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Abstract 

Much previous work on Transliteration 
Mining (TM) was conducted on short 
parallel snippets using limited training 
data, and successful methods tended to 
favor recall. For such methods, increasing 
training data may impact precision and 
application on large comparable texts may 
impact precision and recall. We adapt a 
state-of-the-art TM technique with the best 
reported scores on the ACL 2010 NEWS 
workshop dataset, namely graph 
reinforcement, to work with large training 
sets. The method models observed 
character mappings between language pairs 
as a bipartite graph and unseen mappings 
are induced using random walks. 
Increasing training data yields more correct 
initial mappings but induced mappings 
become more error prone. We introduce 
parameterized exponential penalty to the 
formulation of graph reinforcement and we 
estimate the proper parameters for training 
sets of varying sizes. The new formulation 
led to sizable improvements in precision. 
Mining from large comparable texts leads 
to the presence of phonetically similar 
words in target and source texts that may 
not be transliterations or may adversely 
impact candidate ranking. To overcome 
this, we extracted related segments that 
have high translation overlap, and then we 
performed TM on them.  Segment 
extraction produced significantly higher 
precision for three different TM methods. 

1. Introduction 

Transliteration Mining (TM) is the process of 
finding transliterations in parallel or comparable 

texts of different languages. For example, given 
the Arabic-English word sequence pairs: ( االملك ھھھهالي
 Haile Selassie I of Ethiopia), successful TM ,سلاسي
would mine the transliterations:  (ھھھهالي, Haile) and 
 TM has been shown to be .(Selassie ,سلاسي)
effective in several Information Retrieval (IR) and 
Natural Language Processing (NLP) applications. 
For example, in cross language IR, TM was used 
to handle out-of-vocabulary query words by 
mining transliterations between words in queries 
and top n retrieved documents and then using 
transliterations to expand queries (Udupa et al., 
2009a). In Machine Translation (MT), TM can 
improve alignment at training time and help enrich 
phrase tables with named entities that may not 
appear in parallel training data. More broadly, TM 
is a character mapping problem. Having good 
character mapping models can be beneficial in a 
variety of applications such as learning stemming 
models, learning spelling transformations between 
similar languages, and finding variant spellings of 
names (Udupa and Kumar, 2010b). 

TM has attracted interest in recent years with a 
dedicated evaluation in the ACL 2010 NEWS 
workshop. In that evaluation, TM was performed 
using limited training data, namely 1,000 parallel 
transliteration word-pairs, on short parallel text 
segments, namely cross-language Wikipedia titles 
which were typically a few words long. Since TM 
was performed on very short parallel segments, the 
chances that two phonetically similar words would 
appear within such a short text segment in one 
language were typically very low. Also, since TM 
training datasets were small, many valid mappings 
were not observed in training. For these two 
reasons, most of the successful techniques related 
to that evaluation have focused on improving 
recall, while hurting precision slightly. Some of 
these techniques involved the use of letter 
conflation based on a SOUNDEX like scheme 
(Darwish, 2010; Oh and Choi, 2006) and character 
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n-gram similarity. The most successful technique 
on ACL-NEWS dataset, involved the use of graph 
reinforcement in which observed mappings 
between language pairs were modeled using a 
bipartite graph and unseen mappings were induced 
using random walks (El-Kahki et al., 2011). 

In this paper, we focus on improving TM 
between Arabic and English in more realistic 
settings, compared to the NEWS workshop dataset. 
Specifically, we focus on the cases where:  
1. Relatively large TM training sets, which are 
typical of production systems, are available. As we 
will show, using more training data in conjunction 
with recall-oriented techniques that perform well 
on small training sets can adversely hurt precision, 
leading to drops in F-measure. A more 
fundamental question is what constitutes “large” 
versus “small” training sets. Ideally, we want a 
unified solution for training sets of varying sizes. 
2. TM is performed on large comparable texts 
which are ubiquitously available from different 
sources such as cross language news and 
Wikipedia articles. In this case, there are two 
phenomena that arise. First, there is an increased 
probability (compared to short texts) that words in 
the target and source texts may be phonetically 
similar, while not being transliterations of each 
other. One such example is the Arabic word “من”, 
which means “in” and is pronounced as “min” and 
the English word “men”. Such cases adversely 
affect precision. Second, given a source language 
word, there may be multiple target language words 
that are phonetically similar and TM may rank a 
wrong word higher than the correct one. For 
example, consider the Arabic word “جو”, which is 
pronounced as “joe” but is in fact the rendition of 
the Chinese name “Zhou”. If the English text has 
words such as “jaw”, “joe”, “jo”, “joy”, etc., one of 
them may rank higher than “Zhou”. Since only the 
top choice is considered, this phenomenon would 
hurt precision and recall. 

We address these two situations by making the 
following two contributions: 
1. Modifying the TM technique with the best 
reported results on the ACL 2010 NEWS 
workshop, namely graph reinforcement (El-Kahki 
et al., 2011) to handle training sets of arbitrary 
sizes by introducing parameterized exponential 
penalty to the mapping induction process. We 
show that we can effectively learn the parameters 
that tune the penalty for two different training sets 

of varying sizes. In doing so, we achieve better 
results for graph reinforcement with larger training 
sets. 
2. For large comparable texts, we use contextual 
clues, namely translations of neighboring words, to 
constrain TM and to preserve precision. 
Specifically, we initially extract text segments that 
are “related” based on cross lingual lexical overlap, 
and then we perform TM on these segments. 
Though there have been some papers on extracting 
sub-sentence alignments from comparable text 
(Hewavitharana and Vogel, 2011; Munteanu and 
Marcu, 2006), extracting related (as opposed to 
parallel) text segments may be preferable because: 
1) transliterations may not occur in parallel 
contexts; 2) using simple lexical overlap is 
efficient; and as we will show 3) simultaneous use 
of phonetic and contextual evidences may be 
sufficient to produce high TM precision. Alternate 
solutions focused on performing TM on extracted 
named entities only (Udupa et al., 2009b). Some 
drawbacks of such an approach are: 1) named 
entity recognition (NER) may not be available for 
many languages; and 2) NER has inherently low 
recall for languages such as Arabic where no 
discriminating features such as capitalization exist. 
The remainder of the paper is organized as follows:  
Section 2 provides background on TM; Section 3 
describes the basic TM system that is used in the 
paper; Section 4 describes graph reinforcements, 
shows how it fairs in the presence of a large 
training set, and introduces modifications to graph 
reinforcement to improve its effectiveness with 
such data; Section 5 introduces the use of 
contextual clues to improve TM and reports on its 
effectiveness; and Section 6 concludes the paper. 

2. Background 

Much work has been done on TM for different 
language pairs such as English-Chinese (Kuo et al., 
2006; Kuo et al., 2007; Kuo et al., 2008; Jin et al. 
2008;), English-Tamil (Saravanan and Kumaran, 
2008; Udupa and Khapra, 2010), English-Korean 
(Oh and Isahara, 2006; Oh and Choi, 2006), 
English-Japanese (Qu et al., 2000; Brill et al., 
2001; Oh and Isahara, 2006), English-Hindi (Fei et 
al., 2003; Mahesh and Sinha, 2009), and English-
Russian (Klementiev and Roth, 2006). TM 
typically involves finding character mappings 
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between two languages and using these mappings 
to ascertain if two words are transliterations or not. 	  

2.1 Finding Character Mappings 
To find character sequence mappings between two 
languages, the most common approach entails 
using automatic letter alignment of transliteration 
pairs. Automatic alignment can be performed using 
different algorithms such as EM (Kuo et al., 2008; 
Lee and Chang, 2003) or HMM-based alignment 
(Udupa et al., 2009a; Udupa et al., 2009b). 
Another method uses automatic speech recognition 
confusion tables to extract phonetically equivalent 
character sequences to discover monolingual and 
cross-lingual pronunciation variations (Kuo and 
Yang, 2005). Alternatively, letters can be mapped 
into a common character set using a predefined 
transliteration scheme (Darwish, 2010; Oh and 
Choi, 2006). 

2.2 Transliteration Mining 
For the problem of ascertaining if two words can 
be transliterations of each other, a common 
approach involves using a generative model that 
attempts to generate all possible transliterations of 
a source word, given the character mappings 
between two languages, and restricting the output 
to words in the target language (Fei et al., 2003; 
Lee and Chang, 2003, Udupa et al., 2009a). This is 
similar to the baseline approach that we used in 
this paper. Noeman and Madkour (2010) 
implemented this technique using a finite state 
automaton by generating all possible 
transliterations along with weighted edit distance 
and then filtered them using appropriate thresholds 
and target language words. El-Kahki et al. (2011) 
combined a generative model with so-called graph 
reinforcement, which is described in greater detail 
in Section 4. They reported the best TM results on 
the ACL 2010 NEWS workshop dataset for 4 
different languages. Alternatively back-
transliteration can be used to determine if one 
sequence could have been generated by 
successively mapping character sequences from 
one language into another (Brill et al., 2001; Bilac 
and Tanaka, 2005; Oh and Isahara, 2006). 
Udupa and Khapra (2010) proposed a method in 
which transliteration candidates are mapped into a 
“low-dimensional common representation space”. 
Then, the similarity between the resultant feature 
vectors for both candidates can be computed. A 

similar approach uses context sensitive hashing 
(Udupa and Kumar, 2010).  
Jiampojamarn et al. (2010) used classification to 
determine if source and target language words 
were valid transliterations. They used a variety of 
features including edit distance between an English 
token and the Romanized versions of the foreign 
token, forward and backward transliteration 
probabilities, and character n-gram similarity. 
Udupa et al. (2009b) used a similar classification-
based approach. 

3. Baseline Transliteration Mining 

3.1 Description of the Baseline System 
We used a generative TM model that was 

trained on a set of transliteration pairs. We 
automatically aligned these pairs at character level 
using an HMM-based aligner akin to that of He 
(2007). Alignment produced mappings between 
characters from both languages with associated 
probabilities. We restricted individual source 
language character sequences to be 3 characters at 
most.  We always treated English as the target 
language and Arabic as the source language. 

Briefly, we produced all possible segmentations 
of a source word along with their associated 
mappings into the target language. Valid target 
sequences were retained and sorted by the product 
of the constituent mapping probabilities. The 
candidate with the highest probability was 
generated given that the product of the mapping 
probabilities was higher than a certain threshold. 
Otherwise, no candidate was chosen. 

The search for transliterated pairs was 
implemented as a variant of depth-first search 
(Pearl, 1984), where states represented valid 
mappings between source and target substrings. At 
each step, the mapping with the best score was 
selected and expanded using the mappings learnt 
from alignment. This process ran until mapping 
combinations produced target word(s) from a 
source word or until all possible states were 
explored. The pseudo code in Figure 1 describes 
the details of the algorithm. The implementation 
was optimized via incremental left to right 
processing of source words, the use of a radix tree 
to prune invalid paths, and the use of a sorted 
priority queue to insure that the highest weighing 
candidate was at the top of the queue. 
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3.2 Thresholding 
We used a threshold on the minimum acceptable 
transliteration score to filter out unreliable 
transliterations. Fixing a uniform threshold would 
have caused the model to filter out long 
transliterations. Thus, we tied the threshold to the 
length of transliterated words. We assumed a 
threshold d for single character mappings and the 
transliteration threshold for a target word of length 
l would be 𝑑!.  Since we did not have a validation 
set to estimate d, we created a synthetic validation 
set from the training set and then used cross-
validation to estimate d as follows:  we split the 
training data into 5 folds for cross validation; we 
modified each validation fold by adding 5 random 
words to each target word in the transliteration 
pair; then we performed TM with varying 
thresholds on the validation fold and computed F-
measure;  and we ascertained the threshold that led 
to the highest F-measure for each fold and then 
took the average threshold. 

3.3 Linguistic Processing 
For Arabic, we performed letter normalization of 

the different forms of alef, alef maqsoura and ya, 
and ta marbouta and ha. For English, we case-
folded all letters and removed accents, umlaut, and 
similar diacritic like marks (ex. á, â, ä, à, ã, ā, ą).  

4. Modifying Graph Reinforcement 

4.1 Original Graph Reinforcement 
To motivate graph reinforcement, consider the 
following example:  if alignment produced the 
mappings (طط, ti), (طط, ta), (تت, ti), and (تت, t), then the 
mappings (طط, t) and (تت, ta) are likely valid – 
though not observed. These mappings can be 
induced by traversing the following paths: طط è ti 
è  تتè t and تت è ti è  طط  è ta respectively.  
In graph reinforcement, observed mappings were 
modeled as a bipartite graph with source (S) and 
target (T) character sequences and weighted with 
the learnt alignment probabilities (M). Thus the 
mapping between s ∈ S and t ∈ T was m(s,t). 
Graph reinforcement was performed by traversing 
the graph from S è T è S è T in order to 
deduce new mappings.  Given a source sequence 
s'∈ S and a target sequence t' ∈ T, the deduced 
mapping weights were computed as follows:   

𝑚 𝑡′ 𝑠′ = 1 − 1 −𝑚 𝑡′ 𝑠 𝑚 𝑠 𝑡 𝑚 𝑡 𝑠′
∀!∈!,!∈!

 

where the term 𝑚 𝑡′ 𝑠 𝑚 𝑠 𝑡 𝑚 𝑡 𝑠′  is the 
score of the path between  𝑡′ and s′. De Morgan’s 
law was applied to aggregate different paths using 
an OR operator, which involved taking the 
negation of negations of all possible paths 
aggregated by an AND operator. Hence, the 

1: Input:  Mappings, set of mappings from source fragment to a list of target fragments and mapping Probability .  
2: Input:  SourceWord (𝐹𝑖 ∈ 𝐹1𝑛 ), Source language word 
3: Input:  TargetWords, radix tree containing all target language words (𝐸1𝑚 ) 
4: Data Structures:  DFS, Priority queue to store candidate transliterations pair ordered by their transliteration score – 

Each candidate transliteration tuple = (SourceFragment, TargetTransliteration, TransliterationScore). 
5: StartSymbol = (“”, “”, 1.0);  DFS={StartSymbol}  
7: While (DFS is not empty) 
8:  SourceFragment= DFS.Top().SourceFragment 
9:  TargetFragment= DFS.Top().TargetTransliteration 
10:  FragmentScore =DFS.Top().TransliterationScore 
11:  If (SourceWord == SourceFragment) 
12:   If (FragmentScore > Threshold) Return (SourceWord, TargetTransliteration, FragmentScore) 
14:   Else Return Null 
16:  DFS.RemoveTop() 
17:  For SubFragmentLength = 1 to 3 
18:   SourceSubString = SubString( SourceWord, SourceFragment.Length , SubFragmentLength) 
19:   Foreach mapping in Mappings[SourceSubString]  
20:    If ((TargetFragment + mapping.TargetFragemnt) is a sub-string in TargetWords) 
21:     DFS.Add(SourceFragment + SourceSubString, TargetFragment + mapping.TargetFragement, 

mapping.Score * FragmentScore) 
22:  DFS.RemoveTop() 
23: End While 
24: Return Null 

Figure 1:  Pseudo code for transliteration mining 
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probability of an inferred mapping would be 
boosted if it was obtained from multiple paths.  
Since some characters, mainly vowels, have a 
tendency to map to many other characters, link 
reweighting was applied after each iteration. Link 
reweighting had the effect of decreasing the 
weights of target character sequences that have 
many source character sequences mapping to them 
and hence reducing the effect of incorrectly 
inducing mappings. Link reweighting was 
performed as follows: 

𝑚′ 𝑠|𝑡 = !(!|!)
!(!!|!)!!∈!

  

Where si ∈ S is a source sequence that maps to t. 
This is akin to normalizing conditional 
probabilities. 

4.2 Graph Reinforcement Results 
We tested graph reinforcement using 10 iterations 
in 2 different settings, namely: 
1. NEWS-1k:  Using the ACL-NEWS workshop 

dataset. The dataset contained 1,000 parallel 
transliteration word pairs for training and 
1,000 parallel Wikipedia titles for testing.  

2. NEWS-10k:  Using the test part of the ACL-
NEWS dataset, while training with 10,000 
manually curated parallel transliterations. 

Table 1 reports on the results of the graph 
reinforcement results for the two setups. In the 
NEWS-1k setup, graph reinforcement generally 
had a positive effect on recall at the expense of 
precision. However, as we suspected, increasing 
the amount of training data (as in the NEWS-10k) 
led to more initial mappings from alignment, but 
with many erroneously induced mappings that 
adversely impacted precision. Though recall 
improved significantly, precision deteriorated 
significantly, leading to lower F-measure. 

Table 1. Results for NEWS-1k and NEWS-10k  

  Baseline Reinforcement 

NEWS-
1k 

P 0.988 0.977 
R 0.583 0.912 
F 0.733 0.943 

NEWS-
10k 

P 0.917 0.689 
R 0.759 0.960 
F 0.787 0.802 

4.3 Modifying Graph Reinforcement with 
Parameterized Exponential Penalty  

To overcome the problem demonstrated in the 
NEWS-10k setup, we adjusted the graph 
reinforcement formula to give more confidence to 
mappings that were observed due to initial 
alignment and to successively penalize mappings 
that were induced in later graph reinforcement 
iterations. The adjustment was as follows: 

𝑚! 𝑡′ 𝑠′ = 1 − 1 −𝑚!!! 𝑡′ 𝑠′    ∙ 

1 − 𝑒!!"  𝑚!!! 𝑡′ 𝑠 𝑚!!! 𝑠 𝑡 𝑚!!! 𝑡 𝑠′

!∈!,!∈!

 

Where the parameter α adjusts how much we 
penalize induced mappings and i is the number of 
iterations. 𝑚! 𝑡! 𝑠!  is the mapping score at 
iteration i. Basically, newly seen links at iteration i 
are penalized by 𝑒!!". The equation is similar to 
the earlier reinforcement equation but with all 
paths except the original path 𝑠! → 𝑡!  multiplied by 
exponential penalty 𝑒!!!. Since the ACL-NEWS 
dataset did not have a validation set to help us 
estimate α, we opted to use the approach we used 
earlier to estimate the proper thresholds, namely:  
we split the training data into 5 folds for cross 
validation; we modified each validation fold by 
adding 5 random words to each target word in the 
transliteration pair; and then we performed TM 
with varying values of α and with 10 graph 
reinforcement iterations on the validation fold and 
computed precision and recall.  For the 10k 
training set, we opted to use a 90/10 
training/validation split of the training data, where 
the validation part was modified in the same 
manner as the validation folds of the ACL-NEWS 
datasets. We varied the value of α between 0.0 and 
1.0 with increments of 0.1 and with increments of 
1 afterwards for values greater than 1. If two 
values of α yielded the same F-measure (up to 3 
decimal places), we favored the larger α, favoring 
precision. Figures 2 and 3 plot the precision and 
recall respectively on the validation (-valid) and 
test (-test) sets for the 1,000 pair training set.  
 

 
Figure 2. Precision (y-axis) on test and validation 
sets for varying values of a  (x-axis) for the 1k set 
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Figure 3. Recall (y-axis) on test and validation sets 

for varying values of α  (x-axis) for the 1k set 

 
Figure 4. Precision (y-axis) on test and validation 
sets for varying values of α  (x-axis) for the 10k set 

  
Figure 5. Recall (y-axis) on test and validation sets 

for varying values of α  (x-axis) for the 10k set 
Figures 4 and 5 plot the same for the 10k pair 
training set. The precision and recall values on the 
validation sets are indicative of their behavior on 
the test set. Due to the difference in training data 
sizes, the best values of α were significantly larger 
for the 10k dataset compared to the 1k dataset. 

4.4 Modified Graph Reinforcement Results 
We applied exponential penalty on graph 
reinforcement with the estimated value of α on the 
ACL-NEWS dataset as well as the 10k training set. 
Table 2 lists the estimated and optimal values of α 
for the different datasets on the training and test 
sets respectively along with the F-measure 
obtained for these values of α. Table 2 also 
compares the results to the results from baseline 
and graph reinforcement without exponential 
penalty. Tables 3 and 4 show precision, recall, and 
F-measure results for training using ACL-NEWS 
datasets and the larger training set respectively. 

For the large dataset of 10k training words, using 
exponential penalty improved results noticeably, 
with a 16 basis points improvement in F-measure, 
and we were able to estimate the optimal α. For the 
smaller training set, using exponential penalty with 
the estimated α marginally changed overall results 
by (-0.006) compared to the optimal α. The change 
in overall F-measure was generally small, with 
most of the degradation in recall being offset by 

improvements in precision. The small error in 
estimating α for the ACL-NEWS dataset can be 
attributed to the small size of the validation set. 
Generally, smaller training sets require smaller 
values of α to allow reinforcement to deduce more 
unseen mappings, increasing recall. Larger training 
sets require larger values of α and exponential 
penalty becomes more important. The advantage of 
this formulation is that α can be learned to match 
training sets of varying sizes. 

Table 2. F-measure for baseline, reinforcement, and 
exponential penalty at estimated and optimal α  

 NEWS-1k NEWS-10k 
Baseline 0.757 0.787 
Reinforcement (α=0) 0.941 0.802 

Estimated α 0.3 6.0 
@ Estimated α 0.935 0.963 

Optimal α (on test) 0.1 6.0 
@ optimal α 0.943 0.963 

Table 3. Results for training using 1k training set 
 P R F1 
Baseline 0.975 0.619 0.757 
Reinforcement (α=0) 0.975 0.912 0.941 
@ estimated α 0.980 0.894 0.935 

Table 4. Results for training using 10k training set 
 P R F1 
Baseline 0.917 0.759 0.787 
Reinforcement (α=0) 0.689 0.960 0.802 
@ estimated α 0.976 0.948 0.963 

 
5. TM from Large Comparable Text 
5.1 Baseline TM to Large Comparable Text 
We tested TM using the 1,000 training pairs from 
the ACL-NEWS workshop on the longest 30 
English Wikipedia articles with equivalent Arabic 
Wikipedia articles. The test articles had the 
following properties: 

 Max. Len Min. Len Avg. Len 
Arabic 10,165 1,837 3,614 
English 10,710 3,133 4,896 

The article pairs had 64.7 transliterations on 
average (with 1,942 in total). 
To show the generality of using contextual clues, 
we tested TM using 3 different techniques, namely: 
the aforementioned baseline system, graph 
reinforcement, and using SOUNDEX-like letter 
conflation for English in the manner suggested by 
Darwish (2010). This letter conflation involved 
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removing vowels, “H”, and ‘W”; and performing 
the following mappings: 

B, F, P, V è 1 C, G, J, K, Q, S, X, Z è 2 
D,T è 3 L è 4 

M,N è 5 R è 6 
Such letter conflation was shown to improve TM 
F-measure on the ACL-NEWS workshop from 
0.73 to 0.85 (Darwish, 2010).  

Table 5. Results for TM on full Wikipedia articles 

 Baseline SOUNDEX Reinforcement 
P 0.610 0.059 0.650 
R 0.415 0.402 0.500 
F 0.494 0.103 0.565 

Table 5 reports the TM results on the Wikipedia 
articles. The increased size of the comparable text 
on which we were performing TM led to adverse 
effects on precision and recall for the baseline, 
graph reinforcement, and SOUNDEX setups – 
with 0.059 precision for SOUNDEX. Graph 
reinforcement performed slightly better than the 
baseline both in terms of precision and recall, but 
with such low precision values, TM may not be 
useful for many applications. As highlighted 
earlier, the reason behind the drop in precision was 
due to phonetically similar words that were in fact 
not transliterations. The reason behind the drop in 
recall was due to the following:  when TM is 
performed, often the correct transliteration was 
found but not as the first candidate. Given that for 
evaluation we were considering the first candidate 
only, this hurt both precision and recall. 

5.2 Using Context to Improve TM 
To overcome the precision and recall problems, we 
used contextual information to improve TM for 
large comparable text. To do so, we filtered articles 
to extract potentially related fragments and then we 
applied TM on the extracted fragments. The 
filtering was performed based on lexical similarity 
between fragments. The idea was that words that 
do not share enough contexts were not likely to be 
transliterations. A byproduct of this approach was 
a significant reduction in TM running time since 
the search space was reduced. On the downside, 
this likely hurt recall as transliterations that do not 
share similar contexts could not be mined.  

To extract fragments with similar context we 
used a phrase table from a phrase-based MT 
system, which was akin to Moses (Koehn et al., 
2007), to detect similarity between fragments in 
articles. The MT system was trained using 14 

million parallel Arabic-English sentence pairs. The 
extraction algorithm aimed to extract maximum 
length fragments that share contexts greater than a 
specific percentage of fragment lengths. The 
threshold that we used in our experimentation was 
30%. When picking the threshold, our goal was to 
find transliterations that appear in similar and not 
necessarily identical contexts. The threshold was 
determined qualitatively on a validation set. 

A brute force fragment extraction approach 
would extract all possible fragments in source and 
target articles, iterate on each word in each pair of 
fragments to find the mappings, and then include a 
fragment if the mappings count exceed the 
threshold. Such a brute force approach would have 
an order of N3M3, where N and M are the number 
of words in the source and target articles 
respectively. To improve the running time, we first 
removed stop words from the source list. Then, we 
created a list that contained the positions of each of 
the matching pairs in source and target articles 
sorted by source words’ position. This operation 
had a complexity of O(NlogM). Next, we iterated 
on source fragments of different size, which was 
O(N2), and added the positions of matches in the 
target article in a sorted list. This operation was 
O(KlogK) where K is the number of matches. 
Then, we iterated on extracted matches to find 
target fragment that satisfied the condition:  

Fragment  Length  
number  of  mappings

  ≥    .3 

The last step was O(K) in the worst case. The total 
complexity of this algorithm was O(N2KlogK) in 
the worst case, which had a much lower 
complexity than the brute force approach. In 
practice, the algorithm filtered 30 comparable pairs 
of articles with an average of 4.9k words for 
English and 3.6k for Arabic in less than 5 minutes. 
Details of the algorithm are shown in Figure 2. 

5.3 Testing TM on Extracted Segments 
Table 6 reports TM results on the extracted 
segments. As the results show, TM on extracted 
segments dramatically improved precision for all 
setups compared to TM on the full articles (as in 
Table 6). Except for the SOUNDEX setup, recall 
dropped by 9.3 and 8.3 basis points for the baseline 
and graph reinforcement setups respectively. 
Though F-measure dropped slightly for the 
baseline case and improved slightly for the 
reinforcement case, what is noteworthy is that 
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precision was high enough to make TM practically 
useful for a variety of applications. The major 
advantage of the proposed technique is the 
achievement of relatively high precision – 
comparable to precision on small text snippets. 
Though recall is relatively low, the ubiquity of 
comparable texts can help produce large mined 
transliterations of high quality. 

Table 6. Results for TM on extracted segments 

 Baseline SOUNDEX Reinforcement 
P 0.962 0.524 0.946 
R 0.322 0.418 0.417 
F 0.482 0.465 0.579 

6. Conclusion 

In this paper, we explored the use of transliteration 
mining in the context of using large training and 
test sets. Since recent work was conducted on 
small parallel text segments that were just a few 
words long with limited training data, the state-of-
the-art techniques generally favored recall by 
inducing mappings that were unseen in training. 
Since the parallel test segments were short, 
improvements in recall had a very small effect on 
precision. When we applied the best reported 
method in the literature using large training data or 
when performing TM on large comparable texts, 
drops in precision and recall were substantial. 

We modified the formulation of graph 
reinforcement by introducing a parameterized 
exponential penalty to allow for the discovery of 
new letter mappings using graph walks while 
penalizing mappings that required more graph 
walk steps to be induced. We showed how to 
effectively estimate the exponential penalty 
parameter for training sets of different sizes. In the 
context of performing TM on short parallel 
segments using 10k training words, we improved 
TM precision from 0.689 to 0.976 at the expense 
of a small drop in recall from 0.960 to 0.948.  

What we observed for graph reinforcement is 
symptomatic of algorithms that may fail when 
more data is present. Other such examples include 
stemming for MT and IR. Generally, with more 
MT parallel data or bigger IR collections, 
stemming may become less useful or harmful. It is 
advantageous to parameterize algorithms for 
tuning for dataset of different sizes. 

When performing TM on large comparable texts, 
we initially filtered the text to produce short 
comparable text segments and then we performed 
TM on them. Though the approach is relatively 
simple, it led to pronounced improvement in TM 
precision from 0.650 to 0.946, with a drop in recall 
from 0.500 to 0.417. Given that comparable texts 

1:  Input:  Matches, a list of matches between word position in source article and its mapping in the target article sorted by 
source position 

2:  Input:  Source, list of source words; Target, list of target words 
4:  Output: ParallelFragments : List of pairs of parallel fragments 
5:   For startPosition=0 To Source.Lenght 
6:  For endPosition = startPosition + MinimumFragmentLengh To Source.Lenght 
7:   SortedList TargetMatches =[ ] 
8:  ForEach match Between startPosistion And endPosition In Matches 
9:   TargetMatches.Add(Matching[match].targetPosition) 
10:  startItr=0;  endItr=TargetMatches.Length - 1 
12:  For i=0 to TargetMatches.Length 
13:   If( (endItr-startItr+1)/ (TargetMatches [endItr]-TargetMatches[startItr]) >.3) Then 
14: ParallelFragments.Add(Source.GetRange(startPosition, 

endPosition),Target.GetRange(TargetMatches[startItr], TargetMatches[endItr])) 
15:   Break 
16:   Else 
17:  If(TargetMatches[endItr]-TargetMatches[startItr+1]>TargetMatches[endItr-1]-

TargetMatches[startItr]) Then startItr++ 
19:                                           Else endItr++ 
21:                                           End If 
22:                                  End If 
23:                          End Loop 
24:                  End Loop 
25:          End Loop 
26:          Return ParallelFragments 

Figure 2.  Pseudo code for the fragment extraction algorithm 
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are ubiquitous, improvements in precision are 
likely more important than drops in recall.   

For future work, we want to test the effect of 
improved TM in the context of different NLP 
applications such as MT and cross language IR. 
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