@inproceedings{wang-etal-2019-shanghaitech,
title = "{S}hanghai{T}ech at {MRP} 2019: Sequence-to-Graph Transduction with Second-Order Edge Inference for Cross-Framework Meaning Representation Parsing",
author = "Wang, Xinyu and
Liu, Yixian and
Jia, Zixia and
Jiang, Chengyue and
Tu, Kewei",
booktitle = "Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K19-2005",
doi = "10.18653/v1/K19-2005",
pages = "55--65",
abstract = "This paper presents the system used in our submission to the CoNLL 2019 shared task: Cross-Framework Meaning Representation Parsing. Our system is a graph-based parser which combines an extended pointer-generator network that generates nodes and a second-order mean field variational inference module that predicts edges. Our system achieved 1st and 2nd place for the DM and PSD frameworks respectively on the in-framework ranks and achieved 3rd place for the DM framework on the cross-framework ranks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2019-shanghaitech">
<titleInfo>
<title>ShanghaiTech at MRP 2019: Sequence-to-Graph Transduction with Second-Order Edge Inference for Cross-Framework Meaning Representation Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xinyu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yixian</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zixia</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengyue</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kewei</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the system used in our submission to the CoNLL 2019 shared task: Cross-Framework Meaning Representation Parsing. Our system is a graph-based parser which combines an extended pointer-generator network that generates nodes and a second-order mean field variational inference module that predicts edges. Our system achieved 1st and 2nd place for the DM and PSD frameworks respectively on the in-framework ranks and achieved 3rd place for the DM framework on the cross-framework ranks.</abstract>
<identifier type="citekey">wang-etal-2019-shanghaitech</identifier>
<identifier type="doi">10.18653/v1/K19-2005</identifier>
<location>
<url>https://aclanthology.org/K19-2005</url>
</location>
<part>
<date>2019-nov</date>
<extent unit="page">
<start>55</start>
<end>65</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ShanghaiTech at MRP 2019: Sequence-to-Graph Transduction with Second-Order Edge Inference for Cross-Framework Meaning Representation Parsing
%A Wang, Xinyu
%A Liu, Yixian
%A Jia, Zixia
%A Jiang, Chengyue
%A Tu, Kewei
%S Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning
%D 2019
%8 nov
%I Association for Computational Linguistics
%C Hong Kong
%F wang-etal-2019-shanghaitech
%X This paper presents the system used in our submission to the CoNLL 2019 shared task: Cross-Framework Meaning Representation Parsing. Our system is a graph-based parser which combines an extended pointer-generator network that generates nodes and a second-order mean field variational inference module that predicts edges. Our system achieved 1st and 2nd place for the DM and PSD frameworks respectively on the in-framework ranks and achieved 3rd place for the DM framework on the cross-framework ranks.
%R 10.18653/v1/K19-2005
%U https://aclanthology.org/K19-2005
%U https://doi.org/10.18653/v1/K19-2005
%P 55-65
Markdown (Informal)
[ShanghaiTech at MRP 2019: Sequence-to-Graph Transduction with Second-Order Edge Inference for Cross-Framework Meaning Representation Parsing](https://aclanthology.org/K19-2005) (Wang et al., CoNLL 2019)
ACL