
Teanga: A Linked Data based platform for Natural Language Processing

Housam Ziad, John P. McCrae, Paul Buitelaar
Insight Centre for Data Analytics, National University of Ireland, Galway

[firstname.lastname]@insight-centre.org

Abstract
In this paper, we describe Teanga, a linked data based platform for natural language processing (NLP). Teanga enables the use of many
NLP services from a single interface, whether the need was to use a single service or multiple services in a pipeline. Teanga focuses on
the problem of NLP services interoperability by using linked data to define the types of services input and output. Teanga’s strengths
include being easy to install and run, easy to use, able to run multiple NLP tasks from one interface and helping users to build a pipeline
of tasks through a graphical user interface.

Keywords: Natural Language Processing, Linked Data, NLP Architecture, NLP Framework

1. Introduction
Natural language processing (NLP) tasks typically consist
of many individual components that need to be used to-
gether in order to solve real-world problems. However, it
is frequently the case that these components are developed
independently and thus far integration of these services is
far from trivial. The installation of these services can act as
a significant barrier to entry for NLP developers and even
once developed these pipelines can be opaque and brittle.
These issues are of course endemic to software develop-
ment and until recently could only be solved by integrating
all components within a single development model, for ex-
ample, such as integrating all NLP tools using the Python
language as has been done by NLTK(Bird, 2006). An al-
ternative model has arisen in the form of Web services that
provide integration between multiple components through
clear and defined protocols such as REST. However, Web
services have generally not been adopted by researchers or
industry, in part due to the fact that the remote nature of the
computation can lead to issues with the availability of ser-
vices (as external services are often down) and the speed of
these services (as sending requests to servers creates signif-
icant bottlenecks).
In this paper, we propose a new platform called Teanga1,
which aims to achieve the best of both worlds. We use
Web services combined by means of novel linked data stan-
dards, in particular, JSON-LD, to provide interoperabil-
ity between services without the need to have particular
programming or framework. We also use containerization
technology, in particular, Docker, to ensure that these ser-
vices and the pipelines that are generated by these tools are
highly portable and can easily be used at scale. Further-
more, Teanga has an easy to use UI that allows users to
visualise their pipelines as well as the progress (or failure)
of each service individually.

2. NLP Services
NLP services cover a broad spectrum of tasks, including
term extraction, taxonomy extraction, machine transla-
tion, sentiment analysis, suggestion mining, automatic
summarisation, entity recognition and text classification,

1‘teanga’ ["tjaNg@] means ‘language’ in Irish

which, along with many others, are used widely in many
application domains. For example, using entity recognition
to extract the names of diseases or medicines from a
healthcare database, or using sentiment analysis to extract
emotions from social media websites for the purpose of
social studies.

NLP services frequently suffer from one or more of the fol-
lowing problems:

• Services are often very focused on a single task, such
as part of speech tagging, which is not clearly of use
to the end user.

• Many NLP services are still in an early technological
readiness level, so there isn’t a full application built
for them, and/or they don’t provide a Graphical User
Interface (GUI).

• Many services can’t be installed easily, have required
dependencies or programming libraries, do not run on
all platforms, or lack sufficient documentation.

As a proposed solution to these problems, we present
Teanga, an open-source integrated NLP framework. Teanga
can apply many NLP tasks either one by one or multi-
ple tasks at once by chaining user-selected services as a
pipeline to reduce the amount of manual work required by
researchers, in integrating these tools or manually copying
results between services.
Teanga will enable researchers to input text in one inter-
face, create a pipeline of required tasks, click a single but-
ton, and get all the required results in JSON-LD2. We have
chosen JSON-LD as the main output format for Teanga as:
a) it is easy to use with all programming languages and en-
vironments, especially for Web browsers b) provides deep
semantics based on RDF and other Semantic Web technolo-
gies, c) introduces few overheads to the encoding of the
data.

3. Related Work
In the domain of NLP architecture, multiple frameworks,
toolkits, and suites have been created, and each of them

2https://json-ld.org/

2410

https://json-ld.org/


uses a different approach to creating interoperability
among all their services, and, by that, reduce the amount
of manual work needed to process data. Among these
are the LAPPS Grid (Ide et al., 2015) and its Galaxy
front-end (Ide et al., 2016), GernEdiT: A Graphical Tool
for GermaNet Development (Henrich and Hinrichs, 2010),
Language Grid: An Infrastructure for Intercultural Col-
laboration (Ishida, 2006), and Unstructured Information
Management Architecture (UIMA) (Ferrucci and Lally,
2004).

Some problem with the applications of other platforms is
that some of them only run on a desktop machine or rely
on a platform-specific program, e.g. Eclipse plugins.
For example, in the case of UIMA, it’s only a middleware
architecture to be taken into account while developing
a new NLP tool. For example, it doesn’t provide the
user with an interface to process data. UIMA also is like
GATE when it comes to the complexity of installing and
setting up the environment to be used in the development
process. Its intended for an expert who is developing an
NLP tool and wants to include it in the UIMA environment.

The other platforms do not sufficiently consider user-
experience, as user-experience problems can be seen in
two parts. The first is installing and running them for the
first time, which, for all of them, requires a high level
of expertise in a specific environment or programming
language, and for some of them, is a time-consuming
process. The other part can be seen in the user interface,
as some of them don’t include a graphical user interface,
and users need to run commands from the terminal. Others
like GATE created an interface but, even to its developers,
(Cunningham, 2002): ”The visual interface is complex and
somewhat non-standard.”. While in the case of LAPPS,
their interface seems to be hard to be used by an unskilled
user.
A common issue of all of these platforms is the fact that
developers have to follow specific standards or guidelines
while developing their services before they can be added
to the framework to guarantee the interoperability of the
platform. While a recent project, OpenMinTeD3, is work-
ing on the standardisation of tools for NLP, these proposals
have yet to bear fruit. With Teanga, developers of already
existing services can add their services to the platform only
by including a configuration file in the container.

4. Linked Data
4.1. Introduction
While data in human-readable formats such as HTML is
fully comprehensive for humans, it’s still a problem for ma-
chines to understand and analyse that data. In the age of big
data, where data is expanding exponentially every day, data
wrangling still takes up a significant part of the time in the
development of an NLP application.
A solution to this as proposed by (Berners-Lee, 2006) gives
four key requirements for data to be considered linked data:

3http://openminted.eu

• Use URIs to identify all types of data items, for ex-
ample, if we have a dataset of papers, we would use a
unique URI for each paper.

• Make the URIs accessible globally by using HTTP
URIs. This way, people can look up the identifiers
over the Internet.

• If someone accessed one of the above mentioned
URIs, provide useful structured information in RDF.

• Provide links among different data items by including
RDF links that point to other URIs; this would help
the discovery of related information.

The W3C has proposed a number of standards to help in
the creation of linked data, in particular, the Resource De-
scription Framework (RDF), which provides the standard
for linked data resources on the Web. In addition, a number
of models have been proposed for detailing the semantics
of data described in RDF, in particular, the RDF Schema
Model (Brickley and Guha, 2000), which allows for induc-
tive reasoning on properties and the Web Ontology Lan-
guage (McGuinness et al., 2004, OWL), which allows for
more sophisticated reasoning about data using description
logic.

4.2. Linked Data in Teanga
The use of Linked Data and Semantic Web technologies in
applications delivers structured information, which can be
used and queried by a flexible and an extensible way to get a
better understanding of the data. In particular, the platform
exploits the Semantic Web model of data types, to describe
the possible format of input and output to services. Since
Teanga is designed to deal with any NLP service, and since
we can’t predict all possible datatypes that may be used by
NLP services, we use Semantic Web technologies to define
the data types that pass through the services. By doing this,
we can let the machine running Teanga understand what
data it is processing and how to handle moving it around
all the services in a pipeline. The use of Semantic Web
technologies will help Teanga, as a platform, to understand
the data input and output for each of the services added to
the system, and will contribute to creating data interoper-
ability among services to create clear and straightforward
pipelines when the user needs to use them.
In particular, there have been a number of models for the
representation of linguistic structures used in natural lan-
guage processing as linked data. The major type of data
handled by Teanga is corpus data, and there are a num-
ber of models for stand-off annotation of corpora data that
have been developed including the NLP Interchange For-
mat (Hellmann et al., 2013) and the Open Annotation for-
mat (Sanderson et al., 2013). In addition, more detailed lin-
guistic models such as POWLA (Chiarcos, 2012) as well
as specific models such as for parse trees (Chiarcos and
Fäth, 2017). In addition, we rely on common models
for linguistic categories such as those proposed by ISO-
cat (Windhouwer and Wright, 2012), now maintained by
the CLARIN Concept Registry (Schuurman et al., 2016),
or open repositories such as LexInfo (Cimiano et al., 2011)

2411

http://openminted.eu


and OLiA (Chiarcos and Sukhareva, 2015). Finally, we can
also use models for representing lexical information on the
Web, in particular, the Lexicon Model for Ontologies (Mc-
Crae et al., 2012; Cimiano et al., 2016).
As an example, for a machine translation service, we would
find that both the source language and target language share
the same type because both are referring to a natural lan-
guage. In this case, we can use an existing type such as
Language from the LexVo Ontology (de Melo, 2015) and
require that values are given as one of the known inputs
to this service. We can use JSON-LD aliases to simplify
this creating a mapping between the string, e.g., "en",
and the URL, e.g., http://www.lexvo.org/page/
iso639-3/eng). Moreover, for other datatypes such as
strings, we can reuse other standards such as XML Schema
to define basic datatypes (such as xsd:string) or using
custom datatypes that can be defined using the OWL vo-
cabulary.
This can be used to join services, for example, if we have
a sentiment analysis service that accepts multilingual input
and /or output, this service would have an input to enter the
text, and an option to select the text language. In this case,
the language in the sentiment analysis is of the same type as
the languages in the machine translation. If we want to pass
data from the sentiment analysis to the machine translation,
we can have something as shown in Figure 1.

Source Language

Target Language

Text Input

Text Output

Machine

Translation

Language

Text Input

Text Output

S
e

rv
ice

In
p

u
t

O
u

tp
u

t

Sentiment

Analysis

S
e

rv
ice

In
p

u
t

O
u

tp
u

t

Language

Language

Stri
ng

Figure 1: Showing how services share the same types, and
how to connect a simple pipeline.

As many of the datatypes used by NLP services are basic or
common values such as plain text or language, linked data
methods can help the machine understand what type this
piece of data is and where to connect that data once we have
a pipeline of services. Furthermore, as each of these types
is mapped to a URL it is possible to find extra information
about it, such as a description, by dereferencing the URL
and to provide restrictions, backed by description logic to
detect inconsistent combinations of services.

5. Technologies
A key enabling factor for the Teanga platform is the use
of the best technologies that exist, in order to enable the
service to work efficiently at scale. In particular, we make
use of the following open-source tools:

1. Easy-to-use interface by using the Bootstrap4 library.

4http://getbootstrap.com/

2. Stability and maintenance of the Web framework by
using the AngularJS5 library to build the frontend.

3. Using the NodeJS6 library to run the server and the
backend parts.

4. MongoDB7 is used for data storage, as it uses a JSON-
like data structure, which corresponds to our use of
JSON-LD files.

5. Using Docker8 as containerization technology so that
the user can download and run Teanga in a simple pro-
cess of only one step.

6. JSON-LD files for input and output, and to create an
interoperable model among the services.

We believe that these technologies will create a highly-
performing platform, with an easy-to-use interface, and ex-
tremely easy to install and use by third-party users.

6. Design and Implementation
6.1. Introduction
Teanga is designed to host as many NLP services as the
users need, for that it should be able to interact with all
services and create interoperability among them, especially
in the case of running multiple tasks in a pipeline.
Based on that, we had to create a systematic method that
helps service developers to add their services to the plat-
form with minimal need to modify their code and architec-
ture to make it compatible with Teanga beforehand. This
method must provide three outcomes at once by letting the
service provider add a configuration file to the correspond-
ing directory in the platform, with outcomes:

1. Defining the input parameters and types of the service,
to make it clear for the interoperability model to un-
derstand the service input.

2. Defining the output parameters and types of the ser-
vice, which makes the service return a compatible out-
put with the platform.

3. By combining the two items above, generating the cor-
responding user-interface (UI) elements to the user for
better interaction with the services.

By using a built-in system to generate the UI, the user or
the service provider does not have to write specific code for
each service, but rather, by using a format that is widely
accepted among Semantic Web applications, the system
would create the UI.

6.2. Parameters and Data Types
Any application that interacts with the user would have
relevant specific fields in a form or a wizard to collect the
data from the user, which can be processed later. These
forms and wizards have to interact with the user to collect

5https://angularjs.org/
6https://nodejs.org/
7https://www.mongodb.com
8https://www.docker.com

2412

http://www.lexvo.org/page/iso639-3/eng
http://www.lexvo.org/page/iso639-3/eng
http://getbootstrap.com/
https://angularjs.org/
https://nodejs.org/
https://www.mongodb.com
https://www.docker.com


all corresponding data systematically that the system needs
for accurate results.

After analysing many NLP services and considering other
cases where we needed to build interfaces for services
and applications, we found that we need to build a system
that uses semantic structure, JSON-LD files in our case,
to generate a user interface automatically and to create
interoperability with other services in the platform.

For this, we made our system build an interface depending
on the JSON-LD file that describes the service. In this file,
we describe the service in details, and then we move to each
input and output parameter in it and describe it using linked
data technologies.

6.3. Adding a Service to Teanga
Since Teanga is a platform that accepts adding new services
to the system, we implemented a simple way to add or
remove a service. The method is to add JSON-LD files to
the system that represent the service description schema
and the context of service components.

The Teanga’s file hierarchy contains:

• Ontology: this directory contains the Teanga ontology
file, which holds the Teanga ontology that describes
all the properties for the services.

• Schema: this directory holds the JSON-LD files that
describe the services, one for each service.

• Webapp: This directory has the web applications files
and directories, such as the directory named assets,
which holds all the static files like images and styles.

To add a new service, we simply need to add a description
file for it in the “schema” directory, and to remove the ser-
vice, we just remove the JSON-LD description file from the
directory. As modifying the platform for each service takes
some effort, we also scan all loaded Docker images for a
scheme directory and load all valid files automatically.

6.4. Containerization Technology using Docker
We’re implementing containerization technology in Teanga
using Docker to help users overcome the problem of in-
stalling many dependencies to run a program. We chose
Docker for this task because Docker provides high portabil-
ity due to a lightweight virtualization with almost no over-
head, and that enables running multiple containers on a sin-
gle machine and adding a layer of abstraction for Teanga.
In this case, Teanga would be isolated from other applica-
tions on the server, which guarantees performance for the
platform and its components inside their containerization
environment.
The idea is that we’re preparing Teanga inside a download-
able Docker image that holds the Teanga web application
and all the libraries, dependencies, and databases elements
that it needs to run. This means that the user will only need
to download one image that contains everything related to
Teanga. By installing a Docker client on their servers, and

running the image file, they would have Teanga up and run-
ning inside a Docker container by just one step. This is
what makes Teanga very easy to install and run. Currently,
the Teanga platform is an individual image and the services
are in other images; the users can pull them and run them
on their servers. It is expected that any third party can eas-
ily extend Teanga by simply creating a Docker image and
providing an appropriate service description as described
above and this image can be published at DockerHub9 or in-
ternal repositories, ensuring that a new service can be added
by simply giving the name of its container.

6.5. Error Control
Even perfectly written software can fail due to configura-
tion errors, and most of the software developed by NLP
researchers is not developed to industry standards. As such
it is a vital goal of the platform to handle failures within
services gracefully and show these errors clearly to the user
so they may be properly debugged. Teanga can handle the
following errors:

• If a service returns an error message, Teanga will dis-
play the error message to the user contained inside the
results tab.

• If a service fails or has a server error, which usually
stops the service and causes it to crash and display de-
fault servers messages, Teanga can contain that and
return a corresponding message.

• If a service crashed and it returns blank data, Teanga
would display an error message that the service is re-
turning an empty message.

We’re still working on improving error handling with our
continuous experiments with adding services.

6.6. The Interface
We will use an example to describe how the interface
works: extracting suggestions from a Spanish text, using
a suggestion mining application developed for English.
To run a task in Teanga, we start by entering the text as
shown in Figure 2.

Figure 2: Uploading the text

In Figure 2, we can see that the input text is Spanish, and
we need to translate that to English to be ready for the next
service, which is suggestion mining.

9https://hub.docker.com/

2413

https://hub.docker.com/


Then, we drag the required services to the service area as
in Figure 3. Notice the bottom area, which shows all the
available services in the platform represented as a bubble.
This means that the system contains three service descrip-
tion files.

Figure 3: Placing a service in the service area.

Connect the services as shown in in Figure 4. Connecting
the service can be done by dragging the points using the
mouse.

Figure 4: the final workflow graph

Some services do not only have input and output parame-
ters, but they have options as well, e.g. machine translation
has options for source and target language. In this step, we
select the corresponding options for some of the services
as in Figure 5 by selecting the service using the mouse, and
then the options sidebar will show up automatically.

Figure 5: the options panel

And finally proceed to the results page, Figure 6.

Figure 6: The results

6.7. Smart Features in The Interface
As a part of enhancing the user experience, we added two
features to Teanga as follows:

1. The predefined tasks, which cover the common exper-
iments that are used in NLP research, we put in a list
to choose from, which the system will use to create
the whole workflow, saving multiple steps for the user.
For example, when the user selects suggestion min-
ing on multilingual text, the system will place the ma-
chine translation and the suggestion mining services in
the graph, connect them, and then the user only has to
choose the languages for the machine translation ser-
vice.

2. The ability to save and load a saved workflow, in case
the user needs to rerun the same experiment in future
on a different data set. They can upload the data, and
just load the workflow in one click.

7. Testing
Since Teanga is a specialised software, we tested by asking
NLP researchers to apply it to their own data. We asked
three NLP researchers, two employed at a university and
one at a large multinational technology firm, with one of
the researchers holding a PhD in NLP.
All the testers agreed that Teanga is well designed and easy
to navigate. Yet, they provided 20 comments, of which 13
were easily fixed, while some were kept for future work.
The proposed features include:

• Automatic source language detection.

• Downloading the results in JSON-LD files.

• Adding related information to the results page, e.g.
how long the experiment took.

• Adding the ability to upload data files to the system
instead of direct text entry. These data files can be in
different formats.

In addition, some of the comments made us rethink our ap-
proach, as in:

• Implementing better ways to choose options for ser-
vices.

• Changing the view in the last step for the JSON-LD
output and adding the ability to dismiss some of the
results.

• Enabling the user to choose how to display results.

2414



8. Conclusion
Previous NLP platforms had multiple issues related to their
architecture (ability only to apply one task at a time), user
experience (no graphical user interface), or interoperability.
As a solution for these problems, we developed Teanga,
a Linked Data based NLP framework, which aims to en-
able easily constructed, flexible and high-performance NLP
pipelines. We use Linked Data technologies, including
JSON-LD files, to define the types of the data that pass
through services to deliver structured information that can
be used and queried in a flexible and an extensible way
and to get a better understanding of the data. We further
use a containerization technology (Docker) to ensure that
the platform can be easily distributed and installed by end
users.

9. Bibliographical References
Berners-Lee, T. (2006). Linked Data - Design Issues. Blog

post at www.w3.org.
Bird, S. (2006). NLTK: the natural language toolkit. In

Proceedings of the COLING/ACL on Interactive presen-
tation sessions, pages 69–72. Association for Computa-
tional Linguistics.

Brickley, D. and Guha, R. V. (2000). Resource Descrip-
tion Framework (RDF) Schema Specification 1.0: W3C
Candidate Recommendation 27 March 2000. W3C Rec-
ommendation, World Wide Web Consortium.

Chiarcos, C. and Fäth, C. (2017). CoNLL-RDF: Linked
corpora done in an NLP-friendly way. In International
Conference on Language, Data and Knowledge, pages
74–88. Springer.

Chiarcos, C. and Sukhareva, M. (2015). OLiA–ontologies
of linguistic annotation. Semantic Web, 6(4):379–386.

Chiarcos, C. (2012). POWLA: Modeling linguistic cor-
pora in OWL/DL. In Proceedings of the Extended Se-
mantic Web Conference (ESWC), pages 225–239.

Cimiano, P., Buitelaar, P., McCrae, J., and Sintek., M.
(2011). LexInfo: A declarative model for the lexicon-
ontology interface. Web Semantics: Science, Services
and Agents on the World Wide Web, 9(1):29–51.

Cimiano, P., McCrae, J. P., and Buitelaar, P. (2016). Lexi-
con Model for Ontologies: Community Report. Techni-
cal report.

Cunningham, H. (2002). GATE, a general architecture
for text engineering. Computers and the Humanities,
36(2):223–254.

de Melo, G. (2015). Lexvo. org: Language-related infor-
mation for the linguistic linked data cloud. Semantic
Web, 6(4):393–400.

Ferrucci, D. and Lally, A. (2004). UIMA: an architectural
approach to unstructured information processing in the
corporate research environment. Natural Language En-
gineering, 10(3-4):327–348.

Hellmann, S., Lehmann, J., Auer, S., and Brümmer, M.
(2013). Integrating NLP using linked data. In Pro-
ceedings of the International Semantic Web Conference
(ISWC), pages 98–113.

Henrich, V. and Hinrichs, E. (2010). GernEdiT: A Graphi-
cal Tool for GermaNet Development. In Proceedings of

the ACL 2010 System Demonstrations, pages 19–24. As-
sociation for Computational Linguistics.

Ide, N., Pustejovsky, J., Cieri, C., Nyberg, E., DiPersio,
D., Shi, C., Suderman, K., Verhagen, M., Wang, D., and
Wright, J. (2015). The Language Application Grid. In
International Workshop on Worldwide Language Service
Infrastructure, pages 51–70. Springer.

Ide, N., Suderman, K., Pustejovsky, J., Verhagen, M., Cieri,
C., and Nyberg, E. (2016). The Language Applica-
tion Grid and Galaxy. In Nicoletta Calzolari (Conference
Chair), et al., editors, Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC 2016), pages 457–462, Paris, France, may.
European Language Resources Association (ELRA).

Ishida, T. (2006). Language Grid: An Infrastructure for
Intercultural Collaboration. In Applications and the In-
ternet, 2006. SAINT 2006. International Symposium on,
pages 1–5. IEEE.

McCrae, J., de Cea, G. A., Buitelaar, P., Cimiano, P., De-
clerck, T., Gómez-Pérez, A., Gracia, J., Hollink, L.,
Montiel-Ponsoda, E., Spohr, D., and Wunner, T. (2012).
Interchanging lexical resources on the Semantic Web.
Language Resources and Evaluation, 46(6):701–709.

McGuinness, D. L., Van Harmelen, F., et al. (2004). OWL
Web Ontology Language Overview. W3C recommenda-
tion, World Wide Web Consortium.

Sanderson, R., Ciccarese, P., Van de Sompel, H., Bradshaw,
S., Brickley, D., Castro, L. J. G., Clark, T., Cole, T., De-
senne, P., Gerber, A., et al. (2013). Open Annotation
data model. W3c community draft.

Schuurman, I., Windhouwer, M., Ohren, O., and Daniel,
Z. (2016). CLARIN concept registry: the new seman-
tic registry. In Selected Papers from the CLARIN Annual
Conference 2015, pages 62–70.

Windhouwer, M. and Wright, S. E. (2012). Linking to lin-
guistic data categories in ISOcat. In Linked Data in Lin-
guistics, pages 99–107. Springer.

2415


	Introduction
	NLP Services
	Related Work
	Linked Data
	Introduction
	Linked Data in Teanga

	Technologies
	Design and Implementation
	Introduction
	Parameters and Data Types
	Adding a Service to Teanga
	Containerization Technology using Docker
	Error Control
	The Interface
	Smart Features in The Interface

	Testing
	Conclusion
	Bibliographical References

