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Abstract

We describe our approach and exper-
iments in the context of the CoNLL-
SIGMORPHON 2017 Shared Task on
Universal Morphological Reinflection.
We combine a discriminative transduction
system with neural models. The results
on five languages show that our approach
works well in the low-resource setting.
We also investigate adaptations designed
to handle small training sets.

1 Introduction

In this paper, we describe our system as partici-
pants in the CoNLL-SIGMORPHON 2017 Shared
Task on Universal Morphological Reinflection
(Cotterell et al., 2017). Our focus is on the
sub-task of inflection generation under the low-
resource scenario, in which the training data is
limited to 100 labeled examples, with and with-
out monolingual corpora. Our principal approach
follows Nicolai et al. (2015), performing discrim-
inative string transduction with a modified version
of the DIRECTL+ program (Jiampojamarn et al.,
2008). Taking into account the results of the SIG-
MORPHON 2016 Shared Task on Morphological
Reinflection (Cotterell et al., 2016), we investigate
ways to combine the strengths of DIRECTL+ with
those of neural models. In addition, we experi-
ment with various adaptations designed to handle
small training sets, such as splitting and reordering
morphological tags, and synthetic training data.

We derive inflection models for five languages:
English, German, Persian, Polish, and Spanish.
These languages display varying degrees of in-
flectional complexity, but are mostly suffixing, fu-
sional languages. We combine three systems for
each language: a discriminative transduction sys-
tem, an ensemble of neural encoder-decoder mod-

els, and the affix-matching baseline provided by
the task organizers. We test two methods of sys-
tem combination: linear combination and an SVM
reranker. The results demonstrate that our trans-
duction approach is strongly competitive in the
low-resource setting. Further gains can be ob-
tained via tag reordering heuristics and system
combination.

2 Methods

We follow Nicolai et al. (2015, 2016) in approach-
ing inflection generation as discriminative string
transduction. After aligning source lemmas to
target word forms, conversion operations are ex-
tracted and applied to transform a lemma-tag se-
quence into an inflected form. In this section,
we describe several novel adaptations to the low-
resource setting, as well as the system combina-
tion methods.

2.1 String transduction

We perform string transduction with a modi-
fied version of DIRECTL+, a tool originally
designed for grapheme-to-phoneme conversion.1

DIRECTL+ is a feature-rich, discriminative char-
acter string transducer that searches for a model-
optimal sequence of character transformation rules
for its input. The core of the engine is a dy-
namic programming algorithm capable of trans-
ducing many consecutive characters in a single op-
eration. Using a structured version of the MIRA
algorithm (McDonald et al., 2005), training at-
tempts to assign weights to each feature so that its
linear model separates the gold-standard deriva-
tion from all others in its search space.

From aligned source-target pairs, our version of
DIRECTL+ extracts statistically-supported feature
templates: source context, target n-gram, and joint

1https://github.com/GarrettNicolai/DTL
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n-gram features. Context features conjoin the rule
with indicators for all source character n-grams
within a fixed window of where the rule is being
applied. Target n-grams provide indicators on tar-
get character sequences, describing the shape of
the target as it is being produced, and may also be
conjoined with our source context features. Joint
n-grams build indicators on rule sequences, com-
bining source and target context, and memorizing
frequently-used rule patterns. We also add an ab-
stract copy feature that corresponds to preserving
the source characters unchanged.

We perform source-target pair alignment with
a modified version of the M2M aligner (Jiampo-
jamarn et al., 2007). The program applies the
Expectation-Maximization algorithm with the ob-
jective to maximize the conditional likelihood of
its aligned source and target pairs. In order to
encourage alignments between identical charac-
ters, we modify the aligner to generalize all iden-
tity transformations into a single match operation,
which corresponds to the transduction copy fea-
ture.

2.2 Tag splitting

Training instances in the inflection generation
task consist of a lemma and a tag sequence
which specifies the inflection slot. Tag se-
quences consist of smaller units, which we re-
fer to as subtags, that determine specific aspects
of the inflection. For example, the tag sequence
“V;PTCP;PST;FEM;SG” indicates that the target
form is a verbal (V) feminine (FEM) singular (SG)
past (PST) participle (PTCP).

In the small training data scenario, it is not prac-
tical to treat tag sequences as atomic units, as we
did in Nicolai et al. (2016), because many tag se-
quences may be represented by only a single train-
ing instance, or not at all. We follow Kann and
Schütze (2016) in separating each tag sequence
into its component subtags, in order to share infor-
mation across inflection slots. Our system treats
each subtag as an indivisible atomic symbol. An
example is shown in Figure 1.

From the linguistic point of view, tag splitting
may seem counter-intuitive, as composite inflec-
tional affixes in fusional languages can rarely be
separated into individual morphemes. However,
on the character level, many affixes share letter
substrings across inflection slots. For example,
the Spanish word lavemos could be analyzed as

desperdiciar + V + COND + 3 + SG = desperdiciaría

desperdiciar + V;COND;3;SG = desperdiciaría

Figure 1: Splitting a tag into subtags to mitigate
data sparsity.

lav+e+mos, where the three substrings corre-
spond to the stem, the subjunctive marker, and the
first-person ending, respectively. In the single-tag
setting, a model must learn the subjunctive inflec-
tion for each person; in the split-tag setting, the
model can learn the subjunctive modification sep-
arately from the personal suffixes.

After splitting the tags, we perform an addi-
tional operation of prepending the part-of-speech
symbol to each subtag, in order to distinguish be-
tween identically named subtags that correspond
to different parts of speech (e.g., V:SG vs. N:SG).

2.3 Subtag reordering

Because our alignment and transduction systems
are monotonic, tag splitting introduces the issue
of subtag ordering. The provided data files are not
always consistent in terms of the relative order in
which subtags appear in sequence. We enforce the
consistency by establishing a global ordering of
all subtags in a given language. Our objective is
to make as few changes as possible with respect
to the original tag sequences. We achieve this by
adapting the set ordering algorithm of Hauer and
Kondrak (2016), which uses a beam search to min-
imize the number of subtag swaps within the tag
sequences. We then reorder all tag sequences that
are inconsistent with the resulting ordering. Our
development experiments suggest that the consis-
tent ordering never leads to a decrease in accuracy
with respect to the original ordering.

We also investigate ways of optimizing the sub-
tag order. For example, it would make sense for
the gender subtag to precede the number subtag in
Spanish past participles (e.g., cortadas). Since the
number of possible orderings is exponential, test-
ing a separate transduction model for each of them
is infeasible. Instead, we consider the five order-
ings with the highest M2M-aligner alignment score
on the training set, and select the one that results
in the highest accuracy on the development set.
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2.4 Particle handling

Some languages, including Spanish, German, and
Polish, contain particles that complicate the inflec-
tion process. For example, some Spanish verbs
contain the reflexive particle se (e.g. levantarse),
which may be detached, inflected, and moved to
the front (e.g. me levanto). In order to simplify our
inflection model, we treat these particles as atomic
characters. In this approach, se is a single-symbol
affix of the lemma which is substituted by me and
transposed in the output sequence. These par-
ticles were identified via language-specific rules,
and processed prior to training.

2.5 RNNs and synthetic training data

Recurrent encoder-decoder neural networks
(RNNs) can generate a target sequence given an
input sequence. Sutskever et al. (2014) introduce
this sequence-to-sequence architecture for ma-
chine translation. Kann and Schütze (2016) adapt
RNNs to perform morphological reinflection by
training the models on the character level.

RNNs are sensitive to the amount of training
data. In our preliminary experiments, RNNs per-
formed poorly in the low-resource setting. In order
to increase the accuracy of the RNNs, we supple-
ment the training data with morphological analy-
ses generated by a DIRECTL+ model trained on
the 100 training forms, and applied to randomly-
chosen words from an unlabeled corpus using the
method of Nicolai and Kondrak (2017). Many of
these analyses are incorrect, but overall they pro-
vide information to the neural model that enforces
inflectional patterns observed in the original train-
ing data. This process is shown schematically in
Figure 2.

Because RNNs train with a stochastic learning
algorithm, they are very dependent upon their ini-
tialization method (Goodfellow et al., 2016). In
order to improve the stability of the RNNs, we en-
semble five distinct models, each initialized with a
different random seed. We produce an n-best list
from each network, and combine them with equal
weighting. This ensembling process is a common
technique intended to stabilize neural networks,
and lessen the impact of local optima. Our de-
velopment experiments confirmed that ensembling
can reduce the error rate over individual networks
by more than 20%, while reducing the variance by
half.

             

   Analyzer 

thresh     V.PTCP;PRS    threshing 

require   V;PST               required 

slander   V;3;SG;PRS     slanders 

 

 

Training data 

threshing       thresh + V.PTCP;PRS 

required          require + V;PST 

slanders          slander + V;3;SG;PRS 

 

 

Analyzer Training data 

Wikipedia 

chortled 

galumphing 

whiffles 

 

 

Random Word List 

chortled         chortle + V;PST 

galumphing   galumph + V.PTCP;PRS 

whiffles          whiffle+ V;3;SG;PRS 

 

 

Analyses 

chortle    V;PST      chortled 

galumph V.PTCP;PRS  galumphing 

whiffle     V;3;SG;PRS whiffles 

 

 

Pseudo-training data 

thresh     V.PTCP;PRS   threshing 

require   V;PST              required 

slander   V;3;SG;PRS    slanders 

chortle    V;PST             chortled 

galumph V.PTCP;PRS  galumphing 

whiffle      V;3;SG;PRS whiffles 

Extended Training Data 

Figure 2: Generation of synthetic training data for
RNNs.

2.6 Language models

Transduction models trained on small amounts
of data often produce output forms that vio-
late the phonotactic constraints of a language.
Character-level language models offer the possi-
bility of reducing the number of implausible out-
puts. For each language, we produce a list of word
types from the first million lines of the provided
Wikipedia corpus, and create a 4-gram character
language model using the CMU language mod-
eling toolkit.2 This language model, however, is
very noisy, because the corpus contains many hy-
perlinks and filenames.

We attempt to improve the quality of the lan-
guage models using the following two methods.
The first method is to disregard the corpus, and
instead produce a small language model derived
exclusively from the target forms in the training
data. The second method, which we refer to as
affix-matching, is to use only those word types in
the corpus that match the affixes seen in training.
We identify the affixes by extracting any charac-
ter sequence in the training set that is aligned to a
subtag by M2M-aligner.

2.7 System combination

In an attempt to leverage their unique strengths,
we combine DIRECTL+ with a neural network en-
semble. Both approaches produce ranked n-best
lists. In addition, we include the provided baseline
system, which produces a single output form for
each input instance. A diagram of our two system
combination methods is shown in Figure 3.

2http://www.speech.cs.cmu.edu/SLM/toolkit.html
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Test Word 

capear V;SBJV;FUT;1;PL 

RNN   Baseline   DirecTL+ 

capearemos 1  capearemos     1.0 
2 capeáremos     0.8  
3 capeáramos     0.5 

1  capeárimos     1.0 
2  capearamos     0.8  
3  capeáremos    0.6 

  Weighted 
 Combination 
    of Ranks 

1    capeáremos         
2    capearemos         
3    capearamos         
4    capeáramos 

 

SVM  
Reranker 

Wikipedia 

Character   
language  

model 

Heuristic Filter 

1    capeáremos         
2    capeáramos         
3    capearemos         
4    capeárimos 

Figure 3: Two methods of system combination.
Correct outputs are shown in bold.

The first method is a simple linear combina-
tion, which selects the prediction with the highest
weighted average of the three ranks. Combining
ranks, rather than numerical scores, circumvents
issues with scaling, and allows the integration of
the baseline, which produces no score.

The second combination method is the rerank-
ing of the n-best list produced by DIRECTL+ us-
ing other system outputs as features. By fram-
ing the reranking of an n-best list as a classifi-
cation task (Joachims, 2002), we can also lever-
age other sources of information, such as the lan-
guage model described in Section 2.6. Our SVM
reranker includes four features: (1) the normalized
score produced by DIRECTL+, (2) the normalized
score produced by the RNN ensemble, (3) a binary
indicator of the presence of a prediction in a cor-
pus, and (4) the normalized probability assigned
to the prediction by a character language model.
The general objective is to promote high-scoring
predictions shared by multiple systems that occur
in the corpus or look like real words.

3 Experiments

We conduct experiments on five languages: En-
glish (EN), German (DE), Persian (FA), Polish
(PL), and Spanish (ES). The training data in the
low-resource setting of the inflection generation
task is limited to 100 instances. The DIRECTL+
models are trained on the subtag sequences made
consistent with the method described in Sec-
tion 2.3. For two languages, we identified best
subtag orderings that are different from the initial

orderings; the Spanish ordering was found with
the alignment-based method. while the Persian or-
dering was hand-crafted by a native speaker using
linguistic analysis.

Our other systems take advantage of the first
one million lines of the Wikipedia dumps from
2017/03/01 provided by the task organizers. Our
RNN models are trained on the original train-
ing set augmented with 16,000 synthetic instances
generated by the DIRECTL+ morphological ana-
lyzers, as described in Section 2.5. For the lan-
guage models that inform our SVM reranker, we
use the entire Persian corpus, training data only for
English and Polish, and the affix-match method
for German and Spanish (Section 2.6). The
reranker is trained using 2-fold cross-validation on
the training data.

3.1 Development results

Our development results are summarized in Ta-
ble 1. We see that our DIRECTL+ models (DTL)
substantially outperform the official baseline (BL).
even without subtag reordering. The only excep-
tion is Persian, in which the best ordering strategy
(BO) makes a dramatic difference. Further, mod-
est gains are obtained via linear combination (LC)
and reranking (RR) of the best individual systems.

BL RNN DTL BO LC RR
EN 76.2 76.3 88.0 88.0 88.0
DE 53.7 43.3 66.6 68.6 68.8
FA 27.3 8.1 23.9 40.8 41.4 40.7
PL 41.9 36.0 48.2 49.3 49.0
ES 58.6 38.9 65.8 68.3 68.3 68.4

Table 1: Results on the development sets.

The most striking outcome is the disappoint-
ing performance of the RNN ensembles, which in
most cases is well below the baseline, even with
the addition of the synthetic data.3 In this context,
it is not surprising that system combination only
minimally improves over DIRECTL+ by itself.

Based on the development results, we decided
to submit 3 versions for each of the 5 languages
(DTL, LC, and RR) plus two runs that correspond
to the best subtag ordering (BO) for Spanish and
Persian.

3Without synthetic data, our RNN ensembles completely
fail on this task in the low-resource setting.

82



3.2 Test results

Our results on the test set are shown in Table 2.
The numerical tags of the submitted runs are
shown in the top row. In the cases of incorrect
files being mistakenly submitted, we provide the
actual results, which may differ from the official
ones. With the exception of Persian, our results
are among the best in the low-resource setting.

01 02 03 04
BL RNN DTL BO LC RR

EN 80.6 78.4 90.6 90.6 90.3
DE 55.3 57.1 66.0 66.8 66.2
FA 24.5 8.1 19.5 38.3 39.0 37.7
PL 42.3 28.2 45.2 45.3 45.9
ES 57.1 37.9 64.6 68.2 68.0 67.3

Table 2: Results on the test sets. Runs corrected
after the submission deadline are in italics.

The system combination results largely confirm
the development experiments. Notably, the simple
linear combination, which has no access to lan-
guage models, performs slightly better on average
than the SVM reranker, and seems to be more sta-
ble as well. One possible explanation is the neces-
sary subdivision of an already small training set in
order to train the reranker, which further reduces
the amount of the training data. The linear com-
bination requires no training, but its weights are
tuned on a relatively large development set.

3.3 Error analysis

English is characterized by a relatively simple in-
flectional morphology, with only 5 verbal inflec-
tion slots. Most words are regular, and pose no
problem even to an inflection model trained on
only 100 instances. The errors tend to reflect ir-
regular verbs, as well as orthographic rules, such
as the consonant doubling in splitting. The current
RNN-based systems are unlikely to achieve signif-
icantly better results in the low-resource setting.

A number of German errors can be attributed to
implicit information that can only be learned by
observing multiple forms. For example, the gen-
itive singular suffix differs depending on the gen-
der of the noun. Certain suffixes, such as -in,
often indicate the gender of a noun to be feminine.
However, the only genitive feminine singular in
the training data does not end in -in, and thus,
our system fails to correctly predict the genitive
singular of Köchin.

Persian results seem to be affected by subtag or-
derings to a greater degree than other languages.
The verbal morphology demonstrates some agglu-
tinative properties, where individual subtags may
match their own affix. One of the authors hand-
crafted a subtag ordering, which turned out to be
much more effective than the orderings derived by
our algorithmic methods. The other sources of
difficulty that set Persian apart are the differences
between formal and colloquial inflectional forms,
which are both represented in the training data, as
well as the preponderance of multi-word inflection
forms (86% of the test instances), which compli-
cates the task of the language model.

Many Polish outputs are non-words, which we
expected to be filtered out by the language model.
In many cases, the reranker has no chance to suc-
ceed, as none of the models includes the correct
form in its top-n list. In other cases, the signal
from the language model is not strong enough to
overrule the top DIRECTL+ prediction.

An interesting type of error in Spanish are forms
that involve orthographically illegal bigrams like
ze. DIRECTL+ has a set of bigram features on the
target side, but their weights are established on the
training set, which is too small to learn such con-
straints. In the future, we would like to investigate
ways to integrate the unlabeled corpus information
directly into the DIRECTL+ generation process.

The languages that we consider in this paper are
mostly fusional. Another avenue for future work is
adapting our approach to other types of languages.

4 Conclusion

Kann and Schütze (2016) show that the neural net-
work models achieve high accuracy on the mor-
phological reinflection task, given a sufficiently
large training set. However, the effectiveness of
neural models in the low-resource setting is yet
to be demonstrated. In this paper, we have de-
scribed an attempt to combine our string transduc-
tion tool with a reimplementation of the neural ap-
proach, which turned out to be largely unsuccess-
ful due to the weakness of the latter. Neverthe-
less, we are satisfied with several novel ideas that
we have developed for the shared task, and with
the entire learning experience for the members of
our team. The overall results confirm the competi-
tiveness of our string transduction approach in the
low-resource setting.
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