@inproceedings{che-etal-2019-hit,
title = "{HIT}-{SCIR} at {MRP} 2019: A Unified Pipeline for Meaning Representation Parsing via Efficient Training and Effective Encoding",
author = "Che, Wanxiang and
Dou, Longxu and
Xu, Yang and
Wang, Yuxuan and
Liu, Yijia and
Liu, Ting",
booktitle = "Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K19-2007",
doi = "10.18653/v1/K19-2007",
pages = "76--85",
abstract = "This paper describes our system (HIT-SCIR) for CoNLL 2019 shared task: Cross-Framework Meaning Representation Parsing. We extended the basic transition-based parser with two improvements: a) Efficient Training by realizing Stack LSTM parallel training; b) Effective Encoding via adopting deep contextualized word embeddings BERT. Generally, we proposed a unified pipeline to meaning representation parsing, including framework-specific transition-based parsers, BERT-enhanced word representation, and post-processing. In the final evaluation, our system was ranked first according to ALL-F1 (86.2{\%}) and especially ranked first in UCCA framework (81.67{\%}).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="che-etal-2019-hit">
<titleInfo>
<title>HIT-SCIR at MRP 2019: A Unified Pipeline for Meaning Representation Parsing via Efficient Training and Effective Encoding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Longxu</namePart>
<namePart type="family">Dou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuxuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yijia</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system (HIT-SCIR) for CoNLL 2019 shared task: Cross-Framework Meaning Representation Parsing. We extended the basic transition-based parser with two improvements: a) Efficient Training by realizing Stack LSTM parallel training; b) Effective Encoding via adopting deep contextualized word embeddings BERT. Generally, we proposed a unified pipeline to meaning representation parsing, including framework-specific transition-based parsers, BERT-enhanced word representation, and post-processing. In the final evaluation, our system was ranked first according to ALL-F1 (86.2%) and especially ranked first in UCCA framework (81.67%).</abstract>
<identifier type="citekey">che-etal-2019-hit</identifier>
<identifier type="doi">10.18653/v1/K19-2007</identifier>
<location>
<url>https://aclanthology.org/K19-2007</url>
</location>
<part>
<date>2019-nov</date>
<extent unit="page">
<start>76</start>
<end>85</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HIT-SCIR at MRP 2019: A Unified Pipeline for Meaning Representation Parsing via Efficient Training and Effective Encoding
%A Che, Wanxiang
%A Dou, Longxu
%A Xu, Yang
%A Wang, Yuxuan
%A Liu, Yijia
%A Liu, Ting
%S Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning
%D 2019
%8 nov
%I Association for Computational Linguistics
%C Hong Kong
%F che-etal-2019-hit
%X This paper describes our system (HIT-SCIR) for CoNLL 2019 shared task: Cross-Framework Meaning Representation Parsing. We extended the basic transition-based parser with two improvements: a) Efficient Training by realizing Stack LSTM parallel training; b) Effective Encoding via adopting deep contextualized word embeddings BERT. Generally, we proposed a unified pipeline to meaning representation parsing, including framework-specific transition-based parsers, BERT-enhanced word representation, and post-processing. In the final evaluation, our system was ranked first according to ALL-F1 (86.2%) and especially ranked first in UCCA framework (81.67%).
%R 10.18653/v1/K19-2007
%U https://aclanthology.org/K19-2007
%U https://doi.org/10.18653/v1/K19-2007
%P 76-85
Markdown (Informal)
[HIT-SCIR at MRP 2019: A Unified Pipeline for Meaning Representation Parsing via Efficient Training and Effective Encoding](https://aclanthology.org/K19-2007) (Che et al., CoNLL 2019)
ACL