
2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 543–547,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Tuning as Linear Regression

Marzieh Bazrafshan, Tagyoung Chung and Daniel Gildea
Department of Computer Science

University of Rochester
Rochester, NY 14627

Abstract

We propose a tuning method for statistical ma-
chine translation, based on the pairwise rank-
ing approach. Hopkins and May (2011) pre-
sented a method that uses a binary classifier.
In this work, we use linear regression and
show that our approach is as effective as us-
ing a binary classifier and converges faster.

1 Introduction

Since its introduction, the minimum error rate train-
ing (MERT) (Och, 2003) method has been the most
popular method used for parameter tuning in ma-
chine translation. Although MERT has nice proper-
ties such as simplicity, effectiveness and speed, it is
known to not scale well for systems with large num-
bers of features. One alternative that has been used
for large numbers of features is the Margin Infused
Relaxed Algorithm (MIRA) (Chiang et al., 2008).
MIRA works well with a large number of features,
but the optimization problem is much more compli-
cated than MERT. MIRA also involves some modi-
fications to the decoder itself to produce hypotheses
with high scores against gold translations.

Hopkins and May (2011) introduced the method
of pairwise ranking optimization (PRO), which casts
the problem of tuning as a ranking problem be-
tween pairs of translation candidates. The problem
is solved by doing a binary classification between
“correctly ordered” and “incorrectly ordered” pairs.
Hopkins and May (2011) use the maximum entropy
classifier MegaM (Dauḿe III, 2004) to do the binary
classification. Their method compares well to the

results of MERT, scales better for high dimensional
feature spaces, and is simpler than MIRA.

In this paper, we use the same idea for tuning, but,
instead of using a classifier, we use linear regression.
Linear regression is simpler than maximum entropy
based methods. The most complex computation that
it needs is a matrix inversion, whereas maximum en-
tropy based classifiers use iterative numerical opti-
mization methods.

We implemented a parameter tuning program
with linear regression and compared the results to
PRO’s results. The results of our experiments are
comparable to PRO, and in many cases (also on av-
erage) we get a better maximum BLEU score. We
also observed that on average, our method reaches
the maximum BLEU score in a smaller number of
iterations.

The contributions of this paper include: First, we
show that linear regression tuning is an effective
method for tuning, and it is comparable to tuning
with a binary maximum entropy classifier. Second,
we show linear regression is faster in terms of the
number of iterations it needs to reach the best re-
sults.

2 Tuning as Ranking

The parameter tuning problem in machine transla-
tion is finding the feature weights of a linear trans-
lation model that maximize the scores of the candi-
date translations measured against reference transla-
tions. Hopkins and May (2011) introduce a tuning
method based on ranking the candidate translation
pairs, where the goal is to learn how to rank pairs of
candidate translations using a gold scoring function.

543

PRO casts the tuning problem as the problem of
ranking pairs of sentences. This method iteratively
generates lists of “k-best” candidate translations for
each sentence, and tunes the weight vector for those
candidates. MERT finds the weight vector that max-
imizes the score for the highest scored candidate
translations. In contrast, PRO finds the weight vec-
tor which classifies pairs of candidate translations
into “correctly ordered” and “incorrectly ordered,”
based on the gold scoring function. While MERT
only considers the highest scored candidate to tune
the weights, PRO uses the entirek-best list to learn
the ranking between the pairs, which can help pre-
vent overfitting.

Let g(e) be a scoring function that maps each
translation candidatee to a number (score) using a
set of reference translations. The most commonly
used gold scoring function in machine translation
is the BLEU score, which is calculated for the en-
tire corpus, rather than for individual sentences. To
use BLEU as our gold scoring function, we need to
modify it to make it decomposable for single sen-
tences. One way to do this is to use a variation of
BLEU called BLEU+1 (Lin and Och, 2004), which
is a smoothed version of the BLEU score.

We assume that our machine translation system
scores translations by using a scoring function which
is a linear combination of the features:

h(e) = wTx(e) (1)

wherew is the weight vector andx is the feature vec-
tor. The goal of tuning as ranking is learning weights
such that for every two candidate translationse1 and
e2, the following inequality holds:

g(e1) > g(e2) ⇔ h(e1) > h(e2) (2)

Using Equation 1, we can rewrite Equation 2:

g(e1) > g(e2) ⇔ wT(x(e1)− x(e2)) > 0 (3)

This problem can be viewed as a binary classifica-
tion problem for learningw, where each data point is
the difference vector between the feature vectors of
a pair of translation candidates, and the target of the
point is the sign of the difference between their gold
scores (BLEU+1). PRO uses the MegaM classifier
to solve this problem. MegaM is a binary maximum

entropy classifier which returns the weight vector
w as a linear classifier. Using this method, Hop-
kins and May (2011) tuned the weight vectors for
various translation systems. The results were close
to MERT’s and MIRA’s results in terms of BLEU
score, and the method was shown to scale well to
high dimensional feature spaces.

3 Linear Regression Tuning

In this paper, we use the same idea as PRO for tun-
ing, but instead of using a maximum entropy clas-
sifier, we use a simple linear regression to estimate
the vectorw in Equation 3. We use the least squares
method to estimate the linear regression. For a ma-
trix of data pointsX, and a target vectorg, the
weight vector can be calculated as:

w = (XTX)
−1

XTg (4)

Adding L2 regularization with parameterλ has the
following closed form solution:

w = (XTX + λI)
−1

XTg (5)

Following the sampling method used in PRO, the
matricesX and vectorg are prepared as follows:

For each sentence,

1. Generate a list containing thek best transla-
tions of the sentence, with each translatione

scored by the decoder using a function of the
form h(e) = wTx(e).

2. Use the uniform distribution to samplen ran-
dom pairs from the set of candidate transla-
tions.

3. Calculate the gold scoresg for the candidates in
each pair using BLEU+1. Keep a pair of can-
didates as a potential pair if the difference be-
tween theirg scores is bigger than a threshold
t.

4. From the potential pairs kept in the previous
step, keep thes pairs that have the highest dif-
ferences ing and discard the rest.

5. For each paire1 ande2 kept in step 4, make two
data points(x(e1)− x(e2), g(e1)− g(e2)) and
(x(e2)− x(e1), g(e2)− g(e1)).

544

The rows ofX consist of the inputs of the data points
created in step 5, i.e., the difference vectorsx(e1)−
x(e2). Similarly, the corresponding rows ing are
the outputs of the data points, i.e., the gold score
differencesg(e1)− g(e2).

One important difference between the linear re-
gression method and PRO is that rather than using
the signs of the gold score differences and doing a
binary classification, we use the differences of the
gold scores directly, which allows us to use the in-
formation about the magnitude of the differences.

4 Experiments

4.1 Setup

We used a Chinese-English parallel corpus with the
English side parsed for our experiments. The cor-
pus consists of 250K sentence pairs, which is 6.3M
words on the English side. The corpus derives from
newswire texts available from LDC.1 We used a 392-
sentence development set with four references for
parameter tuning, and a 428-sentence test set with
four references for testing. They are drawn from the
newswire portion of NIST evaluations (2004, 2005,
2006). The development set and the test set only
had sentences with less than 30 words for decoding
speed.

We extracted a general SCFG (GHKM) grammar
using standard methods (Galley et al., 2004; Wang
et al., 2010) from the parallel corpus with a mod-
ification to preclude any unary rules (Chung et al.,
2011). All rules over scope 3 are pruned (Hopkins
and Langmead, 2010). A set of nine standard fea-
tures was used for the experiments, which includes
globally normalized count of rules, lexical weight-
ing (Koehn et al., 2003), and length penalty. Our
in-house decoder was used for experiments with a
trigram language model. The decoder is capable
of both CNF parsing and Earley-style parsing with
cube-pruning (Chiang, 2007).

We implemented linear regression tuning using

1We randomly sampled our data from various differ-
ent sources (LDC2006E86, LDC2006E93, LDC2002E18,
LDC2002L27, LDC2003E07, LDC2003E14, LDC2004T08,
LDC2005T06, LDC2005T10, LDC2005T34, LDC2006E26,
LDC2005E83, LDC2006E34, LDC2006E85, LDC2006E92,
LDC2006E24, LDC2006E92, LDC2006E24) The language
model is trained on the English side of entire data (1.65M sen-
tences, which is 39.3M words.)

Average of max BLEU Max BLEU
dev test dev test

Regression 27.7 (0.91) 26.4 (0.82) 29.0 27.6
PRO 26.9 (1.05) 25.6 (0.84) 28.0 27.2

Table 1: Average of maximum BLEU scores of the ex-
periments and the maximum BLEU score from the ex-
periments. Numbers in the parentheses indicate standard
of deviations of maximum BLEU scores.

the method explained in Section 3. Following Hop-
kins and May (2011), we used the following param-
eters for the sampling task: For each sentence, the
decoder generates the 1500 best candidate transla-
tions (k = 1500), and the sampler samples5000
pairs (n = 5000). Each pair is kept as a potential
data point if their BLEU+1 score difference is big-
ger than 0.05 (t = 0.05). Finally, for each sentence,
the sampler keeps the 50 pairs with the highest dif-
ference in BLEU+1 (s = 50) and generates two data
points for each pair.

4.2 Results

We ran eight experiments with random initial weight
vectors and ran each experiment for 25 iterations.
Similar to what PRO does, in each iteration, we lin-
early interpolate the weight vector learned by the re-
gression (w) with the weight vector of the previous
iteration (wt−1) using a factor of 0.1:

wt = 0.1 · w + 0.9 · wt−1 (6)

For the sake of comparison, we also implemented
PRO with exactly the same parameters, and ran it
with the same initial weight vectors.

For each initial weight vector, we selected the iter-
ation at which the BLEU score on the development
set is highest, and then decoded using this weight
vector on the test set. The results of our experi-
ments are presented in Table 1. In the first column,
we show the average over the eight initial weight
vectors of the BLEU score achieved, while in the
second column we show the results from the ini-
tial weight vector with the highest BLEU score on
the development set. Thus, while the second col-
umn corresponds to a tuning process where the sin-
gle best result is retained, the first column shows the
expected behavior of the procedure on a single ini-
tial weight vector. The linear regression method has

545

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 5 10 15 20 25

B
LE

U

Iteration

reg-avg
pro-avg

Figure 1: Average of eight runs of regression and PRO.

higher BLEU scores on both development and test
data for both the average over initial weights and the
maximum over initial weights.

Figure 1 shows the average of the BLEU scores
on the development set of eight runs of the experi-
ments. We observe that on average, the linear regres-
sion experiments reach the maximum BLEU score
in a smaller number of iterations. On average, linear
regression reached the maximum BLEU score after
14 iterations and PRO reached the maximum BLEU
score after 20 iterations. One iteration took several
minutes for both of the algorithms. The largest por-
tion of this time is spent on decoding the develop-
ment set and reading in thek-best list. The sampling
phase, which includes performing linear regression
or running MegaM, takes a negligible amount of
time compared to the rest of the operations.

We experimented with addingL2 regularization
to linear regression. As expected, the experiments
with regularization produced lower variance among
the different experiments in terms of the BLEU
score, and the resulting set of the parameters had a
smaller norm. However, because of the small num-
ber of features used in our experiments, regulariza-
tion was not necessary to control overfitting.

5 Discussion

We applied the idea of tuning as ranking and modi-
fied it to use linear regression instead of binary clas-
sification. The results of our experiments show that
tuning as linear regression is as effective as PRO,
and on average it reaches a better BLEU score in a

fewer number of iterations.
In comparison with MERT, PRO and linear re-

gression are different in the sense that the latter two
approaches take into account rankings of thek-best
list, whereas MERT is only concerned with separat-
ing the top 1-best sentence from the rest of thek-
best list. PRO and linear regression are similar in
the sense that both are concerned with ranking the
k-best list. Their difference lies in the fact that PRO
only uses the information on the relative rankings
and uses binary classification to rank the points; on
the contrary, linear regression directly uses the infor-
mation on the magnitude of the differences. This dif-
ference between PRO and linear regression explains
why linear regression converges faster and also may
explain the fact that linear regression achieves a
somewhat higher BLEU score. In this sense, lin-
ear regression is also similar to MIRA since MIRA’s
loss function also uses the information on the magni-
tude of score difference. However, the optimization
problem for linear regression is simpler, does not re-
quire any changes to the decoder, and therefore the
familiar MERT framework can be kept.

Acknowledgments We thank the anonymous re-
viewers for their helpful comments. This work was
supported by NSF grant IIS-0910611.

References

David Chiang, Yuval Marton, and Philip Resnik. 2008.
Online large-margin training of syntactic and struc-
tural translation features. InConference on Empirical
Methods in Natural Language Processing (EMNLP-
08).

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

Tagyoung Chung, Licheng Fang, and Daniel Gildea.
2011. Issues concerning decoding with synchronous
context-free grammar. InProceedings of the ACL
2011 Conference Short Papers, Portland, Oregon. As-
sociation for Computational Linguistics.

Hal Dauḿe III. 2004. Notes on CG and LM-BFGS opti-
mization of logistic regression. August.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? InPro-
ceedings of the 2004 Meeting of the North American
chapter of the Association for Computational Linguis-
tics (NAACL-04), pages 273–280, Boston.

Mark Hopkins and Greg Langmead. 2010. SCFG decod-
ing without binarization. InProceedings of the 2010

546

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 646–655, Cambridge, MA,
October. Association for Computational Linguistics.

Mark Hopkins and Jonathan May. 2011. Tuning as rank-
ing. In Proceedings of the 2011 Conference on Empir-
ical Methods in Natural Language Processing, pages
1352–1362, Edinburgh, Scotland, UK., July. Associa-
tion for Computational Linguistics.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. InProceed-
ings of the 2003 Meeting of the North American chap-
ter of the Association for Computational Linguistics
(NAACL-03), Edmonton, Alberta.

Chin-Yew Lin and Franz Josef Och. 2004. Orange: a
method for evaluating automatic evaluation metrics for
machine translation. InProceedings of Coling 2004,
pages 501–507, Geneva, Switzerland, Aug 23–Aug
27. COLING.

Franz Josef Och. 2003. Minimum error rate training for
statistical machine translation. InProceedings of the
41th Annual Conference of the Association for Com-
putational Linguistics (ACL-03).

Wei Wang, Jonathan May, Kevin Knight, and Daniel
Marcu. 2010. Re-structuring, re-labeling, and re-
aligning for syntax-based machine translation.Com-
putational Linguistics, 36:247–277, June.

547

