@inproceedings{schuster-manning-2016-enhanced,
title = "Enhanced {E}nglish {U}niversal {D}ependencies: An Improved Representation for Natural Language Understanding Tasks",
author = "Schuster, Sebastian and
Manning, Christopher D.",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1376",
pages = "2371--2378",
abstract = "Many shallow natural language understanding tasks use dependency trees to extract relations between content words. However, strict surface-structure dependency trees tend to follow the linguistic structure of sentences too closely and frequently fail to provide direct relations between content words. To mitigate this problem, the original Stanford Dependencies representation also defines two dependency graph representations which contain additional and augmented relations that explicitly capture otherwise implicit relations between content words. In this paper, we revisit and extend these dependency graph representations in light of the recent Universal Dependencies (UD) initiative and provide a detailed account of an enhanced and an enhanced++ English UD representation. We further present a converter from constituency to basic, i.e., strict surface structure, UD trees, and a converter from basic UD trees to enhanced and enhanced++ English UD graphs. We release both converters as part of Stanford CoreNLP and the Stanford Parser.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schuster-manning-2016-enhanced">
<titleInfo>
<title>Enhanced English Universal Dependencies: An Improved Representation for Natural Language Understanding Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Schuster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Manning</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-may</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Many shallow natural language understanding tasks use dependency trees to extract relations between content words. However, strict surface-structure dependency trees tend to follow the linguistic structure of sentences too closely and frequently fail to provide direct relations between content words. To mitigate this problem, the original Stanford Dependencies representation also defines two dependency graph representations which contain additional and augmented relations that explicitly capture otherwise implicit relations between content words. In this paper, we revisit and extend these dependency graph representations in light of the recent Universal Dependencies (UD) initiative and provide a detailed account of an enhanced and an enhanced++ English UD representation. We further present a converter from constituency to basic, i.e., strict surface structure, UD trees, and a converter from basic UD trees to enhanced and enhanced++ English UD graphs. We release both converters as part of Stanford CoreNLP and the Stanford Parser.</abstract>
<identifier type="citekey">schuster-manning-2016-enhanced</identifier>
<location>
<url>https://aclanthology.org/L16-1376</url>
</location>
<part>
<date>2016-may</date>
<extent unit="page">
<start>2371</start>
<end>2378</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhanced English Universal Dependencies: An Improved Representation for Natural Language Understanding Tasks
%A Schuster, Sebastian
%A Manning, Christopher D.
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 may
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F schuster-manning-2016-enhanced
%X Many shallow natural language understanding tasks use dependency trees to extract relations between content words. However, strict surface-structure dependency trees tend to follow the linguistic structure of sentences too closely and frequently fail to provide direct relations between content words. To mitigate this problem, the original Stanford Dependencies representation also defines two dependency graph representations which contain additional and augmented relations that explicitly capture otherwise implicit relations between content words. In this paper, we revisit and extend these dependency graph representations in light of the recent Universal Dependencies (UD) initiative and provide a detailed account of an enhanced and an enhanced++ English UD representation. We further present a converter from constituency to basic, i.e., strict surface structure, UD trees, and a converter from basic UD trees to enhanced and enhanced++ English UD graphs. We release both converters as part of Stanford CoreNLP and the Stanford Parser.
%U https://aclanthology.org/L16-1376
%P 2371-2378
Markdown (Informal)
[Enhanced English Universal Dependencies: An Improved Representation for Natural Language Understanding Tasks](https://aclanthology.org/L16-1376) (Schuster & Manning, LREC 2016)
ACL