
Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 326–334,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Joint Parsing and Named Entity Recognition

Jenny Rose Finkel and Christopher D. Manning
Computer Science Department

Stanford University
Stanford, CA 94305

{jrfinkel|manning}@cs.stanford.edu

Abstract

For many language technology applications,
such as question answering, the overall sys-
tem runs several independent processors over
the data (such as a named entity recognizer, a
coreference system, and a parser). This eas-
ily results in inconsistent annotations, which
are harmful to the performance of the aggre-
gate system. We begin to address this prob-
lem with a joint model of parsing and named
entity recognition, based on a discriminative
feature-based constituency parser. Our model
produces a consistent output, where the named
entity spans do not conflict with the phrasal
spans of the parse tree. The joint represen-
tation also allows the information from each
type of annotation to improve performance
on the other, and, in experiments with the
OntoNotes corpus, we found improvements of
up to 1.36% absolute F1 for parsing, and up to
9.0% F1 for named entity recognition.

1 Introduction

In order to build high quality systems for complex
NLP tasks, such as question answering and textual
entailment, it is essential to first have high quality
systems for lower level tasks. A good (deep analy-
sis) question answering system requires the data to
first be annotated with several types of information:
parse trees, named entities, word sense disambigua-
tion, etc. However, having high performing, low-
level systems is not enough; the assertions of the
various levels of annotation must beconsistent with
one another. When a named entity span has crossing
brackets with the spans in the parse tree it is usually
impossible to effectively combine these pieces of in-
formation, and system performance suffers. But, un-

fortunately, it is still common practice to cobble to-
gether independent systems for the various types of
annotation, and there is no guarantee that their out-
puts will be consistent.

This paper begins to address this problem by
building a joint model of both parsing and named
entity recognition. Vapnik has observed (Vapnik,
1998; Ng and Jordan, 2002) that “one should solve
the problem directly and never solve a more gen-
eral problem as an intermediate step,” implying that
building a joint model of two phenomena is more
likely to harm performance on the individual tasks
than to help it. Indeed, it has proven very diffi-
cult to build a joint model of parsing and seman-
tic role labeling, either with PCFG trees (Sutton and
McCallum, 2005) or with dependency trees. The
CoNLL 2008 shared task (Surdeanu et al., 2008)
was intended to be about joint dependency parsing
and semantic role labeling, but the top performing
systems decoupled the tasks and outperformed the
systems which attempted to learn them jointly. De-
spite these earlier results, we found that combining
parsing and named entity recognition modestly im-
proved performance on both tasks. Our joint model
produces an output which has consistent parse struc-
ture and named entity spans, and does a better job at
both tasks than separate models with the same fea-
tures.

We first present the joint, discriminative model
that we use, which is a feature-based CRF-CFG
parser operating over tree structures augmented with
NER information. We then discuss in detail how
we make use of the recently developed OntoNotes
corpus both for training and testing the model, and
then finally present the performance of the model
and some discussion of what causes its superior per-
formance, and how the model relates to prior work.

326



NP

DT

the

NP

NNP

[District

PP

IN

of

NP

NNP

Columbia]GPE

=⇒

NP

DT

the

NamedEntity-GPE*

NP-GPE

NNP-GPE

District

PP-GPE

IN-GPE

of

NP-GPE

NNP-GPE

Columbia

Figure 1: An example of a (sub)tree which is modified for inputto our learning algorithm. Starting from the normalized
tree discussed in section 4.1, a newNamedEntity node is added, so that the named entity corresponds to a single
phrasal node. That node, and its descendents, have their labels augmented with the type of named entity. The* on the
NamedEntity node indicates that it is the root of the named entity.

2 The Joint Model

When constructing a joint model of parsing and
named entity recognition, it makes sense to think
about how the two distinct levels of annotation may
help one another. Ideally, a named entity should cor-
respond to a phrase in the constituency tree. How-
ever, parse trees will occasionally lack some explicit
structure, such as with right branching NPs. In these
cases, a named entity may correspond to a contigu-
ous set of children within a subtree of the entire
parse. The one thing that should never happen is for
a named entity span to have crossing brackets with
any spans in the parse tree.

For named entities, the joint model should help
with boundaries. The internal structure of the named
entity, and the structural context in which it ap-
pears, can also help with determining the type of
entity. Finding the best parse for a sentence can be
helped by the named entity information in similar
ways. Because named entitiesshould correspond
to phrases, information about them should lead to
better bracketing. Also, knowing that a phrase is a
named entity, and the type of entity, may help in get-
ting the structural context, and internal structure, of
that entity correct.

2.1 Joint Representation

After modifying the OntoNotes dataset to ensure
consistency, which we will discuss in Section 4, we
augment the parse tree with named entity informa-
tion, for input to our learning algorithm. In the cases
where a named entity corresponds to multiple con-
tiguous children of a subtree, we add a newName-
dEntity node, which is the new parent to those chil-
dren. Now, all named entities correspond to a single

phrasal node in the entire tree. We then augment the
labels of the phrasal node and its descendents with
the type of named entity. We also distinguish be-
tween the root node of an entity, and the descendent
nodes. See Figure 1 for an illustration. This repre-
sentation has several benefits, outlined below.

2.1.1 Nested Entities

The OntoNotes data does not contain any nested en-
tities. Consider the named entity portions of the
rules seen in the training data. These will look, for
instance, likenone→ none person, andorganization
→ organization organization. Because we only al-
low named entity derivations which we have seen in
the data, nested entities are impossible. However,
there is clear benefit in a representation allowing
nested entities. For example, it would be beneficial
to recognize that theUnited States Supreme Court is
a anorganization, but that it also contains a nested
GPE.1 Fortunately, if we encounter data which has
been annotated with nested entities, this representa-
tion will be able to handle them in a natural way.
In the given example, we would have a derivation
which includesorganization → GPE organization.
This information will be helpful for correctly la-
beling nested entities such asNew Jersey Supreme
Court, because the model will learn how nested en-
tities tend to decompose.

2.1.2 Feature Representation for Named
Entities

Currently, named entity recognizers are usually con-
structed using sequence models, with linear chain

1As far as we know, GENIA (Kim et al., 2003) is the only
corpus currently annotated with nested entities.

327



conditional random fields (CRFs) being the most
common. While it is possible for CRFs to have links
that are longer distance than just between adjacent
words, most of the benefit is from local features,
over the words and labels themselves, and from fea-
tures over adjacent pairs of words and labels. Our
joint representation allows us to port both types of
features from such a named entity recognizer. The
local features can be computed at the same time the
features over parts of speech are computed. These
are the leaves of the tree, when only the named en-
tity for the current word is known.2 The pairwise
features, over adjacent labels, are computed at the
same time as features over binary rules. Binariza-
tion of the tree is necessary for efficient computa-
tion, so the trees consist solely of unary and bi-
nary productions. Because of this, for all pairs of
adjacent words within an entity, there will be a bi-
nary rule applied where one word will be under the
left child and the other word will be under the right
child. Therefore, we compute features over adjacent
words/labels when computing the features for the bi-
nary rule which joins them.

2.2 Learning the Joint Model

We construct our joint model as an extension to the
discriminatively trained, feature-rich, conditional
random field-based, CRF-CFG parser of (Finkel and
Manning, 2008). Their parser is similar to a chart-
based PCFG parser, except that instead of putting
probabilities over rules, it putsclique potentials over
local subtrees. These unnormalized potentials know
what span (and split) the rule is over, and arbitrary
features can be defined over the local subtree, the
span/split and the words of the sentence. The inside-
outside algorithm is run over the clique potentials to
produce the partial derivatives and normalizing con-
stant which are necessary for optimizing the log like-
lihood.

2.3 Grammar Smoothing

Because of the addition of named entity annota-
tions to grammar rules, if we use the grammar
as read off the treebank, we will encounter prob-
lems with sparseness which severely degrade per-
formance. This degradation occurs because of CFG

2Note that features can include information about other
words, because the entire sentence is observed. The features
cannot include information about the labels of those words.

rules which only occur in the training data aug-
mented with named entity information, and because
of rules which only occur without the named entity
information. To combat this problem, we added ex-
tra rules, unseen in the training data.

2.3.1 Augmenting the Grammar

For every rule encountered in the training data which
has been augmented with named entity information,
we add extra copies of that rule to the grammar. We
add one copy with all of the named entity informa-
tion stripped away, and another copy for each other
entity type, where the named entity augmentation
has been changed to the other entity type.

These additions help, but they are not sufficient.
Most entities correspond to noun phrases, so we took
all rules which had an NP as a child, and made
copies of that rule where the NP was augmented
with each possible entity type. These grammar ad-
ditions sufficed to improve overall performance.

2.3.2 Augmenting the Lexicon

The lexicon is augmented in a similar manner to
the rules. For every part of speech tag seen with a
named entity annotation, we also add that tag with
no named entity information, and a version which
has been augmented with each type of named entity.

It would be computationally infeasible to allow
any word to have any part of speech tag. We there-
fore limit the allowed part of speech tags for com-
mon words based on the tags they have been ob-
served with in the training data. We also augment
each word with a distributional similarity tag, which
we discuss in greater depth in Section 3, and al-
low tags seen with other words which belong to the
same distributional similarity cluster. When decid-
ing what tags are allowed for each word, we initially
ignore named entity information. Once we deter-
mine what base tags are allowed for a word, we also
allow that tag, augmented with any type of named
entity, if the augmented tag is present in the lexicon.

3 Features

We defined features over both the parse rules and the
named entities. Most of our features are over one or
the other aspects of the structure, but not both.

Both the named entity and parsing features utilize
the words of the sentence, as well as orthographic
and distributional similarity information. For each
word we computed aword shape which encoded

328



information about capitalization, length, and inclu-
sion of numbers and other non-alphabetic charac-
ters. For the distributional similarity information,
we had to first train a distributional similarity model.
We trained the model described in (Clark, 2000),
with code downloaded from his website, on several
hundred million words from the British national cor-
pus, and the English Gigaword corpus. The model
we trained had 200 clusters, and we used it to assign
each word in the training and test data to one of the
clusters.

For the named entity features, we used a fairly
standard feature set, similar to those described in
(Finkel et al., 2005). For parse features, we used the
exact same features as described in (Finkel and Man-
ning, 2008). When computing those features, we re-
moved all of the named entity information from the
rules, so that these features were just over the parse
information and not at all over the named entity in-
formation.

Lastly, we have the joint features. We included as
features each augmented rule and each augmented
label. This allowed the model to learn that certain
types of phrasal nodes, such asNPs are more likely
to be named entities, and that certain entities were
more likely to occur in certain contexts and have par-
ticular types of internal structure.

4 Data

For our experiments we used the LDC2008T04
OntoNotes Release 2.0 corpus (Hovy et al., 2006).
The OntoNotes project leaders describe it as “a
large, multilingual richly-annotated corpus con-
structed at 90% internanotator agreement.” The cor-
pus has been annotated with multiple levels of anno-
tation, including constituency trees, predicate struc-
ture, word senses, coreference, and named entities.
For this work, we focus on the parse trees and named
entities. The corpus has English and Chinese por-
tions, and we used only the English portion, which
itself has been split into seven sections: ABC, CNN,
MNB, NBC, PRI, VOA, and WSJ. These sections
represent a mix of speech and newswire data.

4.1 Data Inconsistencies

While other work has utilized the OntoNotes corpus
(Pradhan et al., 2007; Yu et al., 2008), this is the
first work to our knowledge to simultaneously model
the multiple levels of annotation available. Because
this is a new corpus, still under development, it is

not surprising that we found places where the data
was inconsistently annotated, namely with crossing
brackets between named entity and tree annotations.

In the places where we found inconsistent anno-
tation it was rarely the case that the different lev-
els of annotation were inherently inconsistent, but
rather inconsistency results from somewhat arbitrary
choices made by the annotators. For example, when
the last word in a sentence ends with a period, such
asCorp., one period functions both to mark the ab-
breviation and the end of the sentence. The conven-
tion of the Penn Treebank is to separate the final pe-
riod and treat it as the end of sentence marker, but
when the final word is also part of an entity, that
final period was frequently included in the named
entity annotation, resulting in the sentence terminat-
ing period being part of the entity, and the entity not
corresponding to a single phrase. See Figure 2 for an
illustration from the data. In this case, we removed
the terminating period from the entity, to produce a
consistent annotation.

Overall, we found that 656 entities, out of 55,665
total, could not be aligned to a phrase, or multiple
contiguous children of a node. We identified and
corrected the following sources of inconsistencies:

Periods and abbreviations. This is the problem
described above with theCorp. example. We
corrected it by removing the sentence terminat-
ing final period from the entity annotation.

Determiners and PPs. Noun phrases composed of
a nested noun phrase and a prepositional phrase
were problematic when they also consisted of a
determiner followed by an entity. We dealt with
this by flattening the nested NP, as illustrated in
Figure 3. As we discussed in Section 2.1, this
tree will then be augmented with an additional
node for the entity (see Figure 1).

Adjectives and PPs. This problem is similar to the
previous problem, with the difference being
that there are also adjectives preceding the en-
tity. The solution is also similar to the solution
to the previous problem. We moved the adjec-
tives from the nested NP into the main NP.

These three modifications to the data solved most,
but not all, of the inconsistencies. Another source
of problems was conjunctions, such asNorth and
South Korea, whereNorth and South are a phrase,

329



S

NP

NNP

[Mr.

NNP

Todt]PER

VP

VBD

had

VP

VBN

been

NP

NP

NN

president

PP

IN

of

NP

NNP

[Insilco

NNP

Corp

.

.]ORG

Figure 2: An example from the data of inconsistently labelednamed entity and parse structure. The inclusion of the
final period in the named entity results in the named entity structure having crossing brackets with the parse structure.

NP

NP

DT

the

NNP

[District

PP

IN

of

NP

NNP

Columbia]GPE

NP

DT

the

NP

NNP

[District

PP

IN

of

NP

NNP

Columbia]GPE

(a) (b)
Figure 3: (a) Another example from the data of inconsistently labeled named entity and parse structure. In this
instance, we flatten the nested NP, resulting in (b), so that the named entity corresponds to a contiguous set of children
of the top-level NP.

but South Korea is an entity. The rest of the er-
rors seemed to be due to annotation errors and other
random weirdnesses. We ended up unable to make
0.4% of the entities consistent with the parses, so we
omitted those entities from the training and test data.

One more change we made to the data was with
respect to possessive NPs. When we encountered
noun phrases which ended with(POS ’s) or (POS ’),
we modified the internal structure of the NP. Origi-
nally, these NPs were flat, but we introduced a new
nested NP which contained the entire contents of the
original NP except for the POS. The original NP la-
bel was then changed to PossNP. This change is mo-
tivated by the status of’s as a phrasal affix or clitic:
It is the NP preceding’s that is structurally equiva-
lent to other NPs, not the larger unit that includes’s.
This change has the additional benefit in this context
that more named entities will correspond to a single
phrase in the parse tree, rather than a contiguous set
of phrases.

4.2 Named Entity Types

The data has been annotated with eighteen types of
entities. Many of these entity types do not occur
very often, and coupled with the relatively small
amount of data, make it difficult to learn accurate
entity models. Examples arework of art, product,
andlaw. Early experiments showed that it was dif-
ficult for even our baseline named entity recognizer,
based on a state-of-the-art CRF, to learn these types
of entities.3 As a result, we decided to merge all
but the three most dominant entity types into into
one general entity type calledmisc. The result was
four distinct entity types:person, organization, GPE
(geo-political entity, such as a city or a country), and
misc.

3The difficulties were compounded by somewhat inconsis-
tent and occasionally questionable annotations. For example,
the wordtoday was usually labeled as adate, but about 10% of
the time it was not labeled as anything. We also found several
strangework of arts, includingStanley Cup and theU.S.S. Cole.

330



Training Testing
Range # Sent. Range # Sent.

ABC 0–55 1195 56–69 199
CNN 0–375 5092 376–437 1521
MNB 0–17 509 18–25 245
NBC 0–29 552 30–39 149
PRI 0–89 1707 90–112 394
VOA 0–198 1512 199–264 383

Table 1: Training and test set sizes for the six datasets in
sentences. The file ranges refer to the numbers within the
names of the original OntoNotes files.

5 Experiments

We ran our model on six of the OntoNotes datasets
described in Section 4,4 using sentences of length
40 and under (approximately 200,000 annotated En-
glish words, considerably smaller than the Penn
Treebank (Marcus et al., 1993)). For each dataset,
we aimed for roughly a 75% train / 25% test split.
See Table 1 for the the files used to train and test,
along with the number of sentences in each.

For comparison, we also trained the parser with-
out the named entity information (and omitted the
NamedEntity nodes), and a linear chain CRF using
just the named entity information. Both the base-
line parser and CRF were trained using the exact
same features as the joint model, and all were op-
timized using stochastic gradient descent. The full
results can be found in Table 2. Parse trees were
scored usingevalB (the extraNamedEntity nodes
were ignored when computing evalB for the joint
model), and named entities were scored using entity
F-measure (as in the CoNLL 2003conlleval).5

While the main benefit of our joint model is the
ability to get a consistent output over both types of
annotations, we also found that modeling the parse

4These datasets all consistently use the new conventions for
treebank annotation, while the seventh WSJ portion is currently
still annotated in the original 1990s style, and so we left the
WSJ portion aside.

5Sometimes the parser would be unable to parse a sentence
(less than 2% of sentences), due to restrictions in part of speech
tags. Because the underlying grammar (ignoring the additional
named entity information) was the same for both the joint and
baseline parsers, it is the case that whenever a sentence is un-
parseable by either the baseline or joint parser it is in factun-
parsable by both of them, and would affect the parse scores of
both models equally. However, the CRF is able to named entity
tag any sentence, so these unparsable sentences had an effect
on the named entity score. To combat this, we fell back on
the baseline CRF model to get named entity tags for unparsable
sentences.

and named entities jointly resulted in improved per-
formance on both. When looking at these numbers,
it is important to keep in mind that the sizes of the
training and test sets are significantly smaller than
the Penn Treebank. The largest of the six datasets,
CNN, has about one seventh the amount of training
data as the Penn Treebank, and the smallest, MNB,
has around 500 sentences from which to train. Parse
performance was improved by the joint model for
five of the six datasets, by up to 1.36%. Looking
at the parsing improvements on a per-label basis,
the largest gains came from improved identication
of NML consituents, from an F-score of 45.9% to
57.0% (on all the data combined, for a total of 420
NML constituents). This label was added in the new
treebank annotation conventions, so as to identify in-
ternal left-branching structure inside previously flat
NPs. To our surprise, performance on NPs only in-
creased by 1%, though over 12,949 constituents, for
the largest improvement in absolute terms. The sec-
ond largest gain was on PPs, where we improved by
1.7% over 3,775 constituents. We tested the signif-
icance of our results (on all the data combined) us-
ing Dan Bikel’s randomized parsing evaluation com-
parator6 and found that both the precision and recall
gains were significant atp≤ 0.01.

Much greater improvements in performance were
seen on named entity recognition, where most of
the domains saw improvements in the range of 3–
4%, with performance on theVOA data improving
by nearly 9%, which is a 45% reduction in error.
There was no clear trend in terms of precision ver-
sus recall, or the different entity types. The first
place to look for improvements is with the bound-
aries for named entities. Once again looking at all of
the data combined, in the baseline model there were
203 entities where part of the entity was found, but
one or both boundaries were incorrectly identified.
The joint model corrected 72 of those entities, while
incorrectly identifying the boundaries of 37 entities
which had previously been correctly identified. In
the baseline NER model, there were 243 entities for
which the boundaries were correctly identified, but
the type of entity was incorrect. The joint model cor-
rected 80 of them, while changing the labels of 39
entities which had previously been correctly identi-
fied. Additionally, 190 entities were found which
the baseline model had missed entirely, and 68 enti-

6Available athttp://www.cis.upenn.edu/ dbikel/software.html

331



Parse Labeled Bracketing Named Entities Training
Precision Recall F1 Precision Recall F1 Time

ABC Just Parse 70.18% 70.12%70.15% – 25m
Just NER – 76.84% 72.32% 74.51%
Joint Model 69.76% 70.23% 69.99% 77.70% 72.32%74.91% 45m

CNN Just Parse 76.92% 77.14% 77.03% – 16.5h
Just NER – 75.56% 76.00% 75.78%
Joint Model 77.43% 77.99% 77.71% 78.73% 78.67% 78.70% 31.7h

MNB Just Parse 63.97% 67.07% 65.49% – 12m
Just NER – 72.30% 54.59% 62.21%
Joint Model 63.82$ 67.46% 65.59% 71.35% 62.24% 66.49% 19m

NBC Just Parse 59.72% 63.67% 61.63% – 10m
Just NER – 67.53% 60.65% 63.90%
Joint Model 60.69% 65.34% 62.93% 71.43% 64.81% 67.96% 17m

PRI Just Parse 76.22% 76.49% 76.35% – 2.4h
Just NER – 82.07% 84.86% 83.44%
Joint Model 76.88% 77.95% 77.41% 86.13% 86.56% 86.34% 4.2h

VOA Just Parse 76.56% 75.74% 76.15% – 2.3h
Just NER – 82.79% 75.96% 79.23%
Joint Model 77.58% 77.45% 77.51% 88.37% 87.98% 88.18% 4.4h

Table 2: Full parse and NER results for the six datasets. Parse trees were evaluated using evalB, and named entities
were scored using macro-averaged F-measure (conlleval).

ties were lost. We tested the statistical significance
of the gains (of all the data combined) using the
same sentence-level, stratified shuffling technique as
Bikel’s parse comparator and found that both preci-
sion and recall gains were significant atp < 10−4.

An example from the data where the joint model
helped improve both parse structure and named en-
tity recognition is shown in Figure 4. The output
from the individual models is shown in part (a), with
the output from the named entity recognizer shown
in brackets on the words at leaves of the parse. The
output from the joint model is shown in part (b),
with the named entity information encoded within
the parse. In this example, the named entityEgyp-
tian Islamic Jihad helped the parser to get its sur-
rounding context correct, because it is improbable
to attach a PP headed bywith to an organization.
At the same time, the surrounding context helped
the joint model correctly identifyEgyptian Islamic
Jihad as anorganization and not aperson. The
baseline parser also incorrectly added an extra level
of structure to the person nameOsama Bin Laden,
while the joint model found the correct structure.

6 Related Work

A pioneering antecedent for our work is (Miller et
al., 2000), who trained a Collins-style generative

parser (Collins, 1997) over a syntactic structure aug-
mented with thetemplate entity and template rela-
tions annotations for the MUC-7 shared task. Their
sentence augmentations were similar to ours, but
they did not make use of features due to the gen-
erative nature of their model. This approach was not
followed up on in other work, presumably because
around this time nearly all the activity in named
entity and relation extraction moved to the use of
discriminative sequence models, which allowed the
flexible specification of feature templates that are
very useful for these tasks. The present model is
able to bring together both these lines of work, by
integrating the strengths of both approaches.

There have been other attempts in NLP to jointly
model multiple levels of structure, with varying de-
grees of success. Most work on joint parsing and se-
mantic role labeling (SRL) has been disappointing,
despite obvious connections between the two tasks.
Sutton and McCallum (2005) attempted to jointly
model PCFG parsing and SRL for the CoNLL 2005
shared task, but were unable to improve perfor-
mance on either task. The CoNLL 2008 shared task
(Surdeanu et al., 2008) was joint dependency pars-
ing and SRL, but the top performing systems de-
coupled the tasks, rather than building joint models.
Zhang and Clark (2008) successfully built a joint

332



VP

VBD

were

NP

NP

NNS

members

PP

IN

of

NP

NP

the [Egyptian Islamic Jihad]PER

PP

IN

with

NP

NP

NNS

ties

PP

TO

to

NP

NML

NNP

[Osama

NNP

Bin

NNP

Laden]PER

(a)

VP

VBD

were

NP

NNS

members

PP

IN

of

NP

DT

the

NamedEntity-ORG*

Egyptian Islamic Jihad

PP

IN

with

NP

NP

NNS

ties

PP

TO

to

NP-PER*

NNP-PER

Osama

NNP-PER

Bin

NNP-PER

Laden
(b)

Figure 4: An example for which the joint model helped with both parse structure and named entity recognition. The
individual models (a) incorrectly attach the PP, labelEgyptian Islamic Jihad as aperson, and incorrectly add extra
internal structure toOsama Bin Laden. The joint model (b) gets both the structure and the named entity correct.

model of Chinese word segmentation and parts of
speech using a single perceptron.

An alternative approach to joint modeling is to
take a pipelined approach. Previous work on linguis-
tic annotation pipelines (Finkel et al., 2006; Holling-
shead and Roark, 2007) has enforced consistency
from one stage to the next. However, these models
are only used at test time; training of the compo-
nents is still independent. These models also have
the potential to suffer from search errors and are not
guaranteed to find the optimal output.

7 Conclusion
We presented a discriminatively trained joint model
of parsing and named entity recognition, which im-
proved performance on both tasks. Our model

is based on a discriminative constituency parser,
with the data, grammar, and features carefully con-
structed for the joint task. In the future, we would
like to add other levels of annotation available in
the OntoNotes corpus to our model, including word
sense disambiguation and semantic role labeling.

Acknowledgements
The first author is supported by a Stanford Gradu-
ate Fellowship. This paper is based on work funded
in part by the Defense Advanced Research Projects
Agency through IBM. The content does not neces-
sarily reflect the views of the U.S. Government, and
no official endorsement should be inferred. We also
wish to thank the creators of OntoNotes, without
which this project would not have been possible.

333



References

Alexander Clark. 2000. Inducing syntactic categories by
context distribution clustering. InProc. of Conference
on Computational Natural Language Learning, pages
91–94, Lisbon, Portugal.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. InACL 1997.

Jenny Rose Finkel and Christopher D. Manning. 2008.
Efficient, feature-based conditional random field pars-
ing. In ACL/HLT-2008.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local information
into information extraction systems by gibbs sampling.
In ACL 2005.

Jenny Rose Finkel, Christopher D. Manning, and An-
drew Y. Ng. 2006. Solving the problem of cascading
errors: Approximate bayesian inference for linguistic
annotation pipelines. InEMNLP 2006.

Kristy Hollingshead and Brian Roark. 2007. Pipeline
iteration. InACL 2007.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
The 90% solution. InHLT-NAACL 2006.

Jin-Dong Kim, Tomoko Ohta, Yuka Teteisi, and Jun’ichi
Tsujii. 2003. Genia corpus – a semantically annotated
corpus for bio-textmining.Bioinformatics, 19(suppl.
1):i180–i182.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank.Computational
Linguistics, 19(2):313–330.

Scott Miller, Heidi Fox, Lance Ramshaw, and Ralph
Weischedel. 2000. A novel use of statistical parsing to
extract information from text. InIn 6th Applied Natu-
ral Language Processing Conference, pages 226–233.

Andrew Ng and Michael Jordan. 2002. On discrimina-
tive vs. generative classifiers: A comparison of logistic
regression and naive bayes. InAdvances in Neural In-
formation Processing Systems (NIPS).

Sameer S. Pradhan, Lance Ramshaw, Ralph Weischedel,
Jessica MacBride, and Linnea Micciulla. 2007. Un-
restricted coreference: Identifying entities and events
in ontonotes. International Conference on Semantic
Computing, 0:446–453.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The CoNLL-
2008 shared task on joint parsing of syntactic and se-
mantic dependencies. InProceedings of the 12th Con-
ference on Computational Natural Language Learning
(CoNLL), Manchester, UK.

Charles Sutton and Andrew McCallum. 2005. Joint pars-
ing and semantic role labeling. InConference on Nat-
ural Language Learning (CoNLL).

V. N. Vapnik. 1998. Statistical Learning Theory. John
Wiley & Sons.

Liang-Chih Yu, Chung-Hsien Wu, and Eduard Hovy.
2008. OntoNotes: Corpus cleanup of mistaken agree-
ment using word sense disambiguation. InProceed-
ings of the 22nd International Conference on Compu-
tational Linguistics (Coling 2008), pages 1057–1064.

Yue Zhang and Stephen Clark. 2008. Joint word segmen-
tation and POS tagging using a single perceptron. In
ACL 2008.

334


