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Abstract

Motivated by recent findings on the proba-
bilistic modeling of acceptability judgments,
we propose syntactic log-odds ratio (SLOR),
a normalized language model score, as a met-
ric for referenceless fluency evaluation of nat-
ural language generation output at the sentence
level. We further introduce WPSLOR, a novel
WordPiece-based version, which harnesses a
more compact language model. Even though
word-overlap metrics like ROUGE are com-
puted with the help of hand-written references,
our referenceless methods obtain a signifi-
cantly higher correlation with human fluency
scores on a benchmark dataset of compressed
sentences. Finally, we present ROUGE-LM, a
reference-based metric which is a natural ex-
tension of WPSLOR to the case of available
references. We show that ROUGE-LM yields
a significantly higher correlation with human
judgments than all baseline metrics, including
WPSLOR on its own.

1 Introduction

Producing sentences which are perceived as natu-
ral by a human addressee—a property which we
will denote as fluency1 throughout this paper —is
a crucial goal of all natural language generation
(NLG) systems: it makes interactions more natu-
ral, avoids misunderstandings and, overall, leads
to higher user satisfaction and user trust (Martin-
dale and Carpuat, 2018). Thus, fluency evaluation
is important, e.g., during system development, or

∗*This research was carried out while the first author was
interning at Google.

1Alternative names include naturalness, grammaticality
or readability. Note that the exact definitions of all those
terms vary slightly throughout the literature.

If access to a synonym dictionary is
likely to be of use, then this package may 3
be of service.

Participants are invited to submit a set
pair do domain name that is already 1.6
taken along with alternative.

Even $15 was The HSUS. 1

Table 1: Example compressions from our dataset with
their fluency scores; scores in [1, 3], higher is better.

for filtering unacceptable generations at applica-
tion time. However, fluency evaluation of NLG
systems constitutes a hard challenge: systems are
often not limited to reusing words from the input,
but can generate in an abstractive way. Hence, it
is not guaranteed that a correct output will match
any of a finite number of given references. This
results in difficulties for current reference-based
evaluation, especially of fluency, causing word-
overlap metrics like ROUGE (Lin and Och, 2004)
to correlate only weakly with human judgments
(Toutanova et al., 2016). As a result, fluency eval-
uation of NLG is often done manually, which is
costly and time-consuming.

Evaluating sentences on their fluency, on the
other hand, is a linguistic ability of humans which
has been the subject of a decade-long debate
in cognitive science. In particular, the question
has been raised whether the grammatical knowl-
edge that underlies this ability is probabilistic or
categorical in nature (Chomsky, 1957; Manning,
2003; Sprouse, 2007). Within this context, Lau
et al. (2017) have recently shown that neural lan-
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guage models (LMs) can be used for modeling hu-
man ratings of acceptability. Namely, they found
SLOR (Pauls and Klein, 2012)—sentence log-
probability which is normalized by unigram log-
probability and sentence length—to correlate well
with acceptability judgments at the sentence level.

However, to the best of our knowledge, these
insights have so far gone disregarded by the natu-
ral language processing (NLP) community. In this
paper, we investigate the practical implications of
Lau et al. (2017)’s findings for fluency evaluation
of NLG, using the task of automatic compression
(Knight and Marcu, 2000; McDonald, 2006) as an
example (cf. Table 1). Specifically, we test our
hypothesis that SLOR should be a suitable met-
ric for evaluation of compression fluency which
(i) does not rely on references; (ii) can naturally
be applied at the sentence level (in contrast to the
system level); and (iii) does not need human flu-
ency annotations of any kind. In particular the first
aspect, i.e., SLOR not needing references, makes
it a promising candidate for automatic evaluation.
Getting rid of human references has practical im-
portance in a variety of settings, e.g., if references
are unavailable due to a lack of resources for anno-
tation, or if obtaining references is impracticable.
The latter would be the case, for instance, when
filtering system outputs at application time.

We further introduce WPSLOR, a novel, Word-
Piece (Wu et al., 2016)-based version of SLOR,
which drastically reduces model size and training
time. Our experiments show that both approaches
correlate better with human judgments than tradi-
tional word-overlap metrics, even though the latter
do rely on reference compressions. Finally, inves-
tigating the case of available references and how
to incorporate them, we combine WPSLOR and
ROUGE to ROUGE-LM, a novel reference-based
metric, and increase the correlation with human
fluency ratings even further.

Contributions. To summarize, we make the fol-
lowing contributions:

1. We empirically show that SLOR is a good
referenceless metric for the evaluation of
NLG fluency at the sentence level.

2. We introduce WPSLOR, a WordPiece-based
version of SLOR, which disposes of a more
compact LM without a significant loss of per-
formance.

3. We propose ROUGE-LM, a reference-based
metric, which achieves a significantly higher
correlation with human fluency judgments
than all other metrics in our experiments.

2 On Acceptability

Acceptability judgments, i.e., speakers’ judgments
of the well-formedness of sentences, have been
the basis of much linguistics research (Chomsky,
1964; Schütze, 1996): a speakers intuition about
a sentence is used to draw conclusions about a
language’s rules. Commonly, “acceptability” is
used synonymously with “grammaticality”, and
speakers are in practice asked for grammatical-
ity judgments or acceptability judgments inter-
changeably. Strictly speaking, however, a sen-
tence can be unacceptable, even though it is gram-
matical – a popular example is Chomsky’s phrase
“Colorless green ideas sleep furiously.” (Chom-
sky, 1957) In turn, acceptable sentences can be
ungrammatical, e.g., in an informal context or in
poems (Newmeyer, 1983).

Scientists—linguists, cognitive scientists, psy-
chologists, and NLP researcher alike—disagree
about how to represent human linguistic abili-
ties. One subject of debates are acceptability judg-
ments: while, for many, acceptability is a bi-
nary condition on membership in a set of well-
formed sentences (Chomsky, 1957), others as-
sume that it is gradient in nature (Heilman et al.,
2014; Toutanova et al., 2016). Tackling this re-
search question, Lau et al. (2017) aimed at model-
ing human acceptability judgments automatically,
with the goal to gain insight into the nature of hu-
man perception of acceptability. In particular, they
tried to answer the question: Do humans judge ac-
ceptability on a gradient scale? Their experiments
showed a strong correlation between human judg-
ments and normalized sentence log-probabilities
under a variety of LMs for artificial data they had
created by translating and back-translating sen-
tences with neural models. While they tried dif-
ferent types of LMs, best results were obtained for
neural models, namely recurrent neural networks
(RNNs).

In this work, we investigate if approaches which
have proven successful for modeling acceptability
can be applied to the NLP problem of automatic
fluency evaluation.
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3 Method

In this section, we first describe SLOR and the
intuition behind this score. Then, we introduce
WordPieces, before explaining how we combine
the two.

3.1 SLOR
SLOR assigns to a sentence S a score which con-
sists of its log-probability under a given LM, nor-
malized by unigram log-probability and length:

SLOR(S) =
1

|S|
(ln(pM (S)) (1)

− ln(pu(S)))

where pM (S) is the probability assigned to the
sentence under the LM. The unigram probability
pu(S) of the sentence is calculated as

pu(S) =
∏
t∈S

p(t) (2)

with p(t) being the unconditional probability of a
token t, i.e., given no context.

The intuition behind subtracting unigram log-
probabilities is that a token which is rare on its
own (in contrast to being rare at a given position in
the sentence) should not bring down the sentence’s
rating. The normalization by sentence length is
necessary in order to not prefer shorter sentences
over equally fluent longer ones.2 Consider, for in-
stance, the following pair of sentences:

(i) He is a citizen of France.

(ii) He is a citizen of Tuvalu.

Given that both sentences are of equal length and
assuming that France appears more often in a
given LM training set than Tuvalu, the length-
normalized log-probability of sentence (i) under
the LM would most likely be higher than that of
sentence (ii). However, since both sentences are
equally fluent, we expect taking each token’s un-
igram probability into account to lead to a more
suitable score for our purposes.

We calculate the probability of a sentence
with a long-short term memory (LSTM,
Hochreiter and Schmidhuber (1997)) LM, i.e., a
special type of RNN LM, which has been trained
on a large corpus. More details on LSTM LMs

2Note that the sentence log-probability which is normal-
ized by sentence length corresponds to the negative cross-
entropy.

ILP NAMAS SEQ2SEQ T3
fluency 2.22 1.30 1.51 1.40

Table 2: Average fluency ratings for each compression
system in the dataset by Toutanova et al. (2016).

can be found, e.g., in Sundermeyer et al. (2012).
The unigram probabilities for SLOR are estimated
using the same corpus.

3.2 WordPieces

Sub-word units like WordPieces (Wu et al., 2016)
are getting increasingly important in NLP. They
constitute a compromise between characters and
words: On the one hand, they yield a smaller vo-
cabulary, which reduces model size and training
time, and improve handling of rare words, since
those are partitioned into more frequent segments.
On the other hand, they contain more information
than characters.

WordPiece models are estimated using a data-
driven approach which maximizes the LM like-
lihood of the training corpus as described in Wu
et al. (2016) and Schuster and Nakajima (2012).

3.3 WPSLOR

We propose a novel version of SLOR, by incorpo-
rating a LM which is trained on a corpus which has
been split by a WordPiece3 model. This leads to a
smaller vocabulary, resulting in a LM with less pa-
rameters, which is faster to train (around 12h com-
pared to roughly 5 days for the word-based version
in our experiments). We will refer to the word-
based SLOR as WordSLOR and to our newly pro-
posed WordPiece-based version as WPSLOR.

4 Experiment

Now, we present our main experiment, in which
we assess the performances of WordSLOR and
WPSLOR as fluency evaluation metrics.

4.1 Dataset

We experiment on the compression dataset by
Toutanova et al. (2016). It contains single sen-
tences and two-sentence paragraphs from the
Open American National Corpus (OANC), which
belong to 4 genres: newswire, letters, jour-
nal, and non-fiction. Gold references are man-
ually created and the outputs of 4 compression
systems (ILP (extractive), NAMAS (abstractive),

3https://github.com/google/sentencepiece
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SEQ2SEQ (extractive), and T3 (abstractive); cf.
Toutanova et al. (2016) for details) for the test data
are provided. Each example has 3 to 5 independent
human ratings for content and fluency. We are in-
terested in the latter, which is rated on an ordinal
scale from 1 (disfluent) through 3 (fluent). We ex-
periment on the 2955 system outputs for the test
split.

Average fluency scores per system are shown in
Table 2. As can be seen, ILP produces the best
output. In contrast, NAMAS is the worst system
for fluency. In order to be able to judge the relia-
bility of the human annotations, we follow the pro-
cedure suggested by Pavlick and Tetreault (2016)
and used by Toutanova et al. (2016), and compute
the quadratic weighted κ (Cohen, 1968) for the hu-
man fluency scores of the system-generated com-
pressions as 0.337.

4.2 LM Hyperparameters and Training

We train our LSTM LMs on the English Giga-
word corpus (Parker et al., 2011), which consists
of news data.

The hyperparameters of all LMs are tuned us-
ing perplexity on a held-out part of Gigaword,
since we expect LM perplexity and final evalua-
tion performance of WordSLOR and, respectively,
WPSLOR to correlate. Our best networks con-
sist of two layers with 512 hidden units each, and
are trained for 2, 000, 000 steps with a minibatch
size of 128. For optimization, we employ ADAM
(Kingma and Ba, 2014).

4.3 Baseline Metrics

ROUGE-L. Our first baseline is ROUGE-L (Lin
and Och, 2004), since it is the most commonly
used metric for compression tasks. ROUGE-L
measures the similarity of two sentences based
on their longest common subsequence. Gener-
ated and reference compressions are tokenized and
lowercased. For multiple references, we only
make use of the one with the highest score for each
example.

N-gram-overlap metrics. We compare to the
best n-gram-overlap metrics from Toutanova et al.
(2016); combinations of linguistic units (bi-grams
(LR2) and tri-grams (LR3)) and scoring measures
(recall (R) and F-score (F)). With multiple ref-
erences, we consider the union of the sets of n-
grams. Again, generated and reference compres-
sions are tokenized and lowercased.

Negative cross-entropy. We further compare
to the negative LM cross-entropy, i.e., the log-
probability which is only normalized by sentence
length. The score of a sentence S is calculated as

NCE(S) = 1
|S| ln(pM (S)) (3)

with pM (S) being the probability assigned to the
sentence by a LM. We employ the same LMs as
for SLOR, i.e., LMs trained on words (WordNCE)
and WordPieces (WPNCE).

Perplexity. Our next baseline is perplexity,
which corresponds to the exponentiated cross-
entropy:

PPL(S) = exp(−NCE(S)) (4)

About BLEU. Due to its popularity, we also per-
formed initial experiments with BLEU (Papineni
et al., 2002). Its correlation with human scores
was so low that we do not consider it in our final
experiments.

4.4 Correlation and Evaluation Scores
Pearson correlation. Following earlier work
(Toutanova et al., 2016), we evaluate our metrics
using Pearson correlation with human judgments.
It is defined as the covariance divided by the prod-
uct of the standard deviations:

ρX,Y =
cov(X,Y )

σXσY
(5)

Mean squared error. Pearson cannot accurately
judge a metric’s performance for sentences of very
similar quality, i.e., in the extreme case of rating
outputs of identical quality, the correlation is ei-
ther not defined or 0, caused by noise of the evalu-
ation model. Thus, we additionally evaluate using
mean squared error (MSE), which is defined as the
squares of residuals after a linear transformation,
divided by the sample size:

MSEX,Y = min
f

1

|X|

|X|∑
i=1

(f(xi)− yi)2 (6)

with f being a linear function. Note that, since
MSE is invariant to linear transformations of X
but not of Y , it is a non-symmetric quasi-metric.
We apply it with Y being the human ratings. An
additional advantage as compared to Pearson is
that it has an interpretable meaning: the expected
error made by a given metric as compared to the
human rating.
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metric refs Pearson MSE
WordSLOR 0 0.454 0.261
WPSLOR 0 0.437 0.267
WordNCE 0 0.403∗ 0.276∗

WPNCE 0 0.413∗ 0.273∗

WordPPL 0 0.325∗ 0.295∗

WPPPL 0 0.344∗ 0.290∗

ROUGE-L-mult 3− 5 0.429∗ 0.269
LR3-F-mult 3− 5 0.405∗ 0.275∗

LR2-F-mult 3− 5 0.375∗ 0.283∗

LR3-R-mult 3− 5 0.412∗ 0.273∗

ROUGE-L-single 1 0.406∗ 0.275∗

Table 3: Pearson correlation (higher is better) and
MSE (lower is better) for all metrics; best results in
bold; refs=number of references used to compute the
metric.

4.5 Results and Discussion

As shown in Table 3, WordSLOR and WPSLOR
correlate best with human judgments: Word-
SLOR (respectively WPSLOR) has a 0.025 (re-
spectively 0.008) higher Pearson correlation than
the best word-overlap metric ROUGE-L-mult,
even though the latter requires multiple reference
compressions. Furthermore, if we consider with
ROUGE-L-single a setting with a single given ref-
erence, the distance to WordSLOR increases to
0.048 for Pearson correlation. Note that, since
having a single reference is very common, this re-
sult is highly relevant for practical applications.
Considering MSE, the top two metrics are still
WordSLOR and WPSLOR, with a 0.008 and, re-
spectively, 0.002 lower error than the third best
metric, ROUGE-L-mult.

Comparing WordSLOR and WPSLOR, we find
no significant differences: 0.017 for Pearson and
0.006 for MSE. However, WPSLOR uses a more
compact LM and, hence, has a shorter training
time, since the vocabulary is smaller (16, 000 vs.
128, 000 tokens).

Next, we find that WordNCE and WPNCE per-
form roughly on par with word-overlap metrics.
This is interesting, since they, in contrast to tradi-
tional metrics, do not require reference compres-
sions. However, their correlation with human flu-
ency judgments is strictly lower than that of their
respective SLOR counterparts. The difference be-
tween WordSLOR and WordNCE is bigger than

*Significantly worse than best (bold) result with p <
0.05; one-tailed; Fisher-Z-transformation for Pearson, two
sample t-test for MSE.

that between WPSLOR and WPNCE. This might
be due to accounting for differences in frequencies
being more important for words than for Word-
Pieces. Both WordPPL and WPPPL clearly un-
derperform as compared to all other metrics in our
experiments.

The traditional word-overlap metrics all per-
form similarly. ROUGE-L-mult and LR2-F-mult
are best and worst, respectively.

4.6 Analysis I: Fluency Evaluation per
Compression System

The results per compression system (cf. Table 4)
look different from the correlations in Table 3:
Pearson and MSE are both lower. This is due to
the outputs of each given system being of compa-
rable quality. Therefore, the datapoints are sim-
ilar and, thus, easier to fit for the linear function
used for MSE. Pearson, in contrast, is lower due
to its invariance to linear transformations of both
variables. Note that this effect is smallest for ILP,
which has uniformly distributed targets (Var(Y ) =
0.35 vs. Var(Y ) = 0.17 for SEQ2SEQ).

Comparing the metrics, the two SLOR ap-
proaches perform best for SEQ2SEQ and T3. In
particular, they outperform the best word-overlap
metric baseline by 0.244 and 0.097 Pearson cor-
relation as well as 0.012 and 0.012 MSE, respec-
tively. Since T3 is an abstractive system, we can
conclude that WordSLOR and WPSLOR are ap-
plicable even for systems that are not limited to
make use of a fixed repertoire of words.

For ILP and NAMAS, word-overlap metrics
obtain best results. The differences in perfor-
mance, however, are with a maximum difference
of 0.072 for Pearson and ILP much smaller than
for SEQ2SEQ. Thus, while the differences are sig-
nificant, word-overlap metrics do not outperform
our SLOR approaches by a wide margin. Recall,
additionally, that word-overlap metrics rely on ref-
erences being available, while our proposed ap-
proaches do not require this.

4.7 Analysis II: Fluency Evaluation per
Domain

Looking next at the correlations for all models but
different domains (cf. Table 5), we first observe
that the results across domains are similar, i.e., we
do not observe the same effect as in Subsection
4.6. This is due to the distributions of scores being
uniform (Var(Y ) ∈ [0.28, 0.36]).
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Pearson MSE
refs ILP NAMAS S2S T3 ILP NAMAS S2S T3

# samples 679 762 767 747 679 762 767 747
WordSLOR 0 0.363∗ 0.340∗ 0.257 0.343 0.307∗ 0.104 0.161 0.174
WPSLOR 0 0.417∗ 0.312∗ 0.201∗ 0.360 0.292∗ 0.106∗ 0.166 0.172
WordNCE 0 0.311∗ 0.270∗ 0.128∗ 0.342 0.319∗ 0.109∗ 0.170∗ 0.174
WPNCE 0 0.302∗ 0.258∗ 0.124∗ 0.357 0.322∗ 0.110∗ 0.170∗ 0.172
ROUGE-L-mult 3− 5 0.471 0.392 0.013∗ 0.256∗ 0.275 0.100 0.173∗ 0.184∗

LR3-F-mult 3− 5 0.489 0.266∗ 0.007∗ 0.234∗ 0.269 0.109∗ 0.173∗ 0.187∗

LR2-F-mult 3− 5 0.484 0.213∗ -0.013∗ 0.236∗ 0.271 0.112∗ 0.173∗ 0.186∗

LR3-R-mult 3− 5 0.473 0.246∗ -0.002∗ 0.232∗ 0.275∗ 0.111∗ 0.173∗ 0.187∗

ROUGE-L-single 1 0.363∗ 0.308∗ 0.008∗ 0.263∗ 0.307∗ 0.107∗ 0.173∗ 0.184∗

Table 4: Pearson correlation (higher is better) and MSE (lower is better), reported by compression system; best
results in bold; refs=number of references used to compute the metric.

Next, we focus on an important question: How
much does the performance of our SLOR-based
metrics depend on the domain, given that the re-
spective LMs are trained on Gigaword, which con-
sists of news data?

Comparing the evaluation performance for indi-
vidual metrics, we observe that, except for letters,
WordSLOR and WPSLOR perform best across all
domains: they outperform the best word-overlap
metric by at least 0.019 and at most 0.051 Pear-
son correlation, and at least 0.004 and at most
0.014 MSE. The biggest difference in correlation
is achieved for the journal domain. Thus, clearly
even LMs which have been trained on out-of-
domain data obtain competitive performance for
fluency evaluation. However, a domain-specific
LM might additionally improve the metrics’ cor-
relation with human judgments. We leave a more
detailed analysis of the importance of the training
data’s domain for future work.

5 Incorporation of Given References

ROUGE was shown to correlate well with ratings
of a generated text’s content or meaning at the
sentence level (Toutanova et al., 2016). We fur-
ther expect content and fluency ratings to be cor-
related. In fact, sometimes it is difficult to distin-
guish which one is problematic: to illustrate this,
we show some extreme examples—compressions
which got the highest fluency rating and the lowest
possible content rating by at least one rater, but the
lowest fluency score and the highest content score
by another—in Table 6. We, thus, hypothesize that
ROUGE should contain information about fluency
which is complementary to SLOR, and want to

make use of references for fluency evaluation, if
available. In this section, we experiment with two
reference-based metrics – one trainable one, and
one that can be used without fluency annotations,
i.e., in the same settings as pure word-overlap met-
rics.

5.1 Experimental Setup

First, we assume a setting in which we have the
following available: (i) system outputs whose flu-
ency is to be evaluated, (ii) reference generations
for evaluating system outputs, (iii) a small set of
system outputs with references, which has been
annotated for fluency by human raters, and (iv) a
large unlabeled corpus for training a LM. Note that
available fluency annotations are often uncommon
in real-world scenarios; the reason we use them is
that they allow for a proof of concept. In this set-
ting, we train scikit’s (Pedregosa et al., 2011) sup-
port vector regression model (SVR) with the de-
fault parameters on predicting fluency, given WP-
SLOR and ROUGE-L-mult. We use 500 of our
total 2955 examples for each of training and de-
velopment, and the remaining 1955 for testing.

Second, we simulate a setting in which we have
only access to (i) system outputs which should be
evaluated on fluency, (ii) reference compressions,
and (iii) large amounts of unlabeled text. In par-
ticular, we assume to not have fluency ratings for
system outputs, which makes training a regression
model impossible. Note that this is the standard
setting in which word-overlap metrics are applied.
Under these conditions, we propose to normalize
both given scores by mean and variance, and to
simply add them up. We call this new reference-
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Pearson MSE
refs letters journal news non-fi letters journal news non-fi

# samples 640 999 344 972 640 999 344 972
WordSLOR 0 0.452 0.453 0.403 0.484 0.258 0.250 0.234 0.278
WPSLOR 0 0.435∗ 0.415∗ 0.389 0.483 0.263 0.260 0.237 0.278
WordNCE 0 0.395∗ 0.412∗ 0.342∗ 0.425∗ 0.273∗ 0.261∗ 0.247 0.297∗

WPNCE 0 0.424∗ 0.398∗ 0.363 0.460 0.266∗ 0.265∗ 0.243 0.286
ROUGE-L-mult 3− 5 0.487 0.382∗ 0.384 0.451∗ 0.247 0.269∗ 0.238 0.289
LR3-F-mult 3− 5 0.404∗ 0.402∗ 0.278∗ 0.439∗ 0.271∗ 0.264∗ 0.258∗ 0.293
LR2-F-mult 3− 5 0.390∗ 0.363∗ 0.292∗ 0.395∗ 0.275∗ 0.273∗ 0.256∗ 0.306∗

LR3-R-mult 3− 5 0.420∗ 0.395∗ 0.272∗ 0.453 0.267∗ 0.266∗ 0.259∗ 0.288
ROUGE-L-single 1 0.453 0.347∗ 0.335∗ 0.450∗ 0.258∗ 0.277∗ 0.248 0.289

Table 5: Pearson correlation (higher is better) and MSE (lower is better), reported by domain of the original
sentence or paragraph; best results in bold; refs=number of references used to compute the metric.

model generated compression
ILP Objectives designed to lead incarcerated youth to an understanding of grief and loss

related influences on their behavior.
ILP In Forster’s A Passage to India is created.

SEQ2SEQ Jogged my thoughts back to Muscat Ramble.
SEQ2SEQ Between Sagres and Lagos, pleasant beach with fishing boats, and a market.

T3 Your support of the Annual Fund maintaining the core values in GSAS the ethics.

Table 6: Sentences for which raters were unsure if they were perceived as problematic due to fluency or content
issues, together with the model which generated them.

metric refs train? Pearson MSE
1 SVR: 3− 5 yes 0.594 0.217

ROUGE+WPSLOR
2 ROUGE-LM 3− 5 no 0.496 0.252
3 ROUGE-L-mult 3− 5 no 0.430 0.273
4 WPSLOR 0 no 0.439 0.270

Table 7: Combinations; all differences except for 3 and
4 are statistically significant; refs=number of references
used to compute the metric; ROUGE=ROUGE-L-mult;
best results in bold.

based metric ROUGE-LM. In order to make this
second experiment comparable to the SVR-based
one, we use the same 1955 test examples.

5.2 Results and Discussion

Results are shown in Table 7. First, we can see
that using SVR (line 1) to combine ROUGE-L-
mult and WPSLOR outperforms both individual
scores (lines 3-4) by a large margin. This serves
as a proof of concept: the information contained
in the two approaches is indeed complementary.

Next, we consider the setting where only refer-
ences and no annotated examples are available. In

contrast to SVR (line 1), ROUGE-LM (line 2) has
only the same requirements as conventional word-
overlap metrics (besides a large corpus for train-
ing the LM, which is easy to obtain for most lan-
guages). Thus, it can be used in the same settings
as other word-overlap metrics. Since ROUGE-
LM—an uninformed combination—performs sig-
nificantly better than both ROUGE-L-mult and
WPSLOR on their own, it should be the metric
of choice for evaluating fluency with given refer-
ences.

6 Related Work

6.1 Fluency Evaluation

Fluency evaluation is related to grammatical er-
ror detection (Atwell, 1987; Wagner et al., 2007;
Schmaltz et al., 2016; Liu and Liu, 2017) and
grammatical error correction (Islam and Inkpen,
2011; Ng et al., 2013, 2014; Bryant and Ng, 2015;
Yuan and Briscoe, 2016). However, it differs from
those in several aspects; most importantly, it is
concerned with the degree to which errors matter
to humans.

Work on automatic fluency evaluation in NLP
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has been rare. Heilman et al. (2014) predicted
the fluency (which they called grammaticality)
of sentences written by English language learn-
ers. In contrast to ours, their approach is super-
vised. Stent et al. (2005) and Cahill (2009) found
only low correlation between automatic metrics
and fluency ratings for system-generated English
paraphrases and the output of a German sur-
face realiser, respectively. Explicit fluency eval-
uation of NLG, including compression and the
related task of summarization, has mostly been
performed manually. Vadlapudi and Katragadda
(2010) used LMs for the evaluation of summariza-
tion fluency, but their models were based on part-
of-speech tags, which we do not require, and they
were non-neural. Further, they evaluated longer
texts, not single sentences like we do. Toutanova
et al. (2016) compared 80 word-overlap metrics
for evaluating the content and fluency of compres-
sions, finding only low correlation with the latter.
However, they did not propose an alternative eval-
uation. We aim at closing this gap.

6.2 Compression Evaluation
Automatic compression evaluation has mostly had
a strong focus on content. Hence, word-overlap
metrics like ROUGE (Lin and Och, 2004) have
been widely used for compression evaluation.
However, they have certain shortcomings, e.g.,
they correlate best for extractive compression,
while we, in contrast, are interested in an approach
which generalizes to abstractive systems. Alter-
natives include success rate (Jing, 2000), simple
accuracy (Bangalore et al., 2000), which is based
on the edit distance between the generation and
the reference, or word accuracy (Hori and Furui,
2004), the equivalent for multiple references.

6.3 Criticism of Common Metrics for NLG
In the sense that we promote an explicit evaluation
of fluency, our work is in line with previous criti-
cism of evaluating NLG tasks with a single score
produced by word-overlap metrics.

The need for better evaluation for machine
translation (MT) was expressed, e.g., by Callison-
Burch et al. (2006), who doubted the meaningful-
ness of BLEU, and claimed that a higher BLEU
score was neither a necessary precondition nor a
proof of improved translation quality. Similarly,
Song et al. (2013) discussed BLEU being unreli-
able at the sentence or sub-sentence level (in con-
trast to the system-level), or for only one single

reference. This was supported by Isabelle et al.
(2017), who proposed a so-called challenge set ap-
proach as an alternative. Graham et al. (2016) per-
formed a large-scale evaluation of human-targeted
metrics for machine translation, which can be seen
as a compromise between human evaluation and
fully automatic metrics. They also found fully au-
tomatic metrics to correlate only weakly or moder-
ately with human judgments. Bojar et al. (2016a)
further confirmed that automatic MT evaluation
methods do not perform well with a single refer-
ence. The need of better metrics for MT has been
addressed since 2008 in the WMT metrics shared
task (Bojar et al., 2016b, 2017).

For unsupervised dialogue generation, Liu et al.
(2016) obtained close to no correlation with hu-
man judgements for BLEU, ROUGE and ME-
TEOR. They contributed this in a large part to
the unrestrictedness of dialogue answers, which
makes it hard to match given references. They em-
phasized that the community should move away
from these metrics for dialogue generation tasks,
and develop metrics that correlate more strongly
with human judgments. Elliott and Keller (2014)
reported the same for BLEU and image caption
generation. Dušek et al. (2017) suggested an RNN
to evaluate NLG at the utterance level, given only
the input meaning representation.

7 Future Work

The work presented in this paper brings up multi-
ple interesting next steps for future research.

First, in Subsection 4.7, we investigated the per-
formances of WordSLOR and WPSLOR in de-
pendence of the domain of the considered text.
We concluded that an application was possible
even for unrelated domains. However, we did
not experiment with alternative LMs, which leaves
the following questions unresolved: (i) Would
training LMs on specific domains improve Word-
SLOR’s and WPSLOR’s correlation with human
fluency judgments, i.e., to what degree are the
properties of the training data important? (ii) How
does the size of the training corpus influence per-
formance? Ultimatly, this research could lead to
answering the following question: Is it better to
train a LM on a small, in-domain corpus or on a
large corpus from another domain?

Second, we showed that, in certain settings,
Pearson correlation does not give reliable insight
into a metric’s performance. Since in general eval-
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uation of evaluation metrics is hard, an important
topic for future research would be the investigation
of better ways to do so, or to study under which
conditions a metric’s performance can be assessed
best.

Last but not least, a straight-forward continua-
tion of our research would encompass the investi-
gation of SLOR as a fluency metric for other NLG
tasks or languages. While the results for com-
pression strongly suggest a general applicability
to a wider range of NLP tasks, this has yet to be
confirmed empirically. As far as other languages
are concerned, the question what influence a given
language’s grammar has would be an interesting
research topic.

8 Conclusion

We empirically confirmed the effectiveness of
SLOR, a LM score which accounts for the ef-
fects of sentence length and individual unigram
probabilities, as a metric for fluency evaluation
of the NLG task of automatic compression at
the sentence level. We further introduced WP-
SLOR, an adaptation of SLOR to WordPieces,
which reduced both model size and training time
at a similar evaluation performance. Our exper-
iments showed that our proposed referenceless
metrics correlate significantly better with fluency
ratings for the outputs of compression systems
than traditional word-overlap metrics on a bench-
mark dataset. Additionally, they can be applied
even in settings where no references are available,
or would be costly to obtain. Finally, for given
references, we proposed the reference-based met-
ric ROUGE-LM, which consists of a combination
of WPSLOR and ROUGE. Thus, we were able to
obtain an even more accurate fluency evaluation.
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