
Proceedings of NAACL HLT 2009: Short Papers, pages 21–24,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

A Simplex Armijo Downhill Algorithm for
Optimizing Statistical Machine Translation Decoding Parameters

Bing Zhao
IBM T.J. Watson Research
zhaob@us.ibm.com

Shengyuan Chen
IBM T.J. Watson Research
sychen@us.ibm.com

Abstract

We propose a variation of simplex-downhill algo-
rithm specifically customized for optimizing param-
eters in statistical machine translation (SMT) de-
coder for better end-user automatic evaluation met-
ric scores for translations, such as versions of BLEU,
TER and mixtures of them. Traditional simplex-
downhill has the advantage of derivative-free com-
putations of objective functions, yet still gives satis-
factory searching directions in most scenarios. This
is suitable for optimizing translation metrics as they
are not differentiable in nature. On the other hand,
Armijo algorithm usually performs line search ef-
ficiently given a searching direction. It is a deep
hidden fact that an efficient line search method
will change the iterations of simplex, and hence
the searching trajectories. We propose to embed
the Armijo inexact line search within the simplex-
downhill algorithm. We show, in our experiments,
the proposed algorithm improves over the widely-
applied Minimum Error Rate training algorithm for
optimizing machine translation parameters.

1 Introduction
A simple log-linear form is used in SMT systems to
combine feature functions designed for identifying good
translations, with proper weights. However, we often ob-
serve that tuning the weight associated with each feature
function is indeed not easy. Starting from a N-Best list
generated from a translation decoder, an optimizer, such
as Minimum Error Rate (MER) (Och, 2003) training, pro-
poses directions to search for a better weight-vector λ to
combine feature functions. With a given λ, the N-Best
list is re-ranked, and newly selected top-1 hypothesis will
be used to compute the final MT evaluation metric score.
Due to limited variations in the N-Best list, the nature of
ranking, and more importantly, the non-differentiable ob-
jective functions used for MT (such as BLEU (Papineni et
al., 2002)), one often found only local optimal solutions
to λ, with no clue to walk out of the riddles.

Automatic evaluation metrics of translations known so
far are designed to simulate human judgments of trans-
lation qualities especially in the aspects of fluency and
adequacy; they are not differentiable in nature. Simplex-
downhill algorithm (Nelder and Mead, 1965) does not
require the objective function to be differentiable, and
this is well-suited for optimizing such automatic met-

rics. MER searches each dimension independently in a
greedy fashion, while simplex algorithms consider the
movement of all the dimensions at the same time via
three basic operations: reflection, expansion and contrac-
tion, to shrink the simplex iteratively to some local op-
timal. Practically, as also shown in our experiments, we
observe simplex-downhill usually gives better solutions
over MER with random restarts for both, and reaches
the solutions much faster in most of the cases. How-
ever, simplex-downhill algorithm is an unconstrained al-
gorithm, which does not leverage any domain knowledge
in machine translation. Indeed, the objective function
used in SMT is shown to be a piece-wise linear prob-
lem in (Papineni et al., 1998), and this motivated us to
embed an inexact line search with Armijo rules (Armijo,
1966) within a simplex to guide the directions for itera-
tive expansion, reflection and contraction operations. Our
proposed modification to the simplex algorithm is an em-
bedded backtracking line search, and the algorithm’s con-
vergence (McKinnon, 1999) still holds, though it is con-
figured specially here for optimizing automatic machine
translation evaluation metrics.

The remainder of the paper is structured as follow: we
briefly introduce the optimization problem in section 2;
in section 3, our proposed simplex Armijo downhill al-
gorithm is explained in details; experiments comparing
relevant algorithms are in section 4; the conclusions and
discussions are given in section 5.

2 Notations
Let {(ei,k, c̄i,k, Si,k), k ∈ [1,K]} be the K-Best list
for a given input source sentence fi in a development
dataset containing N sentences. ei,k is a English hy-
pothesis at the rank of k; c̄i,k is a cost vector — a
vector of feature function values, with M dimensions:
c̄i,k = (ci,k,1, ci,k,2 . . . ci,k,M ); Si,k is a sentence-level
translation metric general counter (e.g. ngram hits for
BLEU, or specific types of errors counted in TER, etc.)
for the hypothesis. Let λ̄ be the weight-vector, so that the
cost of ei,k is an inner product: C(ei,k) = λ̄ · c̄i,k. The
optimization process is then defined as below:

k∗(wrt i) = arg min
k

λ̄ · c̄i,k (1)

λ̄∗ = arg min
λ̄

Eval(
N∑

i=1

Si,k∗), (2)

21



where Eval is an evaluation Error metric for MT, presum-
ing the smaller the better internal to an optimizer; in our
case, we decompose BLEU, TER (Snover et al., 2006)
and (TER-BLEU)/2.0 into corresponding specific coun-
ters for each sentence, cache the intermediate counts in
Si,k, and compute final corpus-level scores using the sum
of all counters; Eqn. 1 is simply a ranking process, with
regard to the source sentence i, to select the top-1 hypoth-
esis, indexed by k∗ with the lowest cost C(ei,k∗) given
current λ̄; Eqn. 2 is a scoring process of computing the fi-
nal corpus-level MT metrics via the intermediate counters
collected from each top1 hypothesis selected in Eqn. 1.
Iteratively, the optimizer picks up an initial guess of λ̄
using current K-Best list, and reaches a solution λ̄∗, and
then updates the event space with new K-Best list gener-
ated using a decoder with λ̄∗; it iterates until there is little
change to final scores (a local optimal λ̄∗ is reached).

3 Simplex Armijo Downhill

We integrate the Armijo line search into the simplex-
downhill algorithm in Algorithm 1. We take the reflec-
tion, expansion and contractions steps1 from the simplex-
downhill algorithm to find a λ′ to form a direction λ′ −
λM+1 as the input to the Armijo algorithm, which in
turn updates λ′ to λ+ as the input for the next iteration
of simplex-downhill algorithm. The combined algorithm
iterates until the simplex shrink sufficiently within a pre-
defined threshold. Via Armijo algorithm, we avoid the
expensive shrink step, and slightly speed up the search-
ing process of simplex-downhill algorithm. Also, the
simplex-downhill algorithm usually provides a descend
direction to start the Armijo algorithm efficiently. Both
algorithms are well known to converge. Moreover, the
new algorithm changes the searching path of the tradi-
tional simplex-downhill algorithm, and usually leads to
better local minimal solutions.

To be more specific, Algorithm 1 clearly conducts an
iterative search in the while loop from line 3 to line 28
until the stopping criteria on line 3 is satisfied. Within
the loop, the algorithm can be logically divided into two
major parts: from line 4 to line 24, it does the simplex-
downhill algorithm; the rest does the Armijo search. The
simplex-downhill algorithm looks for a lower point by
trying the reflection (line 6), expansion (line 10) and con-
traction (line 17) points in the order showed in the al-
gorithm, which turned out to be very efficient. In rare
cases, especially for many dimensions (for instance, 10
to 30 dimensions, as in typical statistical machine trans-
lation decoders) none of these three points are not lower
enough (line 21), we adapt other means to select lower
points. We avoid the traditional expensive shrink pro-

1These three basic operations are generally based on heuristics in
the traditional simplex-downhill algorithm.

Algorithm 1 Simplex Armijo Downhill Algorithm
1: α ⇐ 1, γ ⇐ 2, ρ ⇐ 0.5, β = η ⇐ 0.9, ε ⇐ 1.0 ×

10−6

2: initilize (λ1, · · · , λM+1)
3: while

∑M+1
i,j=1 ‖λi − λj‖2 ≤ ε do

4: sort λi ascend
5: λo ⇐ 1

N

∑M
i=1 λi,

6: λr ⇐ λo + α(λo − λM+1)
7: if S(λ1) ≤ S(λr) ≤ S(λM ) then
8: λ′ ⇐ λr

9: else if S(λr) < S(λ1) then
10: λe ⇐ λo + γ(λo − λM+1)
11: if S(λe) < S(λr) then
12: λ′ ⇐ λe

13: else
14: λ′ ⇐ λr

15: end if
16: else if S(λr) > S(λM ) then
17: λc ⇐ λM+1 + ρ(λo − λM+1)
18: if S(λc) < S(λr) then
19: λ′ ⇐ λc

20: else
21: try points on two additional lines for λ′

22: end if
23: end if
24: d ⇐ λ′ − λM+1

25: β∗ ⇐ maxk=0,1,··· ,40{βk|S(λM+1 + βkd) −
S(λM+1) ≤ −η‖d‖2βk}

26: λ+ = λM+1 + β∗ ∗ d
27: replace λM+1 with λ+

28: end while

cedure, which is not favorable for our machine transla-
tion problem neither. Instead we try points on different
search lines. Specifically, we test two additional points
on the line through the highest point and the lowest point,
and on the line through the reflection point and the low-
est point. It worth pointing out that there are many vari-
ants of simplex-downhill algorithm 2, and the implemen-
tation described above showed that the algorithm can suc-
cessfully select a lower λ′ in many of our translation test
cases to enable the simplex move to a better region of lo-
cal optimals in the high-dimension space. Our proposed
embedded Armijo algorithm, in the second part of the
loop (line 25), continues to refine the search processes.
By backtracking on the segment from λ′ to λM+1, the
Armijo algorithm does bring even lower points in our
many test cases. With the new lower λ′ found by the
Armijo algorithm, the simplex-downhill algorithm starts
over again. The parameters in line 1 we used are com-

2One of such effective tricks for the baseline simplex algorithms
can be found here: http://paula.univ.gda.pl/∼dokgrk/simplex.html (link
tested to be valid as of 04/03/2009)

22



Optimizing (1-TER)

0.41

0.412

0.414

0.416

0.418

0.42

0.422

0.424

0.426

0.428

0.43

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163

Random Seeds

(1
-T

E
R

)

MER

Simplex

Simplex-Arm

(a) Optimizing Toward Metric (1-TER)

Optimizing IBM BLEU

0.375

0.377

0.379

0.381

0.383

0.385

0.387

0.389

0.391

0.393

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163

Random Seeds

IB
M

 B
L

E
U

MER

SIMPLEX

SIMPLEX-ARM

(b) Optimizing Toward Metric IBM BLEU

Optimizing NIST-BLEU

0.388

0.393

0.398

0.403

0.408

0.413

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163

Random Seeds

N
IS

T
-B

L
E

U

MER

Simplex-Arm

Simplex

(c) Optimizing Toward Metric NIST BLEU

Optimizing (1-(TER-BLEU))/2.0

0.4

0.402

0.404

0.406

0.408

0.41

0.412

0.414

0.416

0.418

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163

Random Seeds

(1
-(

T
E

R
-B

L
E

U
))

/2
.0

MER

Simplex-Armijo

Simplex

(d) Optimizing Toward Metric (1-(TER-NISTBLEU))/2

Figure 1: On devset, comparing MER, Simplex Downhill, and Simplex Armijo Downhill Algorithms on different Translation
Metrics including TER, IBM BLEU, NIST BLEU, and the combination of TER & NISTBLEU. Empirically, we found optimizing
toward (TER-NISTBLEU)/2 gave more reliable solutions on unseen test data. All optimizations are with internal random restarts,
and were run from the same 164 random seeds with multiple iterations until convergence. Simplex Armijo downhill algorithm is
often better than Simplex-downhill algorithm, and is also much better than MER algorithm.

mon ones from literatures and can be tuned further. We
find that the combination not only accelerates the search-
ing process to reach similar solutions to the baseline sim-
plex algorithm, but also changes the searching trajectory
significantly, leading to even better solutions for machine
translation test cases as shown in our experiments.

4 Experiments

Our experiments were carried out on Chinese-English
using our syntax-based decoder (Zhao and Al-Onaizan,
2008), a chart-based decoder with tree-to-string 3 gram-
mar, in GALE P3/P3.5 evaluations. There were 10 fea-
ture functions computed for each hypothesis, and N-best
list size is up to 2,000 per sentence.

Given a weight-vector λ̄0, our decoder outputs N-Best
unique hypotheses for each input source sentence; the
event space is then built, and the optimizer is called with

3Source shallow constituency tree to target-string rules with vari-
ables, forming a probabilistic synchronous context free grammar.

a number of random restarts. We used 164 seeds4 with
a small perturbation of three random dimensions in λ̄0.
The best λ̄1 is selected under a given optimizing metric,
and is fed back to the decoder to re-generate a new N-Best
list. Event space is enriched by merging the newly gen-
erated N-Best list, and the optimization runs again. This
process is iteratively carried out until there are no more
improvements observed on a development data set.

We select three different metrics: NIST BLEU, IBM
BLEU, TER, and a combination of (TER-NISTBLEU)/2
as our optimization goal. On the devset with four refer-
ences using MT06-NIST text part data, we carried out the
optimizations as shown in Figure 1. Over these 164 ran-
dom restarts in each of the optimizers over the four con-
figurations shown in Figure 1, we found most of the time
simplex algorithms perform better than MER in these
configurations. Simplex algorithm considers to move all
the dimensions at the same time, instead of fixing other

4There are 41 servers used in our experiments, four CPUs each.

23



Table 1: Comparing different optimization algorithms on the held-out speech data, measured on document-average TER, IBMBLEU
and (TER-IBMBLEU)/2.0, which were used in GALE P3/3.5 Chinese-English evaluations in Rosetta consortium.

Setup Broadcast News & Conversation Data
BLEUr4n4 TER (TER-BLEUr4n4)/2

MER 37.36 51.12 6.88
Simplex-Downhill 37.71 50.10 6.19
Simplex Armijo Downhill 38.15 49.92 5.89

dimensions and carrying out a greedy search for one di-
mension as in MER. With Armijo line search embedded
in the simplex-downhill algorithm, the algorithm has a
better chance to walk out of the local optimal, via chang-
ing the shrinking trajectory of the simplex using a line
search to identify the best steps to move. Shown in Fig-
ure 1, the solutions from simplex Armijo downhill out-
performed the other two under four different optimiza-
tion metrics for most of the time. Empirically, we found
optimizing toward (TER-NISTBLEU)/2 gives marginally
better results on final TER and IBM BLEU.

On our devset, we also observed that whenever opti-
mizing toward TER (or mixture of TER & BLEU), MER
does not seem to move much, as shown in Figure 1-(a)
and Figure 1-(d). However, on BLEU (NIST or IBM ver-
sion), MER does move reasonably with random restarts.
Comparing TER with BLEU, we think the “shift” counter
in TER is a confusing factor to the optimizer, and cannot
be computed accurately in the current TER implementa-
tions. Also, our random perturbations to the seeds used
in restarts might be relatively weaker for MER compar-
ing to our simplex algorithms, though they use exactly the
same random seeds. Another fact we found is optimizing
toward corpus-level (TER-NISTBLEU)/2 seems to give
better performances on most of our unseen datasets, and
we choose this as optimization goal to illustrate the algo-
rithms’ performances on our unseen testset.

Our test set is the held-out speech part data5. We
optimize toward corpus-level (TER-NISTBLEU)/2 using
devset, and apply the weight-vector on testset to evalu-
ate TER, IBMBLEUr4n4, and a simple combination of
(TER-IBMBLEU)/2.0 to compare different algorithms’
strengths6. Shown in Table 1, simplex Armijo downhill
performs the best (though not statistically significant),
and the improvements are consistent in multiple runs in
our observations. Also, given limited resources, such as
number of machines and fixed time schedule, both sim-
plex algorithms can run with more random restarts than
MER, and can potentially reach better solutions.

5Transcriptions of broadcast news and broadcast conversion in
MT06; there are 565 sentences, or 11,691 words after segmentation.

6We choose document-average metrics to show here simply because
they were chosen/required in our GALE P3/P3.5 evaluations for both
Arabic-English and Chinese-English individual systems and syscombs.

5 Conclusions and Discussions
We proposed a simplex Armijo downhill algorithm
for improved optimization solutions over the standard
simplex-downhill and the widely-applied MER. The
Armijo algorithm changes the trajectories for the simplex
to shrink to a local optimal, and empowers the algorithm a
better chance to walk out of the riddled error surface com-
puted by automatic MT evaluation metrics. We showed,
empirically, such utilities under several evaluation met-
rics including BLEU, TER, and a mixture of them. In the
future, we plan to integrate domain specific heuristics via
approximated derivatives of evaluation metrics or mix-
ture of them to guide the optimizers move toward better
solutions for simplex-downhill algorithms.

References
L. Armijo. 1966. Minimization of functions having lipschitz

continuous first partial derivatives. Pacific Journal of mathe-
matics, 6:1–3.

K.I.M. McKinnon. 1999. Convergence of the nelder-mead sim-
plex method to a non-stationary point. SIAM J Optimization,
9:148–158.

J.A. Nelder and R. Mead. 1965. A simplex method for function
minimization. The Computer Journal, 7:308–313.

Franz J. Och. 2003. Minimum error rate training for statistical
machine translation. In Proc. of the 41st Annual Meeting of
the Association for Computational Linguistics, Japan, Sap-
poro, July.

Kishore Papineni, Salim Roukos, and Todd Ward. 1998. Maxi-
mum likelihood and discriminative training of direct transla-
tion models. In Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech & Signal Processing, vol-
ume 1, pages 189–192, Seattle, May.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation of ma-
chine translation. In Proc. of the 40th Annual Conf. of the
Association for Computational Linguistics (ACL 02), pages
311–318, Philadelphia, PA, July.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Mic-
ciulla, and John Makhoul. 2006. A study of translation edit
rate with targeted human annotation. In AMTA.

Bing Zhao and Yaser Al-Onaizan. 2008. Generalizing local
and non-local word-reordering patterns for syntax-based ma-
chine translation. In Conference on Empirical Methods in
Natural Language Processing (EMNLP).

24


