@inproceedings{inel-etal-2016-crowdsourcing,
title = "Crowdsourcing Salient Information from News and Tweets",
author = "Inel, Oana and
Caselli, Tommaso and
Aroyo, Lora",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1625",
pages = "3959--3966",
abstract = "The increasing streams of information pose challenges to both humans and machines. On the one hand, humans need to identify relevant information and consume only the information that lies at their interests. On the other hand, machines need to understand the information that is published in online data streams and generate concise and meaningful overviews. We consider events as prime factors to query for information and generate meaningful context. The focus of this paper is to acquire empirical insights for identifying salience features in tweets and news about a target event, i.e., the event of {``}whaling{''}. We first derive a methodology to identify such features by building up a knowledge space of the event enriched with relevant phrases, sentiments and ranked by their novelty. We applied this methodology on tweets and we have performed preliminary work towards adapting it to news articles. Our results show that crowdsourcing text relevance, sentiments and novelty (1) can be a main step in identifying salient information, and (2) provides a deeper and more precise understanding of the data at hand compared to state-of-the-art approaches.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="inel-etal-2016-crowdsourcing">
<titleInfo>
<title>Crowdsourcing Salient Information from News and Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Inel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tommaso</namePart>
<namePart type="family">Caselli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lora</namePart>
<namePart type="family">Aroyo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-may</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The increasing streams of information pose challenges to both humans and machines. On the one hand, humans need to identify relevant information and consume only the information that lies at their interests. On the other hand, machines need to understand the information that is published in online data streams and generate concise and meaningful overviews. We consider events as prime factors to query for information and generate meaningful context. The focus of this paper is to acquire empirical insights for identifying salience features in tweets and news about a target event, i.e., the event of “whaling”. We first derive a methodology to identify such features by building up a knowledge space of the event enriched with relevant phrases, sentiments and ranked by their novelty. We applied this methodology on tweets and we have performed preliminary work towards adapting it to news articles. Our results show that crowdsourcing text relevance, sentiments and novelty (1) can be a main step in identifying salient information, and (2) provides a deeper and more precise understanding of the data at hand compared to state-of-the-art approaches.</abstract>
<identifier type="citekey">inel-etal-2016-crowdsourcing</identifier>
<location>
<url>https://aclanthology.org/L16-1625</url>
</location>
<part>
<date>2016-may</date>
<extent unit="page">
<start>3959</start>
<end>3966</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Crowdsourcing Salient Information from News and Tweets
%A Inel, Oana
%A Caselli, Tommaso
%A Aroyo, Lora
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 may
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F inel-etal-2016-crowdsourcing
%X The increasing streams of information pose challenges to both humans and machines. On the one hand, humans need to identify relevant information and consume only the information that lies at their interests. On the other hand, machines need to understand the information that is published in online data streams and generate concise and meaningful overviews. We consider events as prime factors to query for information and generate meaningful context. The focus of this paper is to acquire empirical insights for identifying salience features in tweets and news about a target event, i.e., the event of “whaling”. We first derive a methodology to identify such features by building up a knowledge space of the event enriched with relevant phrases, sentiments and ranked by their novelty. We applied this methodology on tweets and we have performed preliminary work towards adapting it to news articles. Our results show that crowdsourcing text relevance, sentiments and novelty (1) can be a main step in identifying salient information, and (2) provides a deeper and more precise understanding of the data at hand compared to state-of-the-art approaches.
%U https://aclanthology.org/L16-1625
%P 3959-3966
Markdown (Informal)
[Crowdsourcing Salient Information from News and Tweets](https://aclanthology.org/L16-1625) (Inel et al., LREC 2016)
ACL
- Oana Inel, Tommaso Caselli, and Lora Aroyo. 2016. Crowdsourcing Salient Information from News and Tweets. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 3959–3966, Portorož, Slovenia. European Language Resources Association (ELRA).