i, j,m, n) = −
∣∣∣∣ im − j

n

∣∣∣∣
δ(ai = j | i,m, n) =


p0 j = 0

(1− p0)× eλh(i,j,m,n)

Zλ(i,m,n) 0 < j ≤ n
0 otherwise

ai | i,m, n ∼ δ(· | i,m, n) 1 ≤ i ≤ m
ei | ai, fai ∼ θ(· | fai) 1 ≤ i ≤ m
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Figure 1: Our proposed generative process yielding a translation e and its alignment a to a source sentence f, given the
source sentence f, alignment parameters p0 and λ, and lexical translation probabilities θ (left); an example visualization
of the distribution of alignment probability mass under this model (right).

Our formulation, which we write as δ(ai = j |
i,m, n), is shown in Fig. 1.2 The distribution over
alignments is parameterized by a null alignment
probability p0 and a precision λ ≥ 0 which con-
trols how strongly the model favors alignment points
close to the diagonal. In the limiting case as λ→ 0,
the distribution approaches that of Model 1, and, as
it gets larger, the model is less and less likely to de-
viate from a perfectly diagonal alignment. The right
side of Fig. 1 shows a graphical illustration of the
alignment distribution in which darker squares indi-
cate higher probability.

3 Inference

We now discuss two inference problems and give ef-
ficient techniques for solving them. First, given a
sentence pair and parameters, compute the marginal
likelihood and the marginal alignment probabilities.
Second, given a corpus of training data, estimate
likelihood maximizing model parameters using EM.

3.1 Marginals

Under our model, the marginal likelihood of a sen-
tence pair 〈f, e〉 can be computed exactly in time

2Vogel et al. (1996) hint at a similar reparameterization of
Model 2; however, its likelihood and its gradient are not effi-
cient to evaluate, making it impractical to train and use. Och
and Ney (2003) likewise remark on the overparameterization
issue, removing a single variable of the original conditioning
context, which only slightly improves matters.

Θ(|f| · |e|). This can be seen as follows. For
each position in the sentence being generated, i ∈
[1, 2, . . . ,m], the alignment to the source and its
translation is independent of all other translation and
alignment decisions. Thus, the probability that the
ith word of e is ei can be computed as:

p(ei, ai | f,m, n) = δ(ai | i,m, n)× θ(ei | fai)

p(ei | f,m, n) =
n∑
j=0

p(ei, ai = j | f,m, n).

We can also compute the posterior probability over
alignments using the above probabilities,

p(ai | ei, f,m, n) =
p(ei, ai | f,m, n)

p(ei | f,m, n)
. (1)

Finally, since all words in e (and their alignments)
are conditionally independent,3

p(e | f) =

m∏
i=1

p(ei | f,m, n)

=

m∏
i=1

n∑
j=0

δ(ai | i,m, n)× θ(ei | fai).

3We note here that Brown et al. (1993) derive their variant
of this expression by starting with the joint probability of an
alignment and translation, marginalizing, and then reorganizing
common terms. While identical in implication, we find the di-
rect probabilistic argument far more intuitive.
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3.2 Efficient Partition Function Evaluation

Evaluating and maximizing the data likelihood un-
der log-linear models can be computationally ex-
pensive since this requires evaluation of normalizing
partition functions. In our case,

Zλ(i,m, n) =

n∑
j′=1

expλh(i, j′,m, n).

While computing this sum is obviously possible
in Θ(|f|) operations, our formulation permits exact
computation in Θ(1), meaning our model can be ap-
plied even in applications where computational ef-
ficiency is paramount (e.g., MCMC simulations).
The key insight is that the partition function is the
(partial) sum of two geometric series of unnormal-
ized probabilities that extend up and down from the
probability-maximizing diagonal. The closest point
on or above the diagonal j↑, and the next point down
j↓ (see the right side of Fig. 1 for an illustration), is
computed as follows:

j↑ =

⌊
i× n
m

⌋
, j↓ = j↑ + 1.

Starting at j↑ and moving up the alignment col-
umn, as well as starting at j↓ and moving down, the
unnormalized probabilities decrease by a factor of
r = exp −λn per step.

To compute the value of the partition, we only
need to evaluate the unnormalized probabilities at
j↑ and j↓ and then use the following identity, which
gives the sum of the first ` terms of a geometric se-
ries (Courant and Robbins, 1996):

s`(g1, r) =
∑̀
k=1

g1r
k−1 = g1

1− r`
1− r .

Using this identity, Zλ(i,m, n) can be computed as

sj↑(e
λh(i,j↑,m,n), r) + sn−j↓(e

λh(i,j↓,m,n), r).

3.3 Parameter Optimization

To optimize the likelihood of a sample of parallel
data under our model, one can use EM. In the E-step,
the posterior probabilities over alignments are com-
puted using Eq. 1. In the M-step, the lexical trans-
lation probabilities are updated by aggregating these

as counts and normalizing (Brown et al., 1993). In
the experiments reported in this paper, we make the
further assumption that θf ∼ Dirichlet(µ) where
µi = 0.01 and approximate the posterior distribu-
tion over the θf ’s using a mean-field approximation
(Riley and Gildea, 2012).4

During the M-step, the λ parameter must also
be updated to make the E-step posterior distribu-
tion over alignment points maximally probable un-
der δ(· | i,m, n). This maximizing value cannot
be computed analytically, but a gradient-based op-
timization can be used, where the first derivative
(here, for a single target word) is:

∇λL = Ep(ai|ei,f,m,n) [h(i, ai,m, n)]

− Eδ(j′|i,m,n)

[
h(i, j′,m, n)

]
(2)

The first term in this expression (the expected value
of h under the E-step posterior) is fixed for the du-
ration of each M-step, but the second term’s value
(the derivative of the log-partition function) changes
many times as λ is optimized.

3.4 Efficient Gradient Evaluation
Fortunately, like the partition function, the deriva-
tive of the log-partition function (i.e., the second
term in Eq. 2) can be computed in constant time us-
ing an algebraic identity. To derive this, we observe
that the values of h(i, j′,m, n) form an arithmetic
sequence about the diagonal, with common differ-
ence d = −1/n. Thus, the quantity we seek is the
sum of a series whose elements are the products of
terms from an arithmetic sequence and those of the
geometric sequence above, divided by the partition
function value. This construction is referred to as
an arithmetico-geometric series, and its sum may be
computed as follows (Fernandez et al., 2006):

t`(g1,a1, r, d) =
∑̀
k=1

[a1 + d(k − 1)] g1r
k−1

=
a`g`+1 − a1g1

1− r +
d (g`+1 − g1r)

(1− r)2 .

In this expression r, the g1’s and the `’s have the
same values as above, d = −1/n and the a1’s are

4The µi value was fixed at the beginning of experimentation
by minimizing the AER on the 10k sentence French-English cor-
pus discussed below.
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equal to the value of h evaluated at the starting in-
dices, j↑ and j↓; thus, the derivative we seek at each
optimization iteration inside the M-step is:

∇λL =Ep(ai|ei,f,m,n) [h(i, ai,m, n)]

− 1

Zλ
(tj↑(e

λh(i,j↑,m,n), h(i, j↑,m, n), r, d)

+ tn−j↓(e
λh(i,j↓,m,n), h(i, j↑,m, n), r, d)).

4 Experiments

In this section we evaluate the performance of
our proposed model empirically. Experiments are
conducted on three datasets representing different
language typologies and dataset sizes: the FBIS
Chinese-English corpus (LDC2003E14); a French-
English corpus consisting of version 7 of the Eu-
roparl and news-commentary corpora;5 and a large
Arabic-English corpus consisting of all parallel data
made available for the NIST 2012 Open MT evalua-
tion. Table 1 gives token counts.

We begin with several preliminary results. First,
we quantify the benefit of using the geometric series
trick (§3.2) for computing the partition function rel-
ative to naı̈ve summation. Our method requires only
0.62 seconds to compute all partition function values
for 0 < i,m, n < 150, whereas the naı̈ve algorithm
requires 6.49 seconds for the same.6

Second, using a 10k sample of the French-English
data set (only 0.5% of the corpus), we determined
1) whether p0 should be optimized; 2) what the op-
timal Dirichlet parameters µi are; and 3) whether
the commonly used “staged initialization” procedure
(in which Model 1 parameters are used to initialize
Model 2, etc.) is necessary for our model. First,
like Och and Ney (2003) who explored this issue for
training Model 3, we found that EM tended to find
poor values for p0, producing alignments that were
overly sparse. By fixing the value at p0 = 0.08,
we obtained minimal AER. Second, like Riley and
Gildea (2012), we found that small values of α im-
proved the alignment error rate, although the im-
pact was not particularly strong over large ranges of

5http://www.statmt.org/wmt12
6While this computational effort is a small relative to the

total cost in EM training, in algorithms where λ changes more
rapidly, for example in Bayesian posterior inference with Monte
Carlo methods (Chahuneau et al., 2013), this savings can have
substantial value.

Table 1: CPU time (hours) required to train alignment
models in one direction.

Language Pair Tokens Model 4 Log-linear
Chinese-English 17.6M 2.7 0.2
French-English 117M 17.2 1.7
Arabic-English 368M 63.2 6.0

Table 2: Alignment quality (AER) on the WMT 2012
French-English and FBIS Chinese-English. Rows with
EM use expectation maximization to estimate the θf , and
∼Dir use variational Bayes.

Model Estimator FR-EN ZH-EN

Model 1 EM 29.0 56.2
Model 1 ∼Dir 26.6 53.6
Model 2 EM 21.4 53.3

Log-linear EM 18.5 46.5
Log-linear ∼Dir 16.6 44.1

Model 4 EM 10.4 45.8

Table 3: Translation quality (BLEU) as a function of
alignment type.

Language Pair Model 4 Log-linear
Chinese-English 34.1 34.7
French-English 27.4 27.7
Arabic-English 54.5 55.7

α. Finally, we (perhaps surprisingly) found that the
standard staged initialization procedure was less ef-
fective in terms of AER than simply initializing our
model with uniform translation probabilities and a
small value of λ and running EM. Based on these
observations, we fixed p0 = 0.08, µi = 0.01, and
set the initial value of λ to 4 for the remaining ex-
periments.7

We next compare the alignments produced by our
model to the Giza++ implementation of the standard
IBM models using the default training procedure
and parameters reported in Och and Ney (2003).
Our model is trained for 5 iterations using the pro-
cedure described above (§3.3). The algorithms are

7As an anonymous reviewer pointed out, it is a near certainty
that tuning of these hyperparameters for each alignment task
would improve results; however, optimizing hyperparameters of
alignment models is quite expensive. Our intention is to show
that it is possible to obtain reasonable (if not optimal) results
without careful tuning.
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compared in terms of (1) time required for training;
(2) alignment error rate (AER, lower is better);8 and
(3) translation quality (BLEU, higher is better) of hi-
erarchical phrase-based translation system that used
the alignments (Chiang, 2007). Table 1 shows the
CPU time in hours required for training (one direc-
tion, English is generated). Our model is at least
10× faster to train than Model 4. Table 3 reports
the differences in BLEU on a held-out test set. Our
model’s alignments lead to consistently better scores
than Model 4’s do.9

5 Conclusion

We have presented a fast and effective reparameteri-
zation of IBM Model 2 that is a compelling replace-
ment for for the standard Model 4. Although the
alignment quality results measured in terms of AER

are mixed, the alignments were shown to work ex-
ceptionally well in downstream translation systems
on a variety of language pairs.
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