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Abstract

Instructional videos get high-traffic on video
sharing platforms, and prior work suggests
that providing time-stamped, subtask annota-
tions (e.g., “heat the oil in the pan”) improves
user experiences. However, current automatic
annotation methods based on visual features
alone perform only slightly better than con-
stant prediction. Taking cues from prior work,
we show that we can improve performance
significantly by considering automatic speech
recognition (ASR) tokens as input. Further-
more, jointly modeling ASR tokens and visual
features results in higher performance com-
pared to training individually on either modal-
ity. We find that unstated background infor-
mation is better explained by visual features,
whereas fine-grained distinctions (e.g., “add
oil” vs. “add olive oil”) are disambiguated
more easily via ASR tokens.

1 Introduction

Instructional videos increasingly dominate user at-
tention on online video platforms. For example,
86% of YouTube users report using the platform
often to learn new things, and 70% of users report
using videos to solve problems related to work,
school, or hobbies (O’Neil-Hart, 2018).

Prior work in user experience has investigated
the best way of presenting instructional videos to
users. Kim et al. (2014), for example, compare
two options; first: presenting users with the video
alone, and second: presenting the video with an
additional structured representation, including a
timeline populated with task subgoals. Users in-
teracting with the structured video representation
reported higher satisfaction, and external judges
rated the work they completed using the videos
as having higher quality. Margulieux et al. (2012)
and Weir et al. (2015) similarly find that present-
ing explicit subgoals alongside how-to videos im-

...knob of ginger and cut 
off a little bit and then 

just zest it...

 Cut up ginger and grate into the bowl

Input:

Target:

...best quality olive oil 
I can find...

    Heat some olive oil in a sauce pan

Input:

Target:

... that's perfection in 
my book right there, 

that's...

    Put the dish on a plate and serve

Input:

Target:

Figure 1: Illustration of a multimodal dense instruc-
tional video captioning task. Models are given access
to both video frames and ASR tokens, and must gen-
erate a recipe instruction step for each video segment.
The speaker in the video sometimes (but not always)
references literal objects and actions.

proves user experiences. Thus, presenting instruc-
tional videos with additional structured annota-
tions is likely to benefit users.

These studies rely on human annotation of time-
stamped subtask goals, e.g., timed captions cre-
ated through crowdsourcing. However, human-
in-the-loop annotation is infeasible to deploy for
popular video sharing platforms like YouTube that
receive hundreds of hours of uploads per minute.
In this work, we address the task of automatically
producing captions for instructional videos at the
level of video segments. Ideally, generated cap-
tions provide a literal, imperative description of
the procedural step occurring for a given video
segment, e.g., in the cooking context we consider,
“add the oil to the pan.”

Producing segment-level captions is a sub-task
of dense video captioning, where prior work has
mostly focused on visual-only models. Dense
captioning is a difficult task, particularly in the
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instructional video domain, as fine-grained dis-
tinctions may be difficult or impossible to make
with visual features alone. Visual information
can be ambiguous (e.g., distinguishing between
“olive oil” vs. “vegetable oil”) or incomplete
(e.g., preparation steps may occur off-camera).
In our study, a first important finding is that,
for the dataset considered, current state-of-the-art,
visual-features–only models only slightly outper-
form a constant prediction baseline, e.g., by 1.5
BLEU/METEOR points.

To improve performance in this difficult set-
ting, we consider the automatic speech recognition
(ASR) tokens generated by YouTube. These pub-
licly available tokens are an ASR model’s attempts
to map words spoken in videos into text. How-
ever, while a promising potential source for sig-
nal, it is not always trivial to transform even accu-
rate ASR into the desired imperative target: while
there are cases of clear correspondence between
the literal actions in the video and the ASR tokens,
in other cases, the mapping is imperfect (Fig. 1).
For example, when finishing a dish, a user says
“that’s perfection in my book right there” rather
than “put the dish on a plate and serve.” There
are also cases where no ASR tokens are available
at all. Despite these potential difficulties, previ-
ous work has demonstrated that ASR can be in-
formative in a variety of instructional video under-
standing tasks (Naim et al., 2014, 2015; Malmaud
et al., 2015; Sener et al., 2015; Alayrac et al., 2016;
Huang et al., 2017); though less work has fo-
cused on instructional caption generation, which
is known to be difficult and sensitive to input per-
turbations (Chen et al., 2018).

We find that incorporating ASR-token–based
features significantly improves performance over
visual-features–only models (e.g., CIDEr im-
proves 0.53 ⇒ 1.0, BLEU-4 improves 4.3 ⇒
8.5). We also show that combining ASR tokens
and visual features results in the highest perform-
ing models, suggesting that the modalities contain
complementary information.

We conclude by asking: what information is
captured by the visual features that is not cap-
tured by the ASR tokens (and vice versa)? Auxil-
iary experiments examining performance of mod-
els in predicting the presence/absence of individ-
ual word types suggest that visual signals are su-
perior for identifying unspoken, implicit aspects
of scenes; for instance, in order to mix ingredi-

ents, they must be placed in a bowl — and al-
though bowls are often visually present in the
scene, “bowl” is often not explicitly mentioned
by the speaker. Conversely, ASR features readily
disambiguate between fine-grained entities, e.g.,
“olive oil” vs.“vegetable oil”, a task that is dif-
ficult (and sometimes impossible) for visual fea-
tures alone.

2 Related Work

Narrated instructional videos. While several
works have matched audio and video signals in
an unconstrained setting (Arandjelovic and Zis-
serman, 2017; Tian et al., 2018), our work builds
upon previous efforts to utilize accompanying
speech signals to understand online instructional
videos, specifically. Several works focus on learn-
ing video-instruction alignments, and match a
fixed set of instructions to temporal video seg-
ments (Regneri et al., 2013; Naim et al., 2015;
Malmaud et al., 2015; Hendricks et al., 2017;
Kuehne et al., 2017). Another line of previous
work uses speech to extract and align language
fragments, e.g., verb-noun pairs, with instructional
videos (Gupta and Mooney, 2010; Motwani and
Mooney, 2012; Alayrac et al., 2016; Huang et al.,
2017, 2018; Hahn et al., 2018). Sener et al. (2015),
as part of their parsing pipeline, train a 3-gram lan-
guage model on segmented ASR token inputs to
produce recipe steps.
Dense Video Captioning. Recent work in com-
puter vision addresses dense video captioning (Kr-
ishna et al., 2017; Li et al., 2018; Wang et al.,
2018), a supervised task that involves (i) segment-
ing the input video, and, (ii) generating a natural
language description for each segment. Here, we
focus on the second subtask of generating descrip-
tions given a ground-truth segmentation; this set-
ting isolates the language generation part of the
modeling process.1 Most related to the present
work are several dense captioning approaches that
have been applied to instructional videos (Zhou
et al., 2018b,c). Zhou et al. (2018c) achieve state-
of-the-art performance on the dataset we consider;
their model is video-only, and combines a region
proposal network (Ren et al., 2015) and a Trans-
former (Vaswani et al., 2017) decoder.
Multimodal Video Captioning. Several works

1We find that state-of-the-art models perform poorly even
for just this subtask (see § 3.2), so we reserve the full task for
future work.
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have employed multimodal signals to caption the
MSR-VTT dataset (Xu et al., 2016), which con-
sists of 2K video clips from 20 general categories
(e.g., “news”, “sports”) with an average duration
of 10 seconds per clip. In particular, Ramanishka
et al. (2016); Xu et al. (2017); Hori et al. (2017);
Shen et al. (2017); Chuang et al. (2017); Hao et al.
(2018) all report small performance gains when
incorporating audio features on top of visual fea-
tures. However — we suspect that instructional
video domain is significantly different than MSR-
VTT (where the audio information does not nec-
essarily correspond to human speech), as we find
that ASR-only models significantly surpass the
state-of-the-art video model in our case. Palaskar
et al. (2019) and Shi et al. (2019), contemporane-
ous with the submission of the present work, also
examine ASR as a source of signal for generating
how-to video captions.

3 Dataset

We focus on YouCook2 (Zhou et al., 2018b),
the largest human-captioned dataset of instruc-
tional videos publicly available.2 It contains
2000 YouTube cooking videos, for a total of
176 hours, and spans 89 different recipes. Each
video averages at 5.26 minutes, and is annotated
with an average of 7.7 temporal segments (i.e.,
start/end points) corresponding to semantically
distinct recipe steps. Each segment is associated
with an imperative caption, e.g., “add the oil to the
pan”, for an average of 8.8 words per caption.

At the time of analysis (June 2018), over 25%
of the YouCook2 videos had been removed from
YouTube, and therefore we do not consider them.
As a result, all our experiments operate on a sub-
set of the YouCook2 data. While this makes direct
comparison with previous and future work more
difficult, our performance metrics can be viewed
as lower bounds, as they are trained on less data
compared to, e.g., (Zhou et al., 2018c). Unless
noted otherwise, our analyses are conducted over
1.4K videos and the 10.6K annotated segments
contained therein.

3.1 A Closer Look at ASR tokens

We collected the ASR tokens automatically gener-
ated by YouTube (available through the YouTube

2How2 (Sanabria et al., 2018) tackles the different task
of predicting video uploader-provided descriptions/captions,
which are not always appropriate summarizations.

Data API3 with trackKind = ASR), which are then
mapped to their temporally corresponding video
segments. We start by asking the following ques-
tions: How much narration do users provide for
instructional videos? And: can YouTube’s ASR
system detect that speech?

Not surprisingly, speakers in videos tend to be
more verbose than the annotated groundtruth cap-
tions: we find the length distribution of ASR to-
kens per segment to be roughly log-normal, with
mean/median length being 42/28 tokens respec-
tively (compared to a mean of 9 tokens/segment
for captions). Over the 10.6K available seg-
ments, only 1.6% of them have zero associated to-
kens. Furthermore, based on automatic language
identification provided by the YouTube API and
some manual verification, we estimated that less
than 1% of videos contain completely non-English
speech (but we do not discard them from our ex-
periments).

We also investigate the words-per-minute
(WPM) ratio, based on the video segment length.
The mean value of 134 WPM is slightly lower
than, but comparable to, previously reported fig-
ures of English speaking rates (Yuan et al., 2006),
which indicates that, for this set of video seg-
ments, words are being detected at rates compa-
rable to everyday English speech.

3.2 A Closer Look at the Generation Task

To better understand the generation task, we com-
puted lower and upper bounds for generation per-
formance using a constant-prediction baseline and
human performance, respectively.
Lower bound: constant. For all segments at test
time, we predict “heat some oil in a pan and add
salt and pepper to the pan and stir.” This sentence
is constructed by examining the most common n-
grams in the corpus and pasting them together.
Upper bound: human estimate. We conducted a
small-scale experiment to estimate human perfor-
mance for the segment-level captioning task. Two
of the authors of this paper, after being trained
on segment-level captions from three videos, at-
tempted to mirror that style of annotation for the
segments of 20 randomly sampled videos, to-
talling over 140 segment annotations each.4 Both
human annotators report low-confidence with the

3https://developers.google.comyoutube/v3/docs/captions
4These preliminary experiments are not meant to provide

a definitive, exact measure of inter-annotator agreement.
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task, in particular, they found it difficult to main-
tain a consistent level of specificity in terms of
how many factual details to include (e.g., “mix to-
gether” vs. “mix the peppers and mushrooms to-
gether.”)
Results: We compute corpus-level performance
statistics using four standard generation evaluation
metrics: ROUGE-L (Lin, 2004), CIDEr (Vedantam
et al., 2015), BLEU-4 (Papineni et al., 2002) and
METEOR (Banerjee and Lavie, 2005) (higher is bet-
ter in all cases).

Note that our evaluation is micro-averaged at
the segment level, and differs slightly from prior
work on this dataset, which has mostly reported
metrics macro-averaged at the video level. We
switched the evaluation because some metrics like
BLEU-4 exhibit undesirable sparsity artifacts when
macro-averaging, e.g., any video without a correct
4-gram gets a zero BLEU score, even if there are
many 1/2/3-grams correct. Segment-level averag-
ing, the standard evaluation practice in fields like
machine translation, is insensitive to this sparsity
concern, and (we believe) provides a more robust
perspective on performance.

BLEU-4 METEOR ROUGE-L CIDEr

Constant Prediction 2.70 10.3 21.7 .15

Zhou et al. (2018c) 3.84 11.6 27.4 .38
Sun et al. (2019b) 4.07 11.0 27.5 .50
Sun et al. (2019a) 4.31 11.9 29.5 .53

Human Estimate 15.2 25.9 45.1 3.8

Table 1: The performance of several state-of-the-art,
video-only models, with lower (constant prediction)
and upper (human estimate) bounds.

This comparison highlights the gap that remains
between the simplest possible baseline, several
computer vision based models, and (roughly) how
well humans perform at this task. Given that Sun
et al. (2019a) is a highly tuned computer vision
model transfer learned from a corpus of over 300K
cooking videos, from the perspective of building
video captioning systems in practice, we suspect
that incorporating additional modalities like ASR
is more likely to result in performance gains ver-
sus building better computer vision models.

4 Models

In addition to the constant prediction baseline, we
explore a series of ASR-based baseline methods:
ASR as the Caption (ASC) This baseline returns

the test-time ASR token sequence as the caption.
While the result is not a coherent, imperative step,
performance of this method offers insight into the
extent of word overlap between the ASR sequence
and the target groundtruth, as measured by the
captioning metrics.
Filtered ASR (FASC) Given that the ASR to-
ken sequences are much longer than groundtruth
captions (§ 3.1), the performance of ASC incurs
a length (or precision-based) penalty for several
metrics. The FASC baseline strengthens ASC
by removing word types that are less likely to
appear in groundtruth captions, e.g., “ah”, “he”,
“hello,” or “wish”. Specifically, we only keep
words with high P (w | GT )

P (w | ASR) values, i.e., words that
would be indicative of the groundtruth class if we
were to build a Naive-Bayes classifier with add-
one smoothing; probabilities are computed only
over the training set to reduce the risk of over-
fitting. This baseline produces outputs that are
shorter compared to ASC, but it is unlikely to yield
fluent, readable text.
ASR-based Retrieval (RET) This retrieval base-
line memorizes the recipe steps in the training set,
and represents them each as tf-idf vectors. At test-
time, the ASR sequence is converted into a tf-idf
vector and compared to each training-set caption
via cosine similarity.5 The training caption that
is most similar to the test-time ASR according to
this metric is returned as the “generated” caption.
Note that, although a memorization-based tech-
nique, this baseline method produces de-facto cap-
tions as outputs.

4.1 Transformer-based Neural Models

We explore neural encoder-decoder models based
on Transformer Networks (Vaswani et al., 2017).
In contrast to RNNs, Transformers abandon recur-
rence in favor of a mix of different types of feed-
forward layers, e.g., in the case of the Transformer
decoder, self-attention layers, cross-attention lay-
ers (attending to the encoder outputs), and fully
connected feed-forward layers. We explore two
variants of the Transformer, corresponding to dif-
ferent hypotheses about what information might
be useful for captioning instructional videos.
ASR Transformer (AT) This model learns to map
ASR-token sequences directly to captions using

5We tried several variants of this method, e.g., comparing
test ASR to train ASR, but found that comparing test ASR to
train captions performed the best.
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CNNEmbeddings

we will first 
slice...

Sampled FramesASR

Cook the tomatoes in the pan

CNN CNN

Transformer Encoder

Transformer Decoder

Figure 2: The AT+Video model. Both the encoder and
decoder layers perform cross-modal attention.

a standard sequence-to-sequence Transformer ar-
chitecture. The model’s parameters are optimized
to maximize the probability of the ground-truth
instructions, conditioned on the input ASR se-
quences.
Multimodal model (AT+Video) We incorporate
video features into the ASR transformer (Fig 2).
For ease of comparison with prior and future
work, we use features extracted from ResNet34
(He et al., 2016) pretrained on the ImageNet clas-
sification task; these features are provided in the
YouCook2 data release. Each video is initially
uniformly sampled at 512 frames, with an average
of 30 frames per captioned-segment.

To represent each video segment, first, k frames
are randomly sampled with replacement. The
sampled frames are temporally sorted to pre-
serve ordering information, and their correspond-
ing ResNet34 feature vectors are projected to
the Transformer encoder hidden dimension via a
width-1 1D convolution. We use k = 10 for all
our experiments. The encoder self-attention layers
perform cross-modal attention operations between
the visual features and the ASR-token–based fea-
tures. For each output token, the decoder attends
to previously predicted tokens, and encoder out-
puts for all input frames / ASR tokens.

5 Experiments

We perform 10-fold cross-validation with ran-
domly sampled 80/10/10 train/dev/test splits (split
at the video-level), using the same splits for all
models. After discarding the videos that were
deleted at the time of data collection, each split

BLEU-4 METEOR ROUGE-L CIDEr

CNST 2.70 10.03 21.69 0.15
Sun et al. (2019a) 4.31 11.91 29.47 0.53

ASC 1.68 14.86 19.24 0.20
FASC 4.32 18.47 30.07 0.59
RET 5.68 14.29 28.06 0.80
AT 8.55 16.93 35.54 1.06

AT+Video 9.01 17.77 36.65 1.12

Table 2: Caption generation performance: AT+Video is
a multimodal model that adds visual frame features to
AT. A bolded value in a column indicates a statistically-
significant improvement, whereas an underline indi-
cates a statistical tie for best (p < .01).

contains roughly 1.1K training videos (averaging
8.3K training segments). We report mean perfor-
mance over these splits according to four standard
captioning accuracy metrics, introduced in §3.2.
ROUGE-L, CIDEr, BLEU-4, and METEOR. We per-
form both Wilcoxon signed-rank tests (Demšar,
2006) and two-sided corrected resampled t-tests
(Nadeau and Bengio, 2000) to estimate statistical
significance. To be conservative and reduce the
chance of Type I error, we take whichever p-value
is larger between these two tests.
Transformer-based model details. For each
cross-validation split, we use a batch size of
128, tie the Transformer model’s feed forward
and model dimensions dffn = dmodel, and opti-
mize regularized cross-entropy loss using Adam
(Kingma and Ba, 2015) with lr = .001. We
train models for 100K steps, storing checkpoint
files periodically. For each split, we train 8
model variants, conducting a grid search over
model dimension, number of encoder/decoder lay-
ers, and L2 regularization: we consider all model
parameter settings in (dmodel, Nlayer, λreg) ∈
{128, 256} × {2, 3} × {.0005, .001} for each
cross-validation split independently, and select the
highest performing, checkpointed model accord-
ing to ROUGE-L over the development set for that
fold. Transformer models are implemented us-
ing tensor2tensor (Vaswani et al., 2018) and
Tensorflow (Abadi et al., 2015). The vocab-
ulary (average size 800) is determined separately
using the training data for each cross-validation
split. Words are considered if they occur at least
5 times in the ground-truth of the current training
set.6 This leads to an OOV rate of ∼60% in the
input. We truncate inputs at 80 tokens (∼10-15%

6Different vocabulary creation schemes, e.g., sub-word
tokenization, led to small performance decreases.
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"so i just want to go ahead and 
remove all of this fat from our 

chicken... cut it into about one inch 
pieces so you want pieces"

cut the chicken into 
pieces

"... color them and then shape 
them … tongs so as not to burn 
yourself it goes with total tacos 

in a frying pan ...'"

"fattoush salad but you can add 
in cilantro and some other herbs 
if you prefer to do that instead of 

the parsley and one"

"out of the ball now we're going 
to cut it and divide it"

"get the colored variety the 
kashmiri variety is very good one 

and a half tablespoon of 
coriander"

"..."
[No ASR Detected]

Vi
de

o

prepare the tortillas 
and roll them using 

rolling pin

add chopped parsley 
to the mixture too cut the circle in half add chile powder place the chicken on 

the rice

cut the chicken into 
pieces

place the tortilla on 
the pan and roll

add cilantro to the 
salad

cut the dough into 
UNK pieces

add the coriander 
powder coriander... 

add the sauce to the 
pot

AS
R

Ta
rg

et
Pr

ed
.

Figure 3: Example generations from AT+Video in cases where it performs well, okay, and poorly.

of transcripts are truncated in this process). For
simplicity, decoding is done greedily in all cases.
Generation Experiment Results. Table 2 reports
the performance of each model. For unimodal
models, simple baselines like FASC (filtered ASR)
and RET (training-caption retrieval) outperform
the state-of-the-art video-only model of Sun et al.
(2019a), according to the four automatic evalua-
tion metrics. Overall, AT yields the best unimodal
performance. Combining ASR and visual signals
into a multimodal representation performs even
better: the AT+Video model tends to outperform
AT (and Sun et al. (2019a)), according to ROUGE-

L, CIDEr, and METEOR (p <.01). Since AT and
AT+Video have identical architectures and differ
only in the available inputs, this result provides
strong evidence that it is indeed the multimodal-
ity of AT+Video that leads to the (statistically sig-
nificant) performance gains over the strongest uni-
modal models. We present some output examples
in Fig. 3.

5.1 Diversity of Generated Captions

In addition to the automatic quality metrics, we
measure how diverse the generated caption are for
each model, using the following metrics: vocabu-
lary coverage (the percent of vocabulary that was
predicted at test-time by each algorithm at least
once); proportion not copied (the percent of gener-
ated captions that do not appear in the training set
verbatim); and output uniqueness (the percent of
generated captions that are unique). These metrics
are useful because they can highlight undesirable,
degenerate behavior for models.7 As an upper-
bound, we compute these metrics for the ground-
truth (GT) test-time targets. Note that even the

7For instance, the constant prediction baseline we con-
sider would score low in both vocab coverage and unique-
ness.

ground-truth targets do not achieve 100% in these
diversity metrics: for vocabulary coverage, not all
vocabulary items appear in the ground-truth cap-
tions for a given cross-validation split; similarly,
for proportion not copied/output uniqueness, be-
cause there are repeated captions in the label set.

Vocab
Cov.

Not
Copied

Unique30
%

65
%

10
0%

AT AT+Video GT

Figure 4: The multimodal model AT+Video produces
slightly more diverse captions than its unimodal coun-
terparts.

According to all metrics, AT+Video outputs are
slightly more diverse compared to the AT outputs
(Fig. 4). This observation suggests that the multi-
modal model is not simply exploiting a degeneracy
to achieve its performance improvements.

6 Complementarity of Video and ASR

We now turn to the question of why multimodal
models produce better captions: what type of sig-
nal does video contain that speech does not (and
vice versa)? Our initial idea was to quantita-
tively compare the captions generated by AT ver-
sus AT+Video; however, because the dataset is rel-
atively small, we were unable to make observa-
tions about the generated captions that were statis-
tically significant.8

8In general, making concrete statements about the causal
link between inputs and outputs of sequence-to-sequence
models is challenging, even in the text-to-text case, see
Alvarez-Melis and Jaakkola (2017).
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knead 97.8
nori 97.1
yeast 96.1
mozzarella 95.8
lettuce 95.3
pancake 94.7
wrapper 94.3
patty 93.4
dal 93.0
grill 92.9
pizza 92.9
oven 92.7
bake 92.3

(a) Easiest
(AUCµ,w)

4 43.8
bit 51.7
about 52.1
prepare 52.3
mixed 54.5
then 54.5
spoon 54.9
or 55.9
it 56.2
ready 56.7
3 57.1
few 58.3
more 58.5

(b) Hardest
(AUCµ,w)

fat 39.7
turn 36.4
sea 35.9
white 31.7
chilies 30.8
dried 30.6
beer 30.3
pancetta 30.0
mustard 29.8
spice 28.4
sliced 28.3
cinnamon 28.0
warm 27.8

(c) ASR Better
(AUC∆,w)

sandwich -18.0
stove -15.4
tuna -14.3
again -12.6
mince -11.2
wok -8.9
burger -8.8
pizza -8.4
serve -7.8
4 -6.6
mussels -6.6
tray -6.3
bowl -5.9

(d) Video Better
(AUC∆,w)

Figure 5: Per-word classification results using ASR and/or Video features. Each point in the scatterplot represents
a different word-type; x-coordinate values show how well a word is predicted by ASR-token features; y-coordinate
values show how well a word is predicted by video features. Tables (a)-(d) show word types that are easy, univer-
sally difficult, better-predicted-by-ASR, and better-predicted-by-video, respectively.

Instead, we examine properties of the ASR-
token–based and visual features directly. Follow-
ing a procedure inspired from (Lu et al., 2008;
Berg et al., 2012; Dai et al., 2018; Mahajan et al.,
2018), we consider the auxiliary task of predicting
presence/absence of unigrams in the ground truth
captions from features extracted from correspond-
ing segments. We train two unimodal classifiers,
one using ASR-token–based features and one us-
ing visual features, and measure their relative ca-
pacity to predict different word types; the goal is
to measure which word types are most-predictable
from the ASR tokens and, conversely, which ones
are most-predictable from the visual features.

For each segment, we predict the unigram dis-
tribution of its corresponding caption using a uni-
modal softmax classifier: for simplicity, we use
a 2-layer, residual deep averaging network (Iyyer
et al., 2015) for both the visual and ASR-based
classifier. We measure per-word-type performance
using AUC, which is word-frequency independent.

Specifically — for each word type w (e.g.,
w = beer) we measure how well w is pre-
dicted by the classifier based on ASR / spoken to-
kens AUCt,w (e.g., AUCt,beer = 98) and, conversely,
how well w is predicted by the visual classifier
AUCv,w (AUCv,beer = 68). For a given word type, we
measure its overall difficulty by averaging AUCt,w

and AUCv,w; we call this AUCµ,w (AUCµ,beer = 83).
Similarly, we measure the difference in difficulty
by subtracting AUCt,w and AUCv,w to give AUC∆,w

(AUC∆,beer = 30) with higher values indicating that
a word type is predicted better by the spoken-token
features compared to the visual features. We plot
AUCt,w versus AUCv,w for 382 words in Fig. 5 (re-
sults are averaged over 10 cross-val splits).
Absolute Performance. Points in the upper-right

quadrant of Fig. 5 represent words that are easy
for both visual and ASR-token–based features to
predict, whereas points in the lower-left represent
words that are more difficult. Specific ingredients,
e.g., “nori” and “mozzarella,” are often easy to de-
tect, as are actions closely associated with partic-
ular objects (e.g., “dough” is almost always the
object being “knead”-ed). Conversely, pronouns
(e.g., “it”) and conjunctions (e.g., “or”) are uni-
versally difficult to predict.
Visual vs. ASR-token–based features. In gen-
eral, ASR-token–based features carry greater pre-
dictive power, as evidenced by the skew towards
the bottom right in the scatterplot in Fig. 5. One
pattern in the cases where speech features perform
better (Fig. 5c) is that words are often modifiers,
e.g., white (pepper), sea (salt), dried (chilies),
olive (oil), etc. Indeed, small, detailed distinc-
tions may be often difficult to make from visual
features, e.g., “vegetable oil” and “olive oil” may
look identical in most YouTube videos.

Nonetheless, there are types better predicted by
video features (Fig. 5d). Often, these are cases
that require unstated, background knowledge, i.e.,
references to objects not explicitly stated by the
speaker(s). To quantify this observation, for each
word type we compute the likelihood that it is
stated by the speaker in the video, given that it
appears in the ground-truth caption, i.e., P (w ∈
ASR | w ∈ GT). Aside from trivial cases (e.g.,
words misspelled in the GT never appear in the
ASR), words that are often unstated include action
words (e.g., “place”, “crush”) and cookware (e.g.,
“pan”, “wok”, “pot”). Words that are often stated
include specific ingredients (e.g., “honey”, “co-
conut”, “ginger”). In contrast to word frequency
(which is uncorrelated with AUC∆,w, Spearman



426

ρ ≈ 0), stated rate is correlated with AUC∆,w

(ρ = 0.44, p < .01).

7 Oracle Object Detection

The results in Table 2 indicate that, while adding
visual information yields statistically significant
improvements to the ASR-only model, the im-
provements are not large in magnitude. This
leaves open the question of whether (a) any vi-
sual information simply does not provide much
additional information on top of ASR, or (b) we
need better visual modeling. We take a first step
in addressing this question by experimenting with
an “oracle” object detector that provides perfect-
precision predictions.9 If even oracle object detec-
tion does not help, then the answer is more likely
(a) rather than (b) above.

As part of a YouCook2 data release, bounding
box annotations for selected objects in the recipe
text (Zhou et al., 2018a) were provided. Unfor-
tunately, while these could have served as an ora-
cle, the actual annotations are only available for a
small fraction of the data. Instead, we consider the
set of 62 object labels made available. We sim-
ulate a high-precision, oracle object detector by
identifying – per video segment – the overlap be-
tween (morphology-normalized) groundtruth cap-
tion mentions and the 62 object labels available.10

For instance, for the groundtruth caption “put the
mushrooms in the pan”, the oracle object detec-
tor yields “mushroom” and “pan”. 89% of seg-
ments receive at least one oracle object. The or-
acle object detections are then fed into the Trans-
former encoder (in random order), either by them-
selves (Oracle) or along with the ASR token se-
quence (AT+Oracle). We perform the same cross-
validation experiments as described in §5, and
report the average ROUGE-L (we observe similar
trends with other metrics):

AT AT+Video Oracle AT+Oracle

ROUGE-L 35.5 36.7 40.8 45.5

Because the AT+Oracle model achieves large
improvements over AT+Video, we suspect that
building higher-quality visual representations is a
promising avenue for future work.

9High-precision object detectors are gaining popularity in
the computer vision community because the training data is
easier to annotate, e.g., Krasin et al. (2017).

10This oracle is unlikely to be achievable, as it assumes
100% precision for the 62 objects considered (which also im-
plies modeling which objects to talk about, a non-trivial task
in itself (Berg et al., 2012)).
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Figure 6: The performance of the oracle methods in-
creases as they are given access to an increasing num-
ber of object types.

How weak of an oracle can still produce high
performance? Fig. 6 shows performances of mod-
els using subsets of the 62 objects (most frequent
10% of objects through 90%) over one cross-
validation fold. AT+Oracle gives better perfor-
mance than AT+Video by detecting just 6 object
types, and the oracle by-itself (which is only given
access to object sets) achieves comparable perfor-
mance to AT+Video with 30 object types. These
results suggest that, at least for this task, the Trans-
former decoder is likely not the main performance
bottleneck, as it is able to paste-together unordered
object detections into captions effectively.

8 Conclusion

In this work, we demonstrate the impact of incor-
porating both visual and ASR-token–based fea-
tures into instructional video captioning models.
Additional experiments investigate the comple-
mentarity of the visual and speech signals.

Our oracle experiments suggest that perfor-
mance bottlenecks likely derive from the input en-
coding, as the decoder is able to paste-together
even simple sets of object detections into high-
quality captions. Future work would thus be well-
suited to investigate better models of input data.
Given the small size of the dataset, transfer learn-
ing may prove fruitful, e.g., pre-training the en-
coder with an unsupervised, auxiliary task; work
contemporaneous with our submission from the
computer vision community suggests that trans-
fer learning indeed is a promising direction (Sun
et al., 2019b,a; Miech et al., 2019).
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