
PyRATA, Python Rule-based feAture sTructure Analysis

Nicolas Hernandez and Amir Hazem
Laboratoire des Sciences du Numérique de Nantes (LS2N)

Université de Nantes, 44322 Nantes Cedex 3, France
Nicolas.Hernandez@univ-nantes.fr

Abstract
In this paper, we present a new Python 3 module named PyRATA, which stands for "Python Rule-based feAture sTructure Analysis".
The module is released under the Apache V2 license. It aims at supporting rules-based analysis on structured data. PyRATA offers a
language expressiveness which covers the functionalities of all the concurrent modules and more. Designed to be intuitive, the pattern
syntax and the engine API follow existing standard definitions; Respectively Perl regular expression syntax and Python re module API.
Based on simple native Python data structures (i.e. sequence of feature sets), PyRATA is able to deal with various kinds of data (textual
or not) at various levels, such as a list of words, a list of sentences, a list of posts in a forum thread, a list of events in a calendar... This
specificity makes it free from any (linguistic) process.

Keywords: rules-based analysis, semantic annotations, regular expression, information extraction, Python 3

1. Introduction
Rules-based approaches must not be set in opposition to
machine-learning-based (ML) approaches. The former
provide the advantages of quickly generating some self-
explanatory results with a few rules, even with little expert
knowledge and no training data. But they have the pitfalls
of becoming difficult to maintain with the number and the
complexity of rules increasing. Cleverly trained, ML mod-
els are capable of generalizing i.e. they present the ability
to perform well on new unseen data and offers so a larger
recall performance. But their major drawbacks are to de-
pend on large quantity of training data which often results
from a costly manual annotation task. In addition, their de-
cisions are harder to explain.
Rules are currently unpopular in Natural Language Pro-
cessing (NLP) research community, but there are still good
reasons to use them: 1) Since they do not require train-
ing data, they are often a good first cut to explore the data
and define more precisely a problem; 2) In some languages,
some problems can be done deterministically with rules
pretty well; 3) To prototype a model by using rules and
use it to generate training data for a ML system; 4) To de-
fine features (feature engineering) and let the ML compo-
nent learn how to combine them; 5) To augment ML models
with rules in pre- or post-processing stages to achieve an al-
gorithm of 100 % performance (Manning, 2011). The rules
are so used to tune input/output and handle some specific
unwanted system behaviors.
To the best of our knowledge, the NLP community benefits
from two software solutions1 which allow to define patterns
of annotations with some additional actions to perform on
the matched annotations, namely GATE JAPE2 (Cunning-
ham et al., 1999) and UIMA RUTA3 (Kluegl et al., 2016).

1We did not consider here environments such as Nooj
(Silberztein, 2005) http://www.nooj4nlp.net or Unitex
(Paumier et al., 2009) http://unitexgramlab.org which
are deeply rooted in linguistic analysis.

2https://gate.ac.uk/sale/tao/splitch8.
html, Java 8, GNU

3https://uima.apache.org/ruta.html, Java 8,

Apart from learning the rule languages, the use of these op-
tions is not straightforward since both of them are part of
a global text analysis framework, and consequently assume
a basic understanding of the framework concepts as well
as some technical skills (e.g. Eclipse workbench). Acci-
dentally the programmer would have to develop in Java to
integrate them in their own solution.
Python users do not benefit from the same advanced tools.
At least they have some modules to formulate search pat-
terns and extract resulting matches namely the Python
nltk chunk module (Bird, 2006), the clips pattern.search
(De Smedt and Daelemans, 2012) and the spaCy module.
In this paper, we present a new Python 3 module named
PyRATA, which stands for "Python Rules-based feAture
sTructure Analysis". The module is released under the
Apache V2 license. It aims at supporting rules-based anal-
ysis on structured data. PyRATA offers a language expres-
siveness which covers the functionalities of all the concur-
rent modules and more. Designed to be intuitive, the pattern
syntax and the engine API follow existing standard def-
initions; Respectively Perl regular expression syntax and
Python re module API. Using a simple native Python data
structure (i.e. sequence of feature set) allows it to deal with
various kinds of data (textual or not) at various levels, such
as a list of words, a list of sentences, a list of posts of a fo-
rum thread, a list of events of a calendar... This specificity
makes it free from any (linguistic) process.
Section 2. describes the PyRATA pattern language, the
module API and its implementation. And Section 3. dis-
cusses PyRATA with respect to the other various Python
alternatives.

2. PyRATA module
Regular expressions (RE) are traditionally known to define
patterns of possible sequences of characters, which are in
turn used by search algorithms on strings for actually find-
ing matching sequences. In Natural Language Processing
(NLP), RE are the essence of the rules-based approach for
text analysis.

Apache v2

2093

http://www.nooj4nlp.net
http://unitexgramlab.org
https://gate.ac.uk/sale/tao/splitch8.html
https://gate.ac.uk/sale/tao/splitch8.html
https://uima.apache.org/ruta.html

1 >>> i m p o r t n l t k
>>> d a t a = ’ Chuck N o r r i s i s c o o l e r t h a n Dolph Lundgren . ’

3 >>> p y r a t a _ d a t a = [{ ’ raw ’ : word , ’ pos ’ : pos , ’ lem ’ : n l t k . WordNetLemmatizer () . l emmat i ze (word .
lower ()) } f o r (word , pos) i n n l t k . p o s _ t a g (n l t k . w o r d _ t o k e n i z e (d a t a))]

Figure 1: Generating a PyRATA data structure from a String (here used to store a simple sentence) using Python and the
nltk module.

1 >>> p y r a t a _ d a t a
[{ ’ raw ’ : ’ Chuck ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ chuck ’ } ,

3 { ’ raw ’ : ’ N o r r i s ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ n o r r i s ’ } ,
{ ’ raw ’ : ’ i s ’ , ’ pos ’ : ’VBZ ’ , ’ lem ’ : ’ i s ’ } ,

5 { ’ raw ’ : ’ c o o l e r ’ , ’ pos ’ : ’ JJR ’ , ’ lem ’ : ’ c o o l e r ’ } ,
{ ’ raw ’ : ’ t h a n ’ , ’ pos ’ : ’ IN ’ , ’ lem ’ : ’ t h a n ’ } ,

7 { ’ raw ’ : ’ Dolph ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ do lph ’ } ,
{ ’ raw ’ : ’ Lundgren ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ l u n d g r e n ’ } ,

9 { ’ raw ’ : ’ . ’ , ’ pos ’ : ’ . ’ , ’ lem ’ : ’ . ’ }]

Figure 2: Example of a PyRATA Data Structure resulting from the process described in Figure 1.

2.1. The data structure
A string can be seen as somehow a list of character tokens.
But a character string is a poor data structure while in many
cases the matter of interest are linguistic phenomena at var-
ious text levels (e.g. words, sentences, ...).
The main innovative feature of PyRATA is may be to deal
with lists of associative arrays (i.e. list of dicts in the
Python jargon). The dict data structure is a set of values
indexed by unique keys (i.e. a name-value feature set).
Figure 2 illustrates the data structure4 the PyRATA engine
takes in input. Line 3 Figure 1 shows how to generate it
in one simple instruction line in Python; Here thanks to
the nltk module. The process takes the String sentence
in line 2, then performs a tokenization, pos tagging and
lemmatization, and stores the result in a list where each
value is a dict which represents the various forms of a
word of the given sentence. The names, raw, pos, and
lem, are freely chosen to mean the feature keys.

2.2. Pattern syntax
The pattern syntax used by PyRATA is a subset of the PERL
regular expression syntax. The subset is also common to
the POSIX extended syntax. This subset suffices to de-
scribe all regular languages. In some aspects, the syntax
looks like the language used to define queries in Corpus
Query Processor (CQP) of the IMS Open Corpus Work-
bench (CWB) (Christ, 1994)5.
A pattern can be seen as a sequence of elements sep-
arated by whitespace characters. In its minimal form,
an element specifies a constraint on the value of a fea-
ture that a data token should satisfy. For a given fea-
ture name, you can specify its required exact value
(e.g. raw="Chuck"), a regular expression definition of
its value (e.g. pos~"JJ.?"), a list of possible values –a

4In Python, squared brackets delimit list while curly brackets
mark dicts. The feature of a dict are separated by a comma and
the feature name and its value are separated by a colon.

5cwb.sourceforge.net

lexicon– (e.g. lemma@"POSITIVE") or if the value cor-
respond to a IOB6 tag and should match a sequence conse-
quently (e.g. chunk-"NP").
More complex elements are quantified elements, element
classes, groups of elements, alternatives or combinations of
these various types. A quantified element allows to spec-
ify optional elements (?), elements which should occur at
least one (+), or zero or more (*). An element class aims
at specifying a logical combination of minimal constraints
on the data token features. The combination is delimited
by squared brackets ([]) and the constraints are combined
with usual logical operators namely parenthesis (()) and
logical connectors such as and (&), or (|) and not (!). A
group of elements is delimited by parenthesis (()) and can
be used to refer to and process subsequently subparts of a
match. An alternative defines expected sets of data token
candidates at a specific point of the data stream. The wild-
card element can be set by a dot character.
Line 1 and 2 of Figure 3 show some concurrent patterns
to define noun phrases chunks. They illustrate the use of
equal and regular expression constraints as well as element
classes and quantifiers. After importing the PyRATA mod-
ule (line 3), line 4 shows the search instruction of the latter
pattern over the previously defined data structure. Figure 4
shows the result as a list of Match objects, each one made
of the matched sequence and its offsets.

2.3. Finding and editing operations
The API is developed to be familiar for whom who devel-
ops with the python re module7 API. The module defines
several common functions such as search, findall,
or finditer. The functions are also available for com-
piled regular expressions. They generally take at least
two arguments including the pattern to recognize and the
data to explore (e.g. re.search(pattern, data)
or compiledPattern.search(data)). Depending

6I for Inside, B for Begin and O for Other
7https://docs.python.org/3/library/re.

html, Python 3, PSF

2094

cwb.sourceforge.net
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

1 >>> p y r a t a _ n p _ p a t t e r n = ’ pos ="DT"? [pos =" J J " | pos ="NN"]∗ [pos ="NN" | pos ="NNS " | pos ="NNP"]+ ’
>>> p y r a t a _ n p _ p a t t e r n = ’ pos ="DT"? pos ~" J J |NN"∗ pos ~"NN. ? " + ’

3 >>> i m p o r t p y r a t a . r e a s p y r a t a _ r e
>>> f o u n d _ n o u n _ p h r a s e s = p y r a t a _ r e . f i n d i t e r (p y r a t a _ n p _ p a t t e r n , p y r a t a _ d a t a)

Figure 3: Recognizing simple Noun Phrases patterns with PyRATA (taking the PyRATA data structure of Figure 1 as input).

>>> f o u n d _ n o u n _ p h r a s e s
2 < p y r a t a . r e M a t c h e s L i s t o b j e c t ; m a t c h e s l i s t =" [

< p y r a t a . r e Match o b j e c t ; g ro up s = [[[{ ’ raw ’ : ’ Chuck ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ chuck ’} , { ’ raw
’ : ’ N o r r i s ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ n o r r i s ’ }] , 0 , 2]] > ,

4 < p y r a t a . r e Match o b j e c t ; g ro up s = [[[{ ’ raw ’ : ’ Dolph ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ do lph ’} , { ’ raw
’ : ’ Lundgren ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ l u n d g r e n ’ }] , 5 , 7]] >

] ">

Figure 4: Display of a PyRATA MatchesList object resulting from the finditer operation in Figure 3.

on the selected function, the result can be a featured object
which stands for the first match of a given pattern, all the
non-overlapping matches of a pattern, or an iterator yield-
ing match objects over all non-overlapping matches of a
pattern. Figure 3 and 4 illustrate the finditer method
returning an iterator yielding match objects.
In addition to the exploration methods, the module offers
methods to edit the data structure either by substitution
(sub), update (update) or extension (extend) of the
data feature structures. These methods are very common
in NLP annotation tasks.
Figure 2 shows that the nltk lemmatizer did not assign the
correct lemma to the verb to be. Figure 5 illustrates how to
easily fix this hassle thanks to the update method. Fig-
ure 6 illustrates the annotation method extend to add new
features to token in order to create IOB tags correspond-
ing to a noun phrase (NP) chunk. It uses the NP pattern
defined in Figure 3. Since the resulting data structure is
also a PyRATA data structure, such methods can be used to
simulate transducers and rewriting rules.
Line 1 Figure 7 defines two lexicons while Line 2 both il-
lustrates the combination in one pattern of the lexicons and
IOB-chunk constraints, as well as the use of a sequence
group. PyRATA assigns a group id to the chunks. Group 0
corresponds to the whole match.
More examples are available in the user documentation8

and the demo directory of PyRATA.

2.4. Implementation
Since version v0.4, PyRATA has been based on a simple
implementation9 of Thompson’s algorithm which aims at
converting Regular Expressions (RE) to Non-deterministic
Finite Automata (NFA) and simulate them in a multiple-
state approach which offers a linear time efficiency in O(n)
(Thompson, 1968).

8https://github.com/nicolashernandez/
PyRATA/blob/master/docs/user-guide.rst

9Gui Guan, "A Beautiful Linear Time Python Regex Matcher
via NFA", August 19, 2014, https://www.guiguan.net/
a-beautiful-linear-time-python-regex-matcher-via-nfa/,
free to use and modify in any way.

The following description is based on the explanations of
Russ Cox10. Every regular expression has an equivalent
NFA. The NFA is built up from partial NFAs for each
subexpression, with a different construction for each opera-
tor. The partial NFAs have no matching states: instead they
have one or more dangling arrows, pointing to nothing. The
construction process will finish by connecting these arrows
to a matching state.
Running an NFA using some data as input requires tracking
the current states that the NFA is in, and the next set of
states that the NFA will be in, after processing the current
token. The pattern is matched if the NFA reaches a final
state.
For a regular expression of length m run on text of length
n, the Thompson NFA requires O(mn) time. Since we
only need to scan the pattern string once in order to build
the corresponding NFA, the time efficiency for this step is
linear O(n).

3. Comparison to alternatives
This section deals with the differences between the various
Python alternatives to perform regular expressions over an-
notations.
Table 1 summarizes the main functionalities of the alterna-
tives Python modules. Data structure dependency is set to
dependent if the module works on an internal data structure.
Concerning clips.pattern there was no successful straight-
forward 2to3 conversion.
The Python nltk chunker11 module (Bird, 2006) offers
to define chunk and chink grammars on word POS
tags consisting of rules (expressed in regular-expression
style) that indicate how sentences should be chunked
(e.g. "NP: {<DT>?<JJ>*<NN>}"). By respecting the
(Python) data structure, the engine can be applied on vari-

10Russ Cox, "Regular Expression Matching Can Be Sim-
ple And Fast (but is slow in Java, Perl, PHP, Python, Ruby,
...)’, January, 2007, https://swtch.com/~rsc/regexp/
regexp1.html, Last consulted on September 30th, 2017

11http://www.nltk.org/book/ch07.html and
http://www.nltk.org/_modules/nltk/chunk/
regexp.html, Python 3, Apache v2

2095

https://github.com/nicolashernandez/PyRATA/blob/master/docs/user-guide.rst
https://github.com/nicolashernandez/PyRATA/blob/master/docs/user-guide.rst
https://www.guiguan.net/a-beautiful-linear-time-python-regex-matcher-via-nfa/
https://www.guiguan.net/a-beautiful-linear-time-python-regex-matcher-via-nfa/
https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp1.html
http://www.nltk.org/book/ch07.html
http://www.nltk.org/_modules/nltk/chunk/regexp.html
http://www.nltk.org/_modules/nltk/chunk/regexp.html

1 >>> u p d a t e d _ p y r a t a _ d a t a = p y r a t a _ r e . u p d a t e (’ [lem =" i s " | lem =" a r e " | lem ="wa "] ’ , { ’ lem ’ : ’
be ’ } , p y r a t a _ d a t a)

[{ ’ raw ’ : ’ Chuck ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ chuck ’ } ,
3 { ’ raw ’ : ’ N o r r i s ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ n o r r i s ’ } ,

{ ’ raw ’ : ’ i s ’ , ’ pos ’ : ’VBZ ’ , ’ lem ’ : ’ be ’ } ,
5 { ’ raw ’ : ’ c o o l e r ’ , ’ pos ’ : ’ JJR ’ , ’ lem ’ : ’ c o o l e r ’ } ,

{ ’ raw ’ : ’ t h a n ’ , ’ pos ’ : ’ IN ’ , ’ lem ’ : ’ t h a n ’ } ,
7 { ’ raw ’ : ’ Dolph ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ do lph ’ } ,

{ ’ raw ’ : ’ Lundgren ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ l u n d g r e n ’ }]

Figure 5: Updating (edit operation) a PyRATA data structure by modifying a feature value. The PyRATA data structure of
Figure 1 is taken as input.

>>> e x t e n d e d _ p y r a t a _ d a t a = p y r a t a _ r e . e x t e n d (p y r a t a _ n p _ p a t t e r n , { ’ chunk ’ : ’NP ’ } ,
u p d a t e d _ p y r a t a _ d a t a , i o b =True)

2 [{ ’ raw ’ : ’ Chuck ’ , ’ chunk ’ : ’B−NP ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ chuck ’ } ,
{ ’ raw ’ : ’ N o r r i s ’ , ’ chunk ’ : ’ I−NP ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ n o r r i s ’ } ,

4 { ’ raw ’ : ’ i s ’ , ’ pos ’ : ’VBZ ’ , ’ lem ’ : ’ be ’ } ,
{ ’ raw ’ : ’ c o o l e r ’ , ’ pos ’ : ’ JJR ’ , ’ lem ’ : ’ c o o l e r ’ } ,

6 { ’ raw ’ : ’ t h a n ’ , ’ pos ’ : ’ IN ’ , ’ lem ’ : ’ t h a n ’ } ,
{ ’ raw ’ : ’ Dolph ’ , ’ chunk ’ : ’B−NP ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ do lph ’ } ,

8 { ’ raw ’ : ’ Lundgren ’ , ’ chunk ’ : ’ I−NP ’ , ’ pos ’ : ’NNP ’ , ’ lem ’ : ’ l u n d g r e n ’ }]

Figure 6: Extending (edit operation) a PyRATA data structure by adding a new feature. The PyRATA data structure of
Figure 1 is taken as input.

>>> l e x i c o n s = { ’ POSITIVE ’ : [’ c o o l e r ’ , ’ s t r o n g e r ’] , ’NEGATIVE ’ : [’ poor ’ , ’ w o r s t ’] }
2 >>> p y r a t a _ r e . f i n d i t e r (’ chunk−"NP" (lem =" be " [raw@" POSITIVE " & ! raw =" t h a n "]∗ raw =" t h a n ")

chunk−"NP" ’ , e x t e n d e d _ p y r a t a _ d a t a , l e x i c o n s = l e x i c o n s) . group () . g roup (2)
[{ ’ raw ’ : ’ i s ’ , ’ pos ’ : ’VBZ ’ , ’ lem ’ : ’ be ’ } , { ’ raw ’ : ’ c o o l e r ’ , ’ pos ’ : ’ JJR ’ , ’ lem ’ : ’ c o o l e r ’

} , { ’ raw ’ : ’ t h a n ’ , ’ pos ’ : ’ IN ’ , ’ lem ’ : ’ t h a n ’ }]

Figure 7: Defining groups and lexicons in PyRATA syntax.

ous types of information (one at a time) as well as be cas-
caded.
The CLIPS pattern.search12 module (De Smedt and Daele-
mans, 2012) has a pattern matching system similar to regu-
lar expressions, that can be used to search a string by syn-
tax (word POS and chunk tags) or by lexical (word surface,
lemmata and semantical categories) constraints (e.g. "DT?
JJ?+ NN"). CLIPS pattern.search is actually the best
choice in terms of pattern language expressiveness. Unfor-
tunately, the language and the engine are not well separated
from the clips internal data structure which prevents from
using it with external processing.
The spaCy13 module features a rule-matching engine that
operates over tokens, similar to regular expressions. The
rules can refer to token annotations and flags, and matches
support callbacks to accept, modify and/or act on the match.
spaCy is written in Python and Cython. Despite its aston-
ishing performance, the use of the spaCy rule-matching en-
gine is not easy out of the box. Indeed, it is strongly at-

12https://www.clips.uantwerpen.be/pages/
pattern-search and https://github.com/clips/
pattern, python 2.6, BSD-3

13https://spacy.io/docs/usage/
rule-based-matchingÂ and https://github.
com/explosion/spaCy, Python 3, MIT

tached to the spaCy internal data structure and without en-
tering the code, it cannot go further than addressing simple
chunk extractions. In addition, the matches cannot serve as
input of new patterns.

Table 2 gives the time performance of searching similar
patterns on each module. Due to the expressiveness dif-
ferences, only a minimal pattern expression can be used
to compare the modules. This is the role played by the
first line dedicated to each module in the table. This min-
imal noun phrase definition assumes that an NP is end-
ing by a noun which can be preceded by an optional de-
terminer and zero or more adjectives in this order. Fig-
ure 8 depicts the results for this four systems. Other NP
definition variants allow to consider various adjective and
noun forms as well as nouns as alternative to adjectives.
These patterns illustrate the syntax of each module. To ad-
dress the comparison, we used the Brown corpus as data
(1,161,192 words) and measure the average time over 10
runs to process the n first words with n varying from 10,000
to 1,000,000. The experience was performed on a proces-
sor i7-4600U running at 2.10GHz. For nltk chunker and
PyRATA we used the original Brown corpus word tokeniza-
tion and the default nltk POS tagger in English. In order to
use clip.pattern and spaCy, we joined the Brown words in
a single string and performed the tokenization and the pos

2096

https://www.clips.uantwerpen.be/pages/pattern-search
https://www.clips.uantwerpen.be/pages/pattern-search
https://github.com/clips/pattern
https://github.com/clips/pattern
https://spacy.io/docs/usage/rule-based-matching
https://spacy.io/docs/usage/rule-based-matching
https://github.com/explosion/spaCy
https://github.com/explosion/spaCy

PyRATA clips.pattern nltk_chunk_regexp spaCy

Python version 3 2 2 and 3 2 and 3
Token type no restriction word/chunk token word/chunk token word token
Data structure dependency Python native dependent Python native dependent
Feature type no restriction restricted to some

syntax and semantic
no restriction but a
single one at a time

some predefined,
extensible with code

Pattern language declarative declarative declarative declarative + code
Wildcard yes yes yes
Quantifiers yes yes yes yes
Element alternative yes yes yes no
Group yes yes no no
Group alternative yes no no no
Match offsets yes no no yes
Cascade matcher yes no yes no
Find operations search, match, findall search, match, findall findall findall
Edit operations sub, update, extend no extend no

Table 1: Module functionalities comparison.

noun phrase patterns 10k 50k 100k 200k 300k 500k 750k 1,000k

CLIPS pattern.search
DT? JJ?+ NN+ 0.145 0.714 1.510 3.113 4.484 7.585 11.700 15.515

DT? JJ|NN?+ NN|NNS 0.212 1.008 2.110 4.675 6.328 10.825 16.712 22.224
DT? JJ|NN?+ NN|NNS+ 0.220 1.033 2.170 4.493 6.538 11.069 17.929 22.879

nltk chunker
<DT>?<JJ>*<NN>+ 0.037 0.521 1.842 7.146 15.194 43.481 97.216 169.396
<DT>?<JJ|NN>*<NN|NNS> 0.043 0.652 2.386 9.574 20.130 58.745 127.489 228.397
<DT>?<JJ|NN>*<NN.*> 0.062 1.137 4.190 15.502 32.720 89.219 200.388 334.670

PyRATA
pos="DT"? pos="JJ"* pos="NN"+ 1.681 8.350 17.089 33.773 53.506 91.840 131.540 176.272
pos="DT"? [pos="NN" | pos="JJ"]* [pos="NN" | pos="NNS"] 2.132 10.662 21.413 42.731 65.062 114.885 167.478 222.817
pos="DT"? [pos∼ "NN|JJ"]* pos∼"NN.*" 1.854 9.695 18.872 40.288 58.423 101.974 141.782 189.163

spaCy
[{POS:"DET",’OP’:"?"}, {POS:"ADJ",’OP’:"*"},{POS:"NOUN",’OP’:"+"}] 0.002 0.004 0.008 0.020 0.0266 0.048 0.070 0.086

Table 2: Time performance (in seconds) for recognizing various Noun Phrases patterns on the first n Brown corpus words.

Figure 8: Selection of some system performances from Table 2. Only assumed identical patterns (first line of each module)
are presented. Time (in seconds) vs quantity of processed words.

2097

tagging processes offered by these modules. We used the
en_core_web_sm-1.2.0 model for spaCy. We could
have hacked the spaCy tokenizer by making it segment only
on the whitespaces and consequently format the Brown cor-
pus so that spaCy would eventually obtain the same to-
kenization as the one already present in nltk. Since the
resulting amount of tokens was pretty much the same we
did not follow this path. As a result, we observe that there
is nothing compare to the time performance of spaCy and
right now we can say the same about the PyRATA language
expressiveness. Nevertheless, if a few minutes to process
one million words can largely be acceptable depending on
the use cases it is a fact that the PyRATA holds the worse
position in term of time performance. Surprisingly, we also
observe that the nltk chunker time processing increases and
converges toward the PyRATA one. We did not experiment
with more data.

4. Conclusion
PyRATA is fun and easy to use to explore data for research
or pedagogical motivations, define machine learning fea-
tures, pre/post process machine learning based analysis,
formulate expert knowledge in a declarative way.
Various directions exist to optimize further the engine code
such as parallel programming, or caching the lists of states
corresponding to effectively explored and possibly recur-
rent DFA (avoiding the cost of future computation repeti-
tions). The language can also be extended like for instance
the management of back-references.

Acknowledgments
The current work was supported by the ANR 2016 PAS-
TEL14. The authors would like to thank the anonymous re-
viewers for their valuable comments.

5. Bibliographical References
Bird, S. (2006). Nltk: The natural language toolkit. In

Proceedings of the COLING/ACL on Interactive Pre-
sentation Sessions, COLING-ACL ’06, pages 69–72,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Christ, O. (1994). A modular and flexible architecture for
an integrated corpus query system. In Proceedings of
COMPLEX’94: 3rd Conference on Computational Lex-
icography and Text Research, pages 23–32, Budapest,
Hungary. tt cmp-lg: tt 9408005.

Cunningham, H., Cunningham, H., and Tablan, V. (1999).
Jape: a java annotation patterns engine.

De Smedt, T. and Daelemans, W. (2012). Pattern
for python. Journal of Machine Learning Research,
13:2063–2067.

Kluegl, P., Toepfer, M., Beck, P.-D., Fette, G., and Puppe,
F. (2016). Uima ruta: Rapid development of rule-based
information extraction applications. Natural Language
Engineering, 22:1–40, 1.

14http://www.agence-nationale-recherche.
fr/?Projet=ANR-16-CE33-0007

Manning, C. D., (2011). Part-of-Speech Tagging from 97%
to 100%: Is It Time for Some Linguistics?, pages 171–
189. Springer Berlin Heidelberg, Berlin, Heidelberg.

Paumier, S., Nakamura, T., and Voyatzi, S. (2009). UNI-
TEX, a Corpus Processing System with Multi-Lingual
Linguistic Resources. In eLexicography in the 21st
century: new challenges, new applications (eLEX’09),
pages 173–175, October.

Silberztein, M. (2005). Nooj: A linguistic annota-
tion system for corpus processing. In Proceedings
of HLT/EMNLP on Interactive Demonstrations, HLT-
Demo ’05, pages 10–11, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Thompson, K. (1968). Programming techniques: Reg-
ular expression search algorithm. Commun. ACM,
11(6):419–422, June.

2098

http://www.agence-nationale-recherche.fr/?Projet=ANR-16-CE33-0007
http://www.agence-nationale-recherche.fr/?Projet=ANR-16-CE33-0007

	Introduction
	PyRATA module
	The data structure
	Pattern syntax
	Finding and editing operations
	Implementation

	Comparison to alternatives
	Conclusion
	Bibliographical References

