@inproceedings{buscaldi-rosso-2006-mining,
title = "Mining Knowledge from{W}ikipedia for the Question Answering task",
author = "Buscaldi, Davide and
Rosso, Paolo",
booktitle = "Proceedings of the Fifth International Conference on Language Resources and Evaluation ({LREC}{'}06)",
month = may,
year = "2006",
address = "Genoa, Italy",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2006/pdf/332_pdf.pdf",
abstract = "Although significant advances have been made recently in the Question Answering technology, more steps have to be undertaken in order to obtain better results. Moreover, the best systems at the CLEF and TREC evaluation exercises are very complex systems based on custom-built, expensive ontologies whose aim is to provide the systems with encyclopedic knowledge. In this paper we investigated the use of Wikipedia, the open domain encyclopedia, for the Question Answering task. Previous works considered Wikipedia as a resource where to look for the answers to the questions. We focused on some different aspects of the problem, such as the validation of the answers as returned by our Question Answering System and on the use of Wikipedia categories in order to determine a set of patterns that should fit with the expected answer. Validation consists in, given a possible answer, saying wether it is the right one or not. The possibility to exploit the categories ofWikipedia was not considered until now. We performed our experiments using the Spanish version of Wikipedia, with the set of questions of the last CLEF Spanish monolingual exercise. Results show that Wikipedia is a potentially useful resource for the Question Answering task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="buscaldi-rosso-2006-mining">
<titleInfo>
<title>Mining Knowledge fromWikipedia for the Question Answering task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Davide</namePart>
<namePart type="family">Buscaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paolo</namePart>
<namePart type="family">Rosso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2006-may</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)</title>
</titleInfo>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Genoa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Although significant advances have been made recently in the Question Answering technology, more steps have to be undertaken in order to obtain better results. Moreover, the best systems at the CLEF and TREC evaluation exercises are very complex systems based on custom-built, expensive ontologies whose aim is to provide the systems with encyclopedic knowledge. In this paper we investigated the use of Wikipedia, the open domain encyclopedia, for the Question Answering task. Previous works considered Wikipedia as a resource where to look for the answers to the questions. We focused on some different aspects of the problem, such as the validation of the answers as returned by our Question Answering System and on the use of Wikipedia categories in order to determine a set of patterns that should fit with the expected answer. Validation consists in, given a possible answer, saying wether it is the right one or not. The possibility to exploit the categories ofWikipedia was not considered until now. We performed our experiments using the Spanish version of Wikipedia, with the set of questions of the last CLEF Spanish monolingual exercise. Results show that Wikipedia is a potentially useful resource for the Question Answering task.</abstract>
<identifier type="citekey">buscaldi-rosso-2006-mining</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2006/pdf/332_pdf.pdf</url>
</location>
<part>
<date>2006-may</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mining Knowledge fromWikipedia for the Question Answering task
%A Buscaldi, Davide
%A Rosso, Paolo
%S Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)
%D 2006
%8 may
%I European Language Resources Association (ELRA)
%C Genoa, Italy
%F buscaldi-rosso-2006-mining
%X Although significant advances have been made recently in the Question Answering technology, more steps have to be undertaken in order to obtain better results. Moreover, the best systems at the CLEF and TREC evaluation exercises are very complex systems based on custom-built, expensive ontologies whose aim is to provide the systems with encyclopedic knowledge. In this paper we investigated the use of Wikipedia, the open domain encyclopedia, for the Question Answering task. Previous works considered Wikipedia as a resource where to look for the answers to the questions. We focused on some different aspects of the problem, such as the validation of the answers as returned by our Question Answering System and on the use of Wikipedia categories in order to determine a set of patterns that should fit with the expected answer. Validation consists in, given a possible answer, saying wether it is the right one or not. The possibility to exploit the categories ofWikipedia was not considered until now. We performed our experiments using the Spanish version of Wikipedia, with the set of questions of the last CLEF Spanish monolingual exercise. Results show that Wikipedia is a potentially useful resource for the Question Answering task.
%U http://www.lrec-conf.org/proceedings/lrec2006/pdf/332_pdf.pdf
Markdown (Informal)
[Mining Knowledge fromWikipedia for the Question Answering task](http://www.lrec-conf.org/proceedings/lrec2006/pdf/332_pdf.pdf) (Buscaldi & Rosso, LREC 2006)
ACL