
Automatic Rule Induction for
Unknown-Word Guessing

A n d r e i M i k h e e v "
University of Edinburgh

Words unknown to the lexicon present a substantial problem to NLP modules that rely on mor-
phosyntactic information, such as part-of-speech taggers or syntactic parsers. In this paper we
present a technique for fully automatic acquisition of rules that guess possible part-of-speech tags
for unknown words using their starting and ending segments. The learning is performed from a
general-purpose lexicon and word frequencies collected from a raw corpus. Three complimentary
sets of word-guessing rules are statistically induced: prefix morphological rules, suffix morpho-
logical rules and ending-guessing rules. Using the proposed technique, unknown-word-guessing
rule sets were induced and integrated into a stochastic tagger and a rule-based tagger, which were
then applied to texts with unknown words.

1. Introduction

Words unknown to the lexicon present a substantial problem to NLP modules (as,
for instance, part-of-speech (pos-) taggers) that rely on information about words, such
as their part of speech, number, gender, or case. Taggers assign a single POS-tag to a
word-token, provided that it is known what Pos-tags this word can take on in general
and the context in which this word was used. A Pos-tag stands for a unique set of
morpho-syntactic features, as exemplified in Table 1, and a word can take several
Pos-tags, which constitute an ambiguity class or POS-class for this word. Words
with their POs-classes are usually kept in a lexicon. For every input word-token, the
tagger accesses the lexicon, determines possible POS-tags this word can take on, and
then chooses the most appropriate one. However, some domain-specific words or
infrequently used morphological variants of general-purpose words can be missing
from the lexicon and thus, their POs-classes should be guessed by the system and
only then sent to the disambiguation module.

The simplest approach to POS-class guessing is either to assign all possible tags to
an unknown word or to assign the most probable one, which is proper singular noun
for capitalized words and common singular noun otherwise. The appealing feature
of these approaches is their extreme simplicity. Not surprisingly, their performance
is quite poor: if a word is assigned all possible tags, the search space for the disam-
biguation of a single POS-tag increases and makes it fragile; if every unknown word is
classified as a noun, there will be no difficulties for disambiguation but accuracy will
suffer--such a guess is not reliable enough. To assign capitalized unknown words the
category proper noun seems a good heuristic, but may not always work. As argued
in Church (1988), who proposes a more elaborated heuristic, Dermatas and Kokki-
nakis (1995) proposed a simple probabilistic approach to unknown-word guessing:

HCRC, Language Technology Group, University of Edinburgh, 2 Buccleuch Place, Edinburgh EH8
9LW, Scotland, UK.

Q 1997 Association for Computational Linguistics

Computational Linguistics Volume 23, Number 3

Table 1
The most frequent open-class tags from the Penn tag set.

Tag Meaning Example Tag Meaning Example

NN common noun table
NNS noun plural tables
NNP proper noun John
NNPS plural proper noun Vikings
JJ adjective green
RB adverb naturally

VB verb base form take
VBD verb past took
VBG gerund taking
VBN past participle taken
VBZ verb present, 3d person takes
V B P verb, present, non-3d take

the probability that an unknown word has a particular Pos-tag is estimated from the
probability distribution of hapax words (words that occur only once) in the previously
seen texts. 1 Whereas such a guesser is more accurate than the naive assignments and
easily trainable, the tagging performance on unknown words is reported to be only
about 66% correct for English. 2

More advanced word-guessing methods use word features such as leading and
trailing word segments to determine possible tags for unknown words. Such methods
can achieve better performance, reaching tagging accuracy of up to 85% on unknown
words for English (Brill 1994; Weischedel et al. 1993). The Xerox tagger (Cutting et
al. 1992) comes with a set of rules that assign an unknown word a set of possible
pos-tags (i.e., POS-class) on the basis of its ending segment. We call such rules ending-
guessing rules because they rely only on ending segments in their predictions. For
example, an ending-guessing rule can predict that a word is a gerund or an adjective
if it ends with ing. The ending-guessing approach was elaborated in Weischedel et al.
(1993), where an unknown word was guessed by using the probability for an unknown
word to be of a particular Pos-tag, given its capitalization feature and its ending. Brill
(1994, 1995) describes a system of rules that uses both ending-guessing and more
morphologically motivated rules. A morphological rule, unlike an ending-guessing
rule, uses information about morphologically related words already known to the
lexicon in its prediction. For instance, a morphologically motivated guessing rule can
say that a word is an adjective if adding the suffix ly to it will result in a word. Clearly,
ending-guessing rules have wider coverage than morphologically oriented ones, but
their predictions can be less accurate.

The major topic in the development of word-Pos guessers is the strategy used
for the acquisition of the guessing rules. A rule-based tagger described in Voutilainen
(1995) was equipped with a set of guessing rules that had been hand-crafted using
knowledge of English morphology and intuitions. A more appealing approach is au-
tomatic acquisition of such rules from available lexical resources, since it is usually
less labor-intensive and less error-prone. Zhang and Kim (1990) developed a system
for automated learning of morphological word formation rules. This system divides a
string into three regions and infers from training examples their correspondence to un-
derlying morphological features. Kupiec (1992) describes a guessing component that
uses a prespecified list of suffixes (or rather endings) and then statistically learns the

1 A similar idea for estimating lexical prior probabilities for unknown words was suggested in Baayen
and Sproat (1995).

2 The best result was detected for GermanM2% accuracy and the worst result for Italian--50% accuracy.

406

Andrei Mikheev Unknown-Word Guessing

predictive properties of those endings from an untagged corpus. In Brill (1994, 1995)
a transformation-based learner that learns guessing rules from a pretagged training
corpus is outlined: First the unknown words are labeled as common nouns and a list
of generic transformations is defined. Then the learner tries to instantiate the generic
transformations with word features observed in the text. A statistical-based suffix
learner is presented in Schmid (1994). From a training corpus, it constructs a suffix
tree where every suffix is associated with its information measure to emit a particular
pos-tag. Although the learning process in these systems is fully automated and the
accuracy of obtained guessing rules reaches current state-of-the-art levels, for estima-
tion of their parameters they require significant amounts of specially prepared training
data--a large training corpus (usually pretagged), training examples, and so on.

In this paper, we describe a novel, fully automatic technique for the induction
of Pos-class-guessing rules for unknown words. This technique has been partially
outlined in (Mikheev 1996a, 1996b) and, along with a level of accuracy for the in-
duced rules that is higher than any previously quoted, it has an advantage in terms of
quantity and simplicity of annotation of data for training. Unlike many other ap-
proaches, which implicitly or explicitly assume that the surface manifestations of
morpho-syntactic features of unknown words are different from those of general lan-
guage, we argue that within the same language unknown words obey general morphological
regularities. In our approach, we do not require large amounts of annotated text but
employ fully automatic statistical learning using a pre-existing general-purpose lexi-
con mapped to a particular tag set and word-frequency distribution collected from a
raw corpus. The proposed technique is targeted to the acquisition of both morpho-
logical and ending-guessing rules, which then can be applied cascadingly using the
most accurate guessing rules first. The rule induction process is guided by a thorough
guessing-rule evaluation methodology that employs precision, recall, and coverage as
evaluation metrics.

In the rest of the paper we first introduce the kinds of guessing rules to be induced
and then present a semi-unsupervised 3 statistical rule induction technique using data
derived from the CELEX lexical database (Burnage 1990). Finally we evaluate the in-
duced guessing rules by removing all the hapax words from the lexicon and tagging
the Brown Corpus (Francis and Kucera 1982) by a stochastic tagger and a rule-based
tagger.

2. Guessing-Rule Schemata

There are two kinds of word-guessing rules employed by our cascading guesser: mor-
phological rules and nonmorphological ending-guessing rules. Morphological word-
guessing rules describe how one word can be guessed given that another word is
known. Unlike morphological guessing rules, nonmorphological rules do not require
the base form of an unknown word to be listed in the lexicon. Such rules guess the
pos-class for a word on the basis of its ending or leading segments alone. This is
especially important when dealing with uninflected words and domain-specific sub-
languages where many highly specialized words can be encountered. In English, as in
many other languages, morphological word formation is realized by affixation: pre-
fixation and suffixation. Thus, in general, each kind of guessing rule can be further
subcategorized depending on whether it is applied to the beginning or tail of an un-

3 The induction technique can be considered to be semi-unsupervised since it uses the annotation stated
in the lexicon. At the same time it does not require additional annotation since that annotation already
exists regardless of the rule induction task.

407

Computational Linguistics Volume 23, Number 3

known word. To mirror this classification, we will introduce a general schemata for
guessing rules and a guessing rule will be seen as a particular instantiation of this
schemata.

Def in i t ion
A guess ing-ru le schemata is a structure G =x:{b.e} [-S +M ?/-class --*R-class] where

• x indicates whether the rule is applied to the beginning or end of a word
and has two possible values, b-beginning and e-end;

• S is the affix to be segmented; it is de le ted (-) f rom the beginning or
end of an unknown word according to the value of x;

• M is the mutat ive segment (possibly empty) , which should be added (+)
to the result string after the segmentation;

• /-class is the required Pos-class (set of one or more pos-tags) of the stem;
the result string after the - S and + M operations should be checked (?)
in the lexicon for having this particular Pos-class; i f / -class is set to be
"void" no checking is required;

• R-class is the POs-class to ass ign (--,) to the u n k n o w n word if all the
above operations (- S + M ?I) have been successful.

For example, the rule

e[-ied +y ?(VB VBP) --*(JJ VBD VBN)]

says that if there is an unknown word which ends with ied, we should strip this ending
from it and append the string y to the remaining part. If we then find this word in the
lexicon as (VB VBP) (base verb or verb of present tense non-3d form), we conclude that
the unknown word is of the category (JJ VBD VBN) (adjective, past verb, or participle).
Thus, for instance, if the word specified was u n k n o w n to the lexicon, this rule first
would try to segment the required ending ied (specified - ied = speci f) , then add to the
result the mutat ive segment y (specif + y = specify), and, if the word specify was found
in the lexicon as (VB VBP), the unknown word specified would be classified as (JJ VBD
VBN).

Since the mutat ive segment can be an empty string, regular morphological forma-
tions can be captured as well. For instance, the rule

b[-un +"" ?(VBD VBN) --*(JJ)]

says that if segmenting the prefix un from an u n k n o w n word results in a word that
is found in the lexicon as a past verb and participle (VBD VBN), we conclude that the
unknown word is an adjective 0J). This rule will, for instance, correctly classify the
word unscrewed if the word screwed is listed in the lexicon as (VBD VBN).

When setting the S segment to an empty string and the M segment to a non-empty
string, the schemata allows for cases when a secondary form is listed in the lexicon
and the base form is not. For instance, the rule

e[-"" +ed ?(VBD VBN) --*(VB VBP)]

says that if adding the segment ed to the end of an u n k n o w n word results in a word

408

Andrei Mikheev Unknown-Word Guessing

that is found in the lexicon as a past verb and participle (VBD VBN), then the unknown
word is a base or non-3d present verb (VB VBP).

The general schemata can also capture ending-guessing rules if the/-class is set
to be "void." This indicates that no stem lookup is required. Naturally, the mutative
segment of such rules is always set to an empty string. For example, an ending-
guessing rule

e[-ing +"" ?-- --*(JJ NN VBG)]
says that if a word ends with ing it can be an adjective, a noun, or a gerund. Unlike
a morphological rule, this rule does not check whether the substring preceding the
i n g - e n d i n g is listed in the lexicon with a particular POs-class.

The proposed guessing-rule schemata is in fact quite similar to the set of generic
transformations for unknown-word guessing developed by Brill (1995). There are,
however, three major differences:

• Brill's transformations do not check whether the stem belongs to a
particular POS-class while the schemata proposed here does (?/-class) and
therefore imposes more rigorous constraints;

• Brill's transformations do not account for irregular morphological cases
like try- tr ies whereas our schemata does (+M segment);

• Brill's guessing rules produce a single most likely tag for an unknown
word, whereas our guesser is intended to imitate the lexicon and
produce all possible tags.

Brill's system has two transformations that our schemata do not capture: when
a particular character appears in a word and when a word appears in a particular
context. The latter transformation is, in fact, due to the peculiarities of Brill's tagging
algorithm and, in other approaches, is captured at the disambiguation phase of the
tagger itself. The former feature is indirectly captured in our approach. It has been
noticed (as in [Weischedel et al., 1993], for example) that capitalized and hyphenated
words have a different distribution from other words. Our morphological rules account
for this difference by checking the stem of the word. The ending-guessing rules, on
the other hand, do not use information about stems. Thus if the ending s predicts that
a word can be a plural noun or a 3d form of a verb, the information that this word
was capitalized can narrow the considered set of POS-tags to plural proper noun. We
therefore decided to collect ending-guessing rules separately for capitalized words,
hyphenated words, and all other words. In our experiments, we restricted ourselves
to the production of six different guessing-rule sets, which seemed most appropriate
for English:

• Suffix ° - suffix morphological rules with no mutative endings (0). Such
rules account for the regular suffixation as, for instance,
book + ed = booked;

• Suffix I - suffix morphological rules with a mutative ending in the last
letter. Such rules account for many cases of the irregular suffixation as,
for instance, t ry - y + ied = tried;

• Prefix - prefix morphological rules with no mutative segments (0). Such
rules account for the regular prefixation as, for instance,
Un q- s c r e w ~ u n s c r e w ;

409

Computational Linguistics Volume 23, Number 3

• Ending- - ending-guessing rules for hyphenated words;

• Ending c - ending-guessing rules for capitalized words;

• Ending* - ending-guessing rules for all other (nonhyphenated and
noncapitalized) words.

3. Guessing-Rule Induction

As already mentioned, we see features that our guessing-rule schemata is intended
to capture as general language regularities rather than properties of rare or corpus-
specific words only. This significantly simplifies training data requirements: we can
induce guessing rules from a general-purpose lexicon. 4 First, we no longer depend on
the size or even existence of an annotated training corpus. Second, we do not require
any annotation to be done for the training; instead, we reuse the information stated
in the lexicon, which we can automatically map to a particular tag set that a tagger
is trained to. We also use the actual frequencies of word usage, collected from a raw
corpus. This allows for the discrimination between rules that are no longer productive
(but have left their imprint on the basic lexicon) and rules that are productive in
real-life texts. For guessing rules to capture general language regularities, the lexicon
should be as general as possible (i.e., should list all possible pos-tags for a word)
and large. The corresponding corpus should also be large enough to obtain reliable
estimates of word-frequency distribution for at least 10,000-15,000 words.

Since a word can take on several different POS-tags, in the lexicon it can be repre-
sented as a [string/Pos-class] record, where the POs-class is a set of one or more POS-tags.
For instance, the entry for the word book, which can be a noun (NN) or a verb (VB)
would look like [book (NN VB)]. Thus the nth entry of the lexicon (Wn) can be represented
as [W C]n where W is the surface lexical form and C is its pos-class. Different lexicon en-
tries can share the same POs-class but they cannot share the same surface lexical form.
In our experiments, we used a lexicon derived from CRLEX (Burnage 1990), a large
multilingual database that includes extensive lexicons of English, Dutch, and German.
We constructed an English lexicon of 72,136 word forms with morphological features,
which we then mapped into the Penn Treebank tag set (Marcus, Marcinkiewicz, and
Santorini 1993). The most frequent open-class tags of this tag set are shown in Table 1.
Word-frequency distribution was estimated from the Brown Corpus, which reflects
multidomain language use.

As usual, we separated the test sample from the training sample. Here we followed
the suggestion that the unknown words actually are quite similar to words that occur
only once (hapax words) in the corpus (Dermatas and Kokkinakis 1995; Baayen and
Sproat 1995). We put all the hapax words from the Brown Corpus that were found
in the CnLEx-derived lexicon into the test collection (test lexicon) and all other words
from the CELEx-derived lexicon into the training lexicon. In the test lexicon, we also
included the hapax words not found in the CELEx-derived lexicon, assigning them the
POS-tags they had in the Brown Corpus. Then we filtered out words shorter than four
characters, nonwords such as numbers or alpha-numerals, which usually are handled
at the tokenization phase, and all closed-class words, s which we assume will always
be present in the lexicon. Thus after all these transformations we obtained a lexicon
of 59,268 entries for training and the test lexicon of 17,868 entries.

4 As opposed to a corpus-specific one.
5 The closed class consists of a finite and well-established list of words such as prepositions, articles,

wh-words, etc.

410

Andrei Mikheev Unknown-Word Guessing

Our guessing-rule induction technique uses the training and test data prepared as
described above and can be seen as a sampling for the best performing rule set from
a collection of automatically produced rule sets. Here is a brief outline of its major
phases:

Rule Extraction Phase (Section 3.1) - sets of word-guessing rules, (e.g.,
Prefix, Suffix °, Suffix 1, Ending, etc.) are extracted from the lexicon and
cleaned of redundant and infrequently used rules;

Rule Scoring Phase (Section 3.2) - each rule from the extracted rule sets
is ranked according to its accuracy, and rules that scored above a certain
threshold are included in the working rule sets;

Rule Merging Phase (Section 3.3) - rules that have not scored high
enough are merged together into more general rules, then rescored, and,
depending on their score, added to the working rule sets;

Direct Evaluation Phase (Sections 3.4) - working rule sets produced with
different thresholds are evaluated to obtain the best-performing ones.

3.1 Rule Extraction Phase
For the extraction of the initial sets of prefix and suffix morphological guessing rules
(Prefix, Suffix °, and Suffix1), we define the operator Vn where the index n specifies
the length of the mutative ending of the main word. Thus when the index n is set to
0 the result of the application of the V0 operator will be a morphological rule with no
mutative segment. The V1 operator will extract the rules with the alterations in the
last letter of the main word. When the ~ operator is applied to a pair of entries from
the lexicon ([W C]i and [W C]j), first, it segments the last (or first) n characters of the
shorter word (Wj) and stores this in the M element of the rule. Then it tries to segment
an affix by subtracting the shorter word (Wj) without the mutative ending from the
longer word (Wi). If the subtraction results in an non-empty string and the mutative
segment is not duplicated in the affix, the system creates a morphological rule with
the POs-class of the shorter word (Cj) as the/-class, the POS-class of the longer word
(Ci) as the R-class and the segmented affix itself in the S field. For example:

[booked (JJ VBD VBN)] V0 [book (NN VB)] --+ e[-ed +"" ?(NN VB) ---+(JJ VBD VBN)]
[advisable (JJ)] V1 [advise (NN VB)] ---+ e[-able +"e" ?(NN VB) ---~(JJ)]

The V operator is applied to all possible pairs of lexical entries sequentially, and, if
a rule produced by such an application has already been extracted from another pair,
its frequency count (f) is incremented. Thus, prefix and suffix morphological rules
together with their frequencies are produced. Next, we cut out the most infrequent
rules, which might bias further learning. To do that we eliminate all the rules with
frequency f less than a certain threshold 8, which usually is set quite low: 2-4. Such
filtering reduces the rule sets more than tenfold.

To collect the ending-guessing rules, we set the upper limit on the ending length
equal to five characters and thus collect from the lexicon all possible word-endings
of length 1, 2, 3, 4, and 5, together with the POS-classes of the words in which these
endings appeared. We also set the minimum length of the remaining substring to three
characters. We define the unary operator A, which produces a set of ending-guessing

411

Computational Linguistics Volume 23, Number 3

rules from a word in the lexicon ([W C]i). For instance, from a lexicon entry Idifferent
(JJ)] the operator A will produce five ending-guessing rules:

A [different 0J)] = {

e[--t + ?-- ~ (J J)]
e[--nt + ?-- --+ (JJ)]
e[-ent + ? - ~ (J J)]
e[-rent + ?-- --* (J3)]
e[-erent + ? - --+ 0J)]

The G operator is applied to each entry in the lexicon, and if a rule it produces
has already been extracted from another entry in the lexicon, its frequency count (f)
is incremented. Then the infrequent rules with f < 0 are eliminated from the ending-
guessing rule set.

After applying t h e / k and V operations to the training lexicon, we obtained rule
collections of 40,000-50,000 entries. Filtering out the rules with frequency counts of 1
reduced the collections to 5,000-7,000 entries.

3.2 Rule Scoring Phase
Of course, not all acquired rules are equally good at predicting word classes: some
rules are more accurate in their guesses and some rules are more frequent in their
application. For every rule acquired, we need to estimate whether it is an effective rule
worth retaining in the working rule set. To do so, we perform a statistical experiment
as follows: we take each rule from the extracted rule sets, one by one, take each word-
type from the training lexicon and guess its POs-class using the rule, if the rule is
applicable to the word. For example, if a guessing rule strips off a particular suffix
and a current word from the lexicon does not have this suffix, we classify that word
and the rule as incompatible and the rule as not applicable to that word. If a rule is
applicable to a word, we compare the result of the guess with the information listed
in the lexicon. If the guessed class is the same as the class stated in the lexicon, we
count it as a hit or success, otherwise it is a failure. Then, since we are interested in
the application of the rules to word-tokens in the corpus, we mult iply the result of the
guess by the corpus frequency of the word. If we keep the sample space for each rule
separate from the others, we have a binomial experiment. The value of a guessing rule
closely correlates with its estimated proportion of success (/5), which is the proportion
of all positive outcomes (x) of the rule application to the total number of the trials (n),
which are, in fact, the number of all the word tokens that are compatible to the rule
in the corpus:

x: number of successful guesses
= n: number of the compatible to the rule word-tokens

The 15 estimate is a good indicator of the rule accuracy but it frequently suffers
from large estimation error due to insufficient training data. For example, if a rule
was found to apply just once and the total number of observations was also one, its
estimate p has the maximal value (1) but clearly this is not a very reliable estimate. We
tackle this problem by calculating the lower confidence limit 71" L for the rule estimate,
which can be seen as the minimal expected value of/~ for the rule if we were to draw
a large number of samples. Thus with a certain confidence c~ we can assume that if we
used more training data, the rule estimate/~ would be not worse than the 7rL. The rule
estimate then will be taken at its lowest possible value which is the ~L limit itself. First
we adjust the rule estimate so that we have no zeros in positive (/~) or negative (1 -]5)
outcome probabilities, by adding some floor values to the numerator and denominator:

412

Andrei Mikheev Unknown-Word Guessing

df 1 2 3 4 5 . . . 30 40 60 infinity

to.a/o5 6.314 2.920 3.353 2.132 2.015 . . . 1.697 1.684 1.671 1.645

Figure 1
Values of d/ df based on sample size. t(1_0.90)/2 ~ to.05

]5~ = xi+0.5 The lower confidence limit 7 r L then is calculated as (Hayslett 1981):
ni+l "

7rL /~* .(n-l) = ~ . _ ~ (n - 1) / ff/~*(l~-/~*) = -- t(I_cQ/2 * Sp ~(1-c~)/2 * -

d/
where t(l_c0/2 is a coefficient of the t-distribution. It has two parameters: c~, the level of
confidence and dr, the number of degrees of freedom, which is one less than the sample

size (dr n 1). e/ = - t(l_~)/2 can be looked up in the tables for the t-distribution listed
df df in every textbook on statistics. We adopted 90% confidence for which t(1_o.9o)/2=to.o5

takes values depending on the sample size as in Figure 1.
Using ~-L instead of]~ for rule scoring favors higher estimates (/3) obtained over

larger samples (n). Even if one rule has a high estimate value but that estimate was
obtained over a small sample, another rule with a lower estimate value but obtained
over a large sample might be valued higher by ~rL. This rule-scoring function resembles
the one used by Tzoukermann, Radev, and Gale (1995) for scoring Pos-disambiguation
rules for the French tagger. The main difference between the two functions is that there
the t value was implicitly assumed to be 1, which corresponds to a confidence level
of 68% on a very large sample.

Another important consideration for rating a word-guessing rule is that the longer
the affix or ending (S) of this rule, the more confident we are that it is not a coincidental
one, even on small samples. For example, if the estimate for the word-ending o was
obtained over a sample of five words and the estimate for the word-ending fu lness
was also obtained over a sample of five words, the latter is more representative, even
though the sample size is the same. Thus we need to adjust the estimation error in
accordance with the length of the affix or ending. A good way to do this is to decrease
it proport ional ly to a value that increases along with the increase of the length. A
suitable solution is to use the logari thm of the affix length:

^ . (o , - , I / p t (1 - ^ *
scorei -= Pt - to.os * V n. Pi)/(1 + log(ISil))

When the length of S (the affix or ending) is 1, the estimation error is not changed
since log(l) is 0. For the rules with an affix or ending length of 2 the estimation error
is reduced by 1 + log(2) = 1.3, for the length 3 this will be 1 + log(3) = 1.48, etc.
The longer the length, the smaller the sample that will be considered representat ive
enough for a confident rule estimation.

Setting the threshold (0s) at a certain level we include in the working rule sets
only those rules whose scores are higher than the threshold. The method for finding
the optimal threshold is based on empirical evaluations of the rule sets and is de-
scribed in Section 3.4. Usually, the threshold is set in the range of 65-80 points and
the rule sets are reduced down to a few hundred entries. For example, when we set

413

Computational Linguistics Volume 23, Number 3

Table 2
Top scored Prefix and Suffix ° guessing rules.

Prefix /-class R-class Suffix /-class R-class

r e JJ NN VBG JJ NN VBG

e x NN NN

s e l f - N N NN

inter JJ JJ
non Jl Jl
u n RB RB

d i s JJ JJ

a n t i - NN JJ

d e jj VBD VBN JJ VBD VBN

i n RB RB

m e n t VB VBP NN

ing NN VB VBP JJ NN VBG

ed NN VB VBP JJ VBD VBN

s NN VB VBP NNS VBZ

m e n t NN VB VBP NN

ly JJ NN RB ", RB

ness JJ NN
ship NN NN

a b l e NN VB VBP JJ

s NN NNS

the threshold (0s) to 75 points, the obtained ending-guessing rule collection (Ending*)
comprised 1,876 rules, the suffix rule collection without mutation (Suffix °) comprised
591 rules, the suffix rule collection with mutation (Suffix 1) comprised 912 entries and
the prefix rule collection (Prefix) comprised 235 rules. Table 2 shows the highest-rated
rules from the induced Prefix and Suffix ° rule sets. In general, it looks as though the
induced morphological guessing rules largely consist of the standard rules of English
morphology and also include a small proportion of rules that do not belong to the
known morphology of English. For instance, the suffix rule e[-et +"" ?(NN) --,(NN)] does
not stand for any well-known morphological rule, but its prediction is as good as
those of the standard morphological rules. The same situation can be seen with the
prefix rule b[-st +"" ?(NNS) --+(NNS)I, which is quite predictive but at the same time is not
a standard English morphological rule. The ending-guessing rules, naturally, include
some proper English suffixes but mostly they are simply highly predictive ending
segments of words.

3.3 Rule Merging Phase
Rules which have scored lower than the threshold are merged together into more
general rules. These new rules, if they score above the threshold, can also be included in
the working rule sets. We merge together two rules if they scored below the threshold
and have the same affix (S), mutative segment (M), and initial class (i).6 We define the
rule-merging operator ®:

Ai @ Aj = At: [Si, Mi, Ii, Ri U Rj] if Si = Sj & Mi = Mj & Ii = Ij

This operator merges two rules with the same affix (S), mutative segment (M) and
the initial class (I) into one rule, with the resulting class being the union of the two
merged resulting classes. For example,

e[-s +"" ?(NN VB) --*(NNS)] • e[--S +"" ?(NI~ VB) ---~(NNB VBZ)I
= e[-s +"" ?(NN VB) --fiNNS VBZ)]

b[--un +"" ?(VBD VBN) -*(JJ)] • b[--un +"" ?(VBD VBN) --*(VBN)]
= b[--un +"" ?(VBD VBN) --*(JJ VBN)]

6 For ending-guessing rules, this is always the case.

414

Andrei Mikheev Unknown-Word Guessing

Possible Tags JJ N N NNS RB VB VBD VBG VBN VBZ

Lexicon Information V V V
Guesser Assigned V V V v V

Figure 2
Lexicon entry and guesser's categorization for [developed (JJ VBD VBN)].

The score of the resulting rule will be higher than the scores of the individual
rules since the number of positive observations increases and the number of the trials
remains the same. After a successful application of the • operator, the resulting general
rule is substi tuted for the two merged ones. To per form such rule merging over a rule
set the rules that have not been included into the working rule set are first sorted by
their score and the rules with the best scores are merged first. After each successful
merging, the resulting rule is rescored. This is done recursively until the score of the
resulting rule does not exceed the threshold, at which point it is added to the working
rule sets. This process is applied until no merges can be done to the rules that scored
poorly. In our exper iment we noticed that the merging added 30-40% new rules to the
working rule sets, and therefore the final number of rules for the induced sets were:
Prefix - 348, Suffix ° - 975, Suffix 1- 1,263 and Ending* - 2,196.

3.4 D irec t E v a l u a t i o n P h a s e
There are two important questions that arise at the rule acquisition stage: how to
choose the scoring threshold Os and what the performance of the rule sets p roduced
with different thresholds is. The task of assigning a set of POS-tags to a word is actually
quite similar to the task of document categorization where a document is assigned a
set of descriptors that represent its contents. There are a number of s tandard parame-
ters (Lewis 1991) used for measuring performance on this kind of task. For example,
suppose that a word can take on one or more POS-tags from the set of open-class
POS-tags: qJ NN NNS RB VB VBD VBG VBN VBZ). To see how well the guesser performs, we
can compare the results of the guessing with the Pos-tags known to be true for the
Word (i.e., listed in the lexicon). Let us take, for instance, a lexicon entry [developed (JJ
VBD VBN)]. Suppose that the guesser categorized it as [developed (JJ NN RB VBD VBZ)]. We
can represent this situation as in Figure 2.

The performance of the guesser can be measured in:

• recall - the percentage of POS-tags correctly assigned by the guesser, i.e.,
two (jJ VBD) out of three (JJ VBD VBN) or 66%. 100% recall would mean
that the guesser had assigned all the correct pos-tags but not necessarily
only the correct ones. So, for example, if the guesser had assigned all
possible POS-tags to the word its recall would have been 100%.

• p r e c i s i o n - the percentage of POS-tags the guesser assigned correctly (JJ
VBD) over the total number of POS-tags it assigned to the word (Jl NN RB
VBD VBZ), i.e., 2 / 5 or 40%. 100% precision would mean that the guesser
did not assign incorrect POS-tags, a l though not necessarily all the correct
ones were assigned. So, if the guesser had assigned only (JJ) its precision
would have been 100%.

• coverage - the propor t ion of words guesser was able to classify, but not
necessarily correctly. So, for example, if we had evaluated a guesser with

415

Computational Linguistics Volume 23, Number 3

Table 3
Comparative performance of different guessing rule sets.

Measure Sample Xerox Ending Suffix ° Suffix I Prefix Cascade

Recall Training 0.958045 0.965378 0.978751 0.966475 0.973135 0.966327
Test 0 .956262 0.951916 0.973245 0.956031 0.947015 0.952491

Precision Training 0.648983 0.760492 0.977273 0.969032 0.959782 0.82257
Test 0 .719206 0.782712 0.979964 0.96761 0.935075 0.851626

Coverage Training 0.872842 0.946309 0.493283 0.307658 0.048635 0.950581
Test 0.856372 0.918876 0.367574 0.26542 0.0653175 0.926553

100 random words from the lexicon and the guesser had assigned
something to 80 of them, its coverage would have been 80%.

The interpretation of these percentages is by no means straightforward, as there
is no straightforward way of combining these different measures into a single one.
For example, these measures assume that all combinations of POS-tags will be equally
hard to disambiguate for the tagger, which is not necessarily the case. Obviously, the
most important measure is recall since we want all possible categories for a word to be
guessed. Precision seems to be slightly less important since the disambiguator should
be able to handle additional noise but obviously not in large amounts. Coverage is a
very important measure for a rule set, since a rule set that can guess very accurately
but only for a tiny proportion of words is of questionable value. Thus, we will try
to maximize recall first, then coverage, and, finally, precision. We will measure the
aggregate by averaging over measures per word (micro-average), i.e., for every single
word from the test collection the precision and recall of the guesses are calculated,
and then we average over these values.

To find the optimal threshold (0s) for the production of a guessing rule set, we
generated a number of similar rule sets using different thresholds and evaluated them
against the training lexicon and the test lexicon of unseen 17,868 hapax words. Every
word from the two lexicons was guessed by a rule set and the results were compared
with the information the word had in the lexicon. For every application of a rule set
to a word, we computed the precision and recall, and then using the total number
of guessed words we computed the coverage. We noticed certain regularities in the
behavior of the metrics in response to the change of the threshold: recall improves as
the threshold increases while coverage drops proportionally. This is not surprising: the
higher the threshold, the fewer the inaccurate rules included in the rule set, but at the
same time the fewer the words that can be handled. An interesting behavior is shown
by precision: first, it grows proportionally along with the increase of the threshold,
but then, at high thresholds, it decreases. This means that among very confident rules
with very high scores, there are many quite general ones. The best thresholds were
obtained in the range of 70-80 points.

Table 3 displays the metrics for the best-scored (by aggregate of the three metrics
on the training and the test samples) rule sets. As the baseline standard, we took the
ending-guessing rule set supplied with the Xerox tagger (Cutting et al. 1992). When
we compared the Xerox ending guesser with the induced ending-guessing rule set
(Ending*), we saw that its precision was about 6% poorer and, most importantly, it

416

Andrei Mikheev Unknown-Word Guessing

could handle 6% fewer unknown words. Finally, we measured the performance of the
cascading application of the induced rule sets when the morphological guessing rules
were applied before the ending-guessing rules (Prefix+Suffix°+Suffix 1 +Ending -c*). We
detected that the cascading application of the morphological rule sets together with
the ending-guessing rules increases the overall precision of the guessing by about 8%.
This made the improvement over the baseline Xerox guesser 13% in precision and 7%
in coverage on the test sample.

4. Unknown-Word Tagging

The direct evaluation phase gave us a basis for setting the threshold to produce the
best-performing rule sets. The task of unknown-word guessing is, however, a subtask
of the overall part-of-speech tagging process. Our main interest is in how the advan-
tage of one rule set over another will affect the tagging performance. Therefore, we
performed an evaluation of the impact of the word guessers on tagging accuracy. In
this evaluation we used the cascading guesser with two different taggers: a c++ imple-
mented bigram HMM tagger akin to one described in Kupiec (1992) and the rule-based
tagger of Brill (1995). Because of the similarities in the algorithms with the LISP imple-
mented Xerox tagger, we could directly use the Xerox guessing rule set with the HMM
tagger. Brill's tagger came pretrained on the Brown Corpus and had a corresponding
guessing component. This gave us a search-space of four basic combinations: the HMM
tagger equipped with the Xerox guesser, the Brill tagger with its original guesser, the
HMM tagger with our cascading (Prefix+Suffix°+Suffixl+Ending-C*) guesser and the
Brill tagger with the cascading guesser. We also tried hybrid tagging using the output
of the HMM tagger as the input to Brill's final state tagger, but it gave poorer results
than either of the taggers and we decided not to consider this tagging option.

4.1 Setting up the Experiment
We evaluated the taggers with the guessing components on all fifteen subcorpora of
the Brown Corpus, one after another. The HMM tagger was trained on the Brown
Corpus in such a way that the subcorpus used for the evaluation was not seen at the
training phase. All the hapax words and capitalized words with frequency less than
20 were not seen at the training of the cascading guesser. These words were not used
in the training of the tagger either. This means that neither the HMM tagger nor the
cascading guesser had been trained on the texts and words used for evaluation. We do
not know whether the same holds for the Brill tagger and the Brill and Xerox guessers
since we took them pretrained. For words that the guessing components failed to
guess, we applied the standard method of classifying them as common nouns (NN) if
they were not capitalized inside a sentence and proper nouns (NNP) otherwise. When
we used the cascading guesser with the Brill tagger we interfaced them on the level
of the lexicon: we guessed the unknown words before the tagging and added them to
the lexicon listing the most likely tags first as required. 7 Here we want to clarify that
we evaluated the overall results of the Brill tagger rather than just its unknown-word
tagging component. Another point to mention is that, since we included the guessed
words in the lexicon, the Brill tagger could use for the transformations all relevant Pos-
tags for unknown words. This is quite different from the output of the original Brill's
guesser, which provides only one Pos-tag for an unknown word.

In our tagging experiments, we measured the error rate of tagging on unknown

7 We estimated the most likely tags from the training data.

417

Computational Linguistics Volume 23, Number 3

words using different guessers. Since, arguably, the guessing of proper nouns is eas-
ier than is the guessing of other categories, we also measured the error rate for the
subcategory of capitalized unknown words separately. The error rate for a category of
words was calculated as follows:

Error x = Wrongly_Tagged_Words_from_Set_X
Total_Words_in_Set_X

Thus, for instance, the error rate of tagging the u n k n o w n words is the propor t ion of
the mistagged u n k n o w n words to all unknown words. To see the distribution of the
workload be tween different guessing rule sets we also measured the coverage of a
guessing rule set:

CoverageR = Assigned_Wordsday_Rule_Set_R
Total _Unknown _Words

We collected the error and coverage measures for each of the fifteen subcorpora 8 of
the Brown Corpus separately, and, using the boots t rap replicate t echn ique (Efron
and Tibshirani 1993), we calculated the mean and the s tandard error for each combi-
nation of the taggers with the guessing components . For the fifteen accuracy means
{al, d2 , a15} obtained upon tagging the fifteen subcorpora of the Brown Corpus, we
generated a large number of bootstrap replicates of the form { b l , b 2 , . . . , b15} where
each mean was randomly chosen with replacements such as, for instance,

{bl = a11, b2 = a4, b3 = • , b4 = a n , b14 = a~9, b15 = a4}.

Using these replicates, we calculated the mean and s tandard error of the whole boot-
strap distribution as follows:

deB = [0*(b) - 0*(.)]2/(B - 1)

where

• B is the number of bootstrap replications;

• 0* (b) - is the mean estimate of the bth bootstrap replication;

• 0"(.) = Y ~ - I O*(b)/B - is the mean estimate of the whole bootstrap
distribution;

This way of calculating the est imated s tandard error for the mean does not assume
the normal distribution and hence provides more accurate results.

We noticed a certain inconsistency in the markup of proper n o u n s (NNP) in the
Brown Corpus suppl ied with the Penn Treebank. Quite often obvious proper nouns
as, for instance, Summerdale, Russia, or Rochester were marked as co m m o n n o u n s (NN)

and sometimes lower-cased common nouns such as business or church were marked
as proper nouns. Thus we decided not to count as an error the mismatch of the
NN/NNP tags. Using the HMM tagger with the lexicon containing all the words from

8 Each subcorpus belongs to a different genre ranging from news to fiction.

418

Andrei Mikheev Unknown-Word Guessing

Table 4
Results of tagging the unknown words in the Brown Corpus.

Unknown Words Unknown Common Words Unknown Proper Nouns
Tagger Guesser Metrics Error Error Coverage Error Coverage

HMM Xerox mean 17.851643 30.022169 37.567270 10.785563 63.797113
s-error 0.484710 0.469922 1.687396 0.613745 1.714969

HMM Cascade mean 12.378716 21.266264 36.507909 7.776456 64.795969
s-error 0.917656 0.403957 2.336381 0.853958 2.206457

Brill Brill mean 14.688501 27.411736 38.998687 6.439525 62.160917
s-error 0.908172 0.539634 2.627234 0.501082 4.010992

Brill Cascade mean 11.327863 20.986240 37.933048 5.548990 63.816586
s-error 0.761576 0.480798 2.353510 0.561009 3.775991

the Brown Corpus, we obtained the error rate (mean) 0* (.)=4.003093 wi th the s tandard
error deB=0.155599. This agrees wi th the results on the closed dict ionary (i.e., wi thout
u n k n o w n words) obta ined by other researchers for this class of the mode l on the same
corpus (Kupiec 1992; DeRose 1988). The Brill tagger showed some better results: error

rate (mean) 0* (.)=3.327366 with the s tandard error deB=O. 123903. Al though our p r i m a r y
goal was not to compare the taggers themselves but rather their pe r fo rmance wi th the
guessing components , we attr ibute the difference in their pe r formance to the fact that
Brill's tagger uses the informat ion about the mos t likely tag for a word whereas the
H M M tagger did not have this informat ion and instead used the priors for a set of
POS-tags (ambigui ty class). When we r em oved f rom the lexicon all the hapax words
and, following the r ecommenda t ion of Church (1988), all the capital ized words wi th
f requency less than 20, we obtained some 51,522 u n k n o w n word- tokens (25,359 word-
types) out of more than a million word- tokens in the Brown Corpus. We tagged the
fifteen subcorpora of the Brown Corpus by the four combinat ions of the taggers and
the guessers using the lexicon of 22,260 word- types .

4.2 Results of the Experiment
Table 4 displays the tagging results on the u n k n o w n words obtained by the four differ-
ent combinat ions of taggers and guessers. It shows the overall error rate on u n k n o w n
words and also displays the distr ibution of the error rate and the coverage be tween
u n k n o w n proper nouns and the other u n k n o w n words. Indeed the error rate on the
p roper nouns was m u c h smaller than on the rest of the u n k n o w n words , which means
that they are m u c h easier to guess. We can also see a difference in the distr ibution
(coverage) of the u n k n o w n words using different taggers. This can be accounted for
by the fact that the unguessed capital ized words were taken by default to be p roper
nouns and that the Brill tagger and the H M M tagger had slightly different strategies
to app ly to the first word of a sentence. The cascading guesser ou tpe r fo rmed the other
two guessers in general and mos t impor tan t ly in the n o n - p r o p e r noun category, where
it had an advan tage of 6.5% over Brill's guesser and about 8.7% over Xerox's guesser.
In our exper iments the category of u n k n o w n proper nouns had a larger share (63-
64%) than we expect in real life because all the capital ized words wi th f requency less
than 20 were taken out of the lexicon. The cascading guesser also he lped to improve
the accuracy on u n k n o w n proper nouns b y about 1% in compar i son to Brill's guesser
and about 3% in compar i son to Xerox's guesser. The cascading guesser ou tpe r fo rmed
the other two guessers on every subcorpus of the Brown Corpus. Table 5 shows the
distr ibution of the work load and the tagging accuracy a m o n g the different rule sets
of the cascading guesser. The default ass ignment of the NN tag to unguessed words

419

Computational Linguistics Volume 23, Number 3

Table 5
Distribution of the error rate and coverage in the cascading guesser.

Metrics Prefix Suffix ° Suffix 1 Ending -c* Default
Error Coverage Error Coverage Error Coverage Error Coverage Error Coverage

mean 10.92 5.64 11.95 33.78 17.33 7.00 26.84 46.61 44.00 8.17
s-error 0.95 0.19 0.65 0.84 1.19 0.17 0.91 0.83 3.17 0.25

performed very poorly, having the error rate of 44%. When we compared this distri-
bution to that of the Xerox guesser we saw that the accuracy of the Xerox guesser
itself was only about 6.5% lower than that of the cascading guesser 9 and the fact that
it could handle 6% fewer unknown words than the cascading guesser resulted in the
increase of incorrect assignments by the default strategy.

There were three types of mistaggings on unknown words detected in our ex-
periments. Mistagging of the first type occurred when a guesser provided a broader
POS-class for an unknown word than a lexicon would, and the tagger had difficul-
ties with its disambiguation. This was especially the case with the words that were
guessed as noun/adjective (NN JJ) but, in fact, act only as one of them (as do, for ex-
ample, many hyphenated words). Another highly ambiguous group is the ing words,
which, in general, can act as nouns, adjectives, and gerunds and only direct lexicaliza-
tion can restrict the search-space, as in the case of the word seeing, which cannot act
as an adjective. The second type of mistagging was caused by incorrect assignments
by the guesser. Usually this was the case with irregular words such as cattle or data,
which were wrongly guessed to be singular nouns (NN) but in fact were plural nouns
(NN8). We also did not include the "foreign word" category (FW) in the set of tags to
guess, but this did not do too much harm because these words were very infrequent
in the texts. And the third type of mistagging occurred when the word-POS guesser
assigned the correct Pos-class to a word but the tagger still disambiguated this class
incorrectly. This was the most frequent type of error, which accounted for more than
60% of the mistaggings on unknown words.

5. C o n c l u s i o n

We have presented a technique for fully automated statistical acquisition of rules that
guess possible Pos-tags for words unknown to the lexicon. This technique does not
require specially prepared training data and uses for training a pre-existing general-
purpose lexicon and word frequencies collected from a raw corpus. Using such training
data, three types of guessing rules are induced: prefix morphological rules, suffix
morphological rules, and ending-guessing rules.

Evaluation of tagging accuracy on unknown words using texts and words unseen
at the training phase showed that tagging with the automatically induced cascading
guesser was consistently more accurate than previously quoted results known to the
author (85%). Tagging accuracy on unknown words using the cascading guesser was
87.7-88.7%. The cascading guesser outperformed the guesser supplied with the Xerox
tagger and the guesser supplied with Brill's tagger both on unknown proper nouns

9 We attr ibute this to the 13% lower precision of the Xerox guesser.

420

Andrei Mikheev Unknown-Word Guessing

(which is a relatively easy-to-guess category of words) and on the rest of the unknown
words, where it had an advantage of 6.5-8.5.%. When the unknown words were made
known to the lexicon, the accuracy of tagging was 93.6-94.3% which makes the accu-
racy drop caused by the cascading guesser to be less than 6% in general.

Another important conclusion from the evaluation experiments is that the mor-
phological guessing rules do improve guessing performance. Since they are more ac-
curate than ending-guessing rules they were applied first and improved the precision
of the guesses by about 8%. This resulted in about 2% higher accuracy in the tag-
ging of unknown words. The ending-guessing rules constitute the backbone of the
guesser and cope with unknown words without clear morphological structure. For
instance, discussing the problem of unknown words for the robust parsing Bod (1995,
84) writes: "Notice that richer, morphological annotation would not be of any help
here; the words "return", "stop" and "cost" do not have a morphological structure
on the basis of which their possible lexical categories can be predicted." When we
applied the ending-guessing rules to these words, the words return and stop were
correctly classified as noun/verbs (NN VB VBP) and only the word cost failed to be
guessed by the rules.

The acquired guessing rules employed in our cascading guesser are, in fact, of a
standard nature, which, in some form or other, is present in other word-Pos guessers.
For instance, our ending-guessing rules are akin to those of Xerox and the morpho-
logical rules resemble some rules of Brill's, but ours use more constraints and provide
a set of all possible tags for a word rather than a single best tag. The two additional
types of features used by Brill's guesser are implicitly represented in our approach
as well: One of the Brill schemata checks the context of an unknown word. In our
approach we guess the words using their features only and provide several possi-
bilities for a word; then at the disambiguation phase the context is used to choose
the right tag. As for Brill's schemata that checks the presence of a particular char-
acter in an unknown word, we capture a similar feature by collecting the ending-
guessing rules for proper nouns and hyphenated words separately. We believe that
the technique for the induction of the ending-guessing rules is quite similar to that of
Xerox 1° or Schmid (1994) but differs in the scoring and pruning methods. The major
advantage of the proposed technique can be seen in the cascading application of the
different sets of guessing rules and in far superior training data. We use for training
a pre-existing general-purpose (as opposed to corpus-tuned) lexicon. This has three
advantages:

• the size of the training lexicon is large and does not depend on the size
or even the existence of the annotated corpus. This allows for the
induction of more rules than from a lexicon derived from an annotated
corpus. For instance, the ending guesser of Xerox includes 536 rules
whereas our Ending * guesser includes 2,196 guessing rules;

• the information listed in a general-purpose lexicon can be considered to
be of better quality than that derived from an annotated corpus, since it
lists all possible readings for a word rather than only those that happen
to occur in the corpus. We also believe that general-purpose lexicons
contain less erroneous information than those derived from annotated
corpora;

10 Xerox's technique is not documented and can be determined only by inspection of the source code.

421

Computational Linguistics Volume 23, Number 3

• the amount of work required to prepare the training lexicon is minimal
and does not require any additional manual annotation.

Our experiments with the lexicon derived from the CELEX lexical database and
word frequencies derived from the Brown Corpus resulted in guessing rule sets that
proved to be domain- and corpus-independent (but tag-set-dependent), producing
similar results on texts of different origins. An interesting by-product of the pro-
posed rule-induction technique is the automatic discovery of the template morpholog-
ical rules advocated in Mikheev and Liubushkina (1995). The induced morphological
guessing rules turned out to consist mostly of the expected prefixes and suffixes of
English and closely resemble the rules employed by the ispel| UNIX spell-checker. The
rule acquisition and evaluation methods described here are implemented as a modular
set of c++ and AWK tools, and the guesser is easily extendible to sublanguage-specific
regularities and retrainable to new tag sets and other languages, provided that these
languages have affixational morphology.

Acknowledgments
I would like to thank the anonymous
referees for helpful comments on an earlier
draft of this paper.

References
Baayen, Harald and Richard Sproat. 1995.

Estimating lexical priors for
low-frequency morphologically
ambiguous forms. Computational
Linguistics, 22(3):155-166.

Bod, Rens. 1995. Enriching Linguistics with
Statistics: Performance Models of Natural
Language. University of Amsterdam ILLC
Dissertation Series 1995-14, Academishe
Pers, Amsterdam.

Brill, Eric. 1994. Some advances in
transformation-based part of speech
tagging. In Proceedings of the Twelfth
National Conference on Artificial Intelligence
(AAAAI-94).

Brill, Eric. 1995. Transformation-based
error-driven learning and natural
language processing: A case study in
part-of-speech tagging. Computational
Linguistics, 21(4):543-565.

Burnage, G. 1990. CELEX: A Guide for Users.
Nijmegen: Centre for Lexical Information.

Church, Kenneth W. 1988. A stochastic parts
program and noun-phrase parser for
unrestricted text. In Proceedings of the
Second Conference on Applied Natural
Language Processing (ANLP-88), pages
136-143.

Cutting, Doug, Julian Kupiec, Jan Pedersen,
and Penelope Sibun. 1992. A practical
part-of-speech tagger. In Proceedings of the
Third Conference on Applied Natural
Language Processing (ANLP-92), pages
133-140.

Dermatas, Evangelos and George
Kokkinakis. 1995. Automatic stochastic
tagging of natural language texts.
Computational Linguistics, 21(2):137-164.

DeRose, Stephen. 1988. Grammatical
category disambiguation by statistical
optimization. Computational Linguistics,
14(1):31-39.

Efron, Bradley and Robert J. Tibshirani.
1993. An Introduction to the Bootstrap.
Brace&Co.

Francis, W. Nelson and Henry Kucera. 1982.
Frequency Analysis of English Usage: Lexicon
and Grammar. Houghton Mifflin, Boston.

Hayslett, H.T. 1981. Frequency Analysis of
English Usage Lexicon and Grammar.
Heinemann, London.

Kupiec, Julian. 1992. Robust part-of-speech
tagging using a hidden Markov model.
Computer Speech and Language, pages
225-241.

Lewis, David. 1991. Evaluating text
categorization. Speech and Natural
Language: Proceedings of a Workshop Held at
Pacific Grove, CA.

Marcus, Mitchell, Mary Ann Marcinkiewicz,
and Beatrice Santorini. 1993. Building a
large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19(2):313-329.

Mikheev, Andrei. 1996a. Learning
part-of-speech guessing rules from
lexicon: Extension to non-concatenative
operations. In Proceedings of the 16th
International Conference on Computational
Linguistics (COLING-96), pages 770-775.

Mikheev, Andrei. 1996b. Unsupervised
learning of word-category guessing rules.
In Proceedings of the 34th Annual Meeting of
the Association for Computational Linguistics
(ACL-96), pages 327-334.

422

Andrei Mikheev Unknown-Word Guessing

Mikheev, Andrei and Liubov Liubushkina.
1995. Russian morphology: An
engineering approach. Natural Language
Engineering, 1(3):235--260.

Schmid, Helmut. 1994. Part of speech
tagging with neural networks. In
Proceedings of the International Conference on
Computational Linguistics (COLING-94),
pages 172-176.

Tzoukermann, Evelin, Dragomir R. Radev,
and William A. Gale. 1995. Combining
linguistic knowledge and statistical
learning in French part of speech tagging.
In Proceedings of the EACL S1GDAT
Workshop, pages 51-59.

Voutilainen, Atro. 1995. A syntax-based
part-of-speech analyser. In Proceedings of

the Seventh Conference of European Chapter of
the Association for Computational Linguistics
(EACL-95), pages 157-164.

Weischedel, Ralph, Marie Meteer, Richard
Schwartz, Lance Ramshaw, and Jeff
Palmucci. 1993. Coping with ambiguity
and unknown words through
probabilistic models. Computational
Linguistics, 19(2):359-382.

Zhang, Byoung-Tak and Yung-Taek Kim.
1990. Morphological analysis and
synthesis by automated discovery and
acquisition of linguistic rules. In
Proceedings of the 13th International
Conference on Computational Linguistics
(COLING-90), pages 431-435.

423

