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Words unknown to the lexicon present a substantial problem to NLP modules that rely on mor- 
phosyntactic information, such as part-of-speech taggers or syntactic parsers. In this paper we 
present a technique for fully automatic acquisition of rules that guess possible part-of-speech tags 
for unknown words using their starting and ending segments. The learning is performed from a 
general-purpose lexicon and word frequencies collected from a raw corpus. Three complimentary 
sets of word-guessing rules are statistically induced: prefix morphological rules, suffix morpho- 
logical rules and ending-guessing rules. Using the proposed technique, unknown-word-guessing 
rule sets were induced and integrated into a stochastic tagger and a rule-based tagger, which were 
then applied to texts with unknown words. 

1. Introduction 

Words unknown to the lexicon present a substantial problem to NLP modules (as, 
for instance, part-of-speech (pos-) taggers) that rely on information about words, such 
as their part of speech, number, gender, or case. Taggers assign a single POS-tag to a 
word-token, provided that it is known what Pos-tags this word can take on in general 
and the context in which this word was used. A Pos-tag stands for a unique set of 
morpho-syntactic features, as exemplified in Table 1, and a word can take several 
Pos-tags, which constitute an ambiguity class or POS-class for this word. Words 
with their POs-classes are usually kept in a lexicon. For every input word-token, the 
tagger accesses the lexicon, determines possible POS-tags this word can take on, and 
then chooses the most appropriate one. However, some domain-specific words or 
infrequently used morphological variants of general-purpose words can be missing 
from the lexicon and thus, their POs-classes should be guessed by the system and 
only then sent to the disambiguation module. 

The simplest approach to POS-class guessing is either to assign all possible tags to 
an unknown word or to assign the most probable one, which is proper singular noun 
for capitalized words and common singular noun otherwise. The appealing feature 
of these approaches is their extreme simplicity. Not surprisingly, their performance 
is quite poor: if a word is assigned all possible tags, the search space for the disam- 
biguation of a single POS-tag increases and makes it fragile; if every unknown word is 
classified as a noun, there will be no difficulties for disambiguation but accuracy will 
suffer--such a guess is not reliable enough. To assign capitalized unknown words the 
category proper noun seems a good heuristic, but may not always work. As argued 
in Church (1988), who proposes a more elaborated heuristic, Dermatas and Kokki- 
nakis (1995) proposed a simple probabilistic approach to unknown-word guessing: 
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Table 1 
The most frequent open-class tags from the Penn tag set. 

Tag Meaning Example Tag Meaning Example 

NN common noun table 
NNS noun plural tables 
NNP proper noun John 
NNPS plural proper noun Vikings 
JJ adjective green 
RB adverb naturally 

VB verb base form take 
VBD verb past took 
VBG gerund taking 
VBN past participle taken 
VBZ verb present, 3d person takes 
V B P  verb, present, non-3d take 

the probability that an unknown word has a particular Pos-tag is estimated from the 
probability distribution of hapax words (words that occur only once) in the previously 
seen texts. 1 Whereas such a guesser is more accurate than the naive assignments and 
easily trainable, the tagging performance on unknown words is reported to be only 
about 66% correct for English. 2 

More advanced word-guessing methods use word features such as leading and 
trailing word segments to determine possible tags for unknown words. Such methods 
can achieve better performance, reaching tagging accuracy of up to 85% on unknown 
words for English (Brill 1994; Weischedel et al. 1993). The Xerox tagger (Cutting et 
al. 1992) comes with a set of rules that assign an unknown word a set of possible 
pos-tags (i.e., POS-class) on the basis of its ending segment. We call such rules ending- 
guessing rules because they rely only on ending segments in their predictions. For 
example, an ending-guessing rule can predict that a word is a gerund or an adjective 
if it ends with ing. The ending-guessing approach was elaborated in Weischedel et al. 
(1993), where an unknown word was guessed by using the probability for an unknown 
word to be of a particular Pos-tag, given its capitalization feature and its ending. Brill 
(1994, 1995) describes a system of rules that uses both ending-guessing and more 
morphologically motivated rules. A morphological rule, unlike an ending-guessing 
rule, uses information about morphologically related words already known to the 
lexicon in its prediction. For instance, a morphologically motivated guessing rule can 
say that a word is an adjective if adding the suffix ly to it will result in a word. Clearly, 
ending-guessing rules have wider coverage than morphologically oriented ones, but 
their predictions can be less accurate. 

The major topic in the development of word-Pos guessers is the strategy used 
for the acquisition of the guessing rules. A rule-based tagger described in Voutilainen 
(1995) was equipped with a set of guessing rules that had been hand-crafted using 
knowledge of English morphology and intuitions. A more appealing approach is au- 
tomatic acquisition of such rules from available lexical resources, since it is usually 
less labor-intensive and less error-prone. Zhang and Kim (1990) developed a system 
for automated learning of morphological word formation rules. This system divides a 
string into three regions and infers from training examples their correspondence to un- 
derlying morphological features. Kupiec (1992) describes a guessing component that 
uses a prespecified list of suffixes (or rather endings) and then statistically learns the 

1 A similar idea for estimating lexical prior probabilities for unknown words was suggested in Baayen 
and Sproat (1995). 

2 The best result was detected for GermanM2% accuracy and the worst result for Italian--50% accuracy. 
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predictive properties of those endings from an untagged corpus. In Brill (1994, 1995) 
a transformation-based learner that learns guessing rules from a pretagged training 
corpus is outlined: First the unknown words are labeled as common nouns and a list 
of generic transformations is defined. Then the learner tries to instantiate the generic 
transformations with word features observed in the text. A statistical-based suffix 
learner is presented in Schmid (1994). From a training corpus, it constructs a suffix 
tree where every suffix is associated with its information measure to emit a particular 
pos-tag. Although the learning process in these systems is fully automated and the 
accuracy of obtained guessing rules reaches current state-of-the-art levels, for estima- 
tion of their parameters they require significant amounts of specially prepared training 
data--a large training corpus (usually pretagged), training examples, and so on. 

In this paper, we describe a novel, fully automatic technique for the induction 
of Pos-class-guessing rules for unknown words. This technique has been partially 
outlined in (Mikheev 1996a, 1996b) and, along with a level of accuracy for the in- 
duced rules that is higher than any previously quoted, it has an advantage in terms of 
quantity and simplicity of annotation of data for training. Unlike many other ap- 
proaches, which implicitly or explicitly assume that the surface manifestations of 
morpho-syntactic features of unknown words are different from those of general lan- 
guage, we argue that within the same language unknown words obey general morphological 
regularities. In our approach, we do not require large amounts of annotated text but 
employ fully automatic statistical learning using a pre-existing general-purpose lexi- 
con mapped to a particular tag set and word-frequency distribution collected from a 
raw corpus. The proposed technique is targeted to the acquisition of both morpho- 
logical and ending-guessing rules, which then can be applied cascadingly using the 
most accurate guessing rules first. The rule induction process is guided by a thorough 
guessing-rule evaluation methodology that employs precision, recall, and coverage as 
evaluation metrics. 

In the rest of the paper we first introduce the kinds of guessing rules to be induced 
and then present a semi-unsupervised 3 statistical rule induction technique using data 
derived from the CELEX lexical database (Burnage 1990). Finally we evaluate the in- 
duced guessing rules by removing all the hapax words from the lexicon and tagging 
the Brown Corpus (Francis and Kucera 1982) by a stochastic tagger and a rule-based 
tagger. 

2. Guessing-Rule Schemata 

There are two kinds of word-guessing rules employed by our cascading guesser: mor- 
phological rules and nonmorphological ending-guessing rules. Morphological word- 
guessing rules describe how one word can be guessed given that another word is 
known. Unlike morphological guessing rules, nonmorphological rules do not require 
the base form of an unknown word to be listed in the lexicon. Such rules guess the 
pos-class for a word on the basis of its ending or leading segments alone. This is 
especially important when dealing with uninflected words and domain-specific sub- 
languages where many highly specialized words can be encountered. In English, as in 
many other languages, morphological word formation is realized by affixation: pre- 
fixation and suffixation. Thus, in general, each kind of guessing rule can be further 
subcategorized depending on whether it is applied to the beginning or tail of an un- 

3 The induction technique can be considered to be semi-unsupervised since it uses the annotation stated 
in the lexicon. At the same time it does not require additional annotation since that annotation already 
exists regardless of the rule induction task. 
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known word.  To mirror  this classification, we will introduce a general schemata for 
guessing rules and a guessing rule will be seen as a particular instantiation of this 
schemata. 

Def in i t ion  
A guess ing-ru le  schemata  is a structure G =x:{b.e} [-S +M ?/-class --*R-class] where  

• x indicates whether  the rule is applied to the beginning or end of a word  
and has two possible values, b-beginning and e-end; 

• S is the affix to be segmented; it is de le ted  ( - )  f rom the beginning or 
end of an unknown  word  according to the value of x; 

• M is the mutat ive segment  (possibly empty) ,  which should be added  (+) 
to the result string after the segmentation; 

• /-class is the required Pos-class (set of one or more  pos-tags) of the stem; 
the result string after the - S  and + M  operations should be checked  (?) 
in the lexicon for having this particular Pos-class; i f / -class is set to be 
"void"  no checking is required; 

• R-class is the POs-class to ass ign  (--,) to the u n k n o w n  word  if all the 
above operations ( - S  + M  ?I) have been successful. 

For example,  the rule 

e[-ied +y ?(VB VBP) --*(JJ VBD VBN)] 

says that if there is an unknown  word  which ends with ied, we should strip this ending 
from it and append  the string y to the remaining part. If we then find this word  in the 
lexicon as (VB VBP) (base verb or verb of present  tense non-3d form), we conclude that 
the unknown  word  is of the category (JJ VBD VBN) (adjective, past verb, or participle). 
Thus, for instance, if the word  specified was u n k n o w n  to the lexicon, this rule first 
would  try to segment the required ending ied (specified - ied = speci f) ,  then add to the 
result the mutat ive segment  y (specif  + y = specify),  and, if the word  specify was found 
in the lexicon as (VB VBP), the unknown  word  specified would  be classified as (JJ VBD 
VBN). 

Since the mutat ive segment can be an empty  string, regular morphological  forma- 
tions can be captured as well. For instance, the rule 

b[-un +"" ?(VBD VBN) --*(JJ)] 

says that if segmenting the prefix un from an u n k n o w n  word  results in a word  that 
is found in the lexicon as a past verb and participle (VBD VBN), we conclude that the 
unknown  word  is an adjective 0J). This rule will, for instance, correctly classify the 
word  unscrewed  if the word  screwed is listed in the lexicon as (VBD VBN). 

When setting the S segment to an empty  string and the M segment to a non-empty  
string, the schemata allows for cases when  a secondary form is listed in the lexicon 
and the base form is not. For instance, the rule 

e[-"" +ed ?(VBD VBN) --*(VB VBP)] 

says that if adding the segment ed to the end of an u n k n o w n  word  results in a word  
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that is found in the lexicon as a past verb and participle (VBD VBN), then the unknown 
word is a base or non-3d present verb (VB VBP). 

The general schemata can also capture ending-guessing rules if the/-class is set 
to be "void." This indicates that no stem lookup is required. Naturally, the mutative 
segment of such rules is always set to an empty string. For example, an ending- 
guessing rule 

e[-ing +"" ?--  --*(JJ NN VBG)] 
says that if a word ends with ing it can be an adjective, a noun, or a gerund. Unlike 
a morphological rule, this rule does not check whether the substring preceding the 
i n g - e n d i n g  is listed in the lexicon with a particular POs-class. 

The proposed guessing-rule schemata is in fact quite similar to the set of generic 
transformations for unknown-word guessing developed by Brill (1995). There are, 
however, three major differences: 

• Brill's transformations do not check whether the stem belongs to a 
particular POS-class while the schemata proposed here does (?/-class) and 
therefore imposes more rigorous constraints; 

• Brill's transformations do not account for irregular morphological cases 
like try- tr ies  whereas our schemata does (+M segment); 

• Brill's guessing rules produce a single most likely tag for an unknown 
word, whereas our guesser is intended to imitate the lexicon and 
produce all possible tags. 

Brill's system has two transformations that our schemata do not capture: when 
a particular character appears in a word and when a word appears in a particular 
context. The latter transformation is, in fact, due to the peculiarities of Brill's tagging 
algorithm and, in other approaches, is captured at the disambiguation phase of the 
tagger itself. The former feature is indirectly captured in our approach. It has been 
noticed (as in [Weischedel et al., 1993], for example) that capitalized and hyphenated 
words have a different distribution from other words. Our morphological rules account 
for this difference by checking the stem of the word. The ending-guessing rules, on 
the other hand, do not use information about stems. Thus if the ending s predicts that 
a word can be a plural noun or a 3d form of a verb, the information that this word 
was capitalized can narrow the considered set of POS-tags to plural proper noun. We 
therefore decided to collect ending-guessing rules separately for capitalized words, 
hyphenated words, and all other words. In our experiments, we restricted ourselves 
to the production of six different guessing-rule sets, which seemed most appropriate 
for English: 

• Suffix ° - suffix morphological rules with no mutative endings (0). Such 
rules account for the regular suffixation as, for instance, 
book + ed = booked; 

• Suffix I - suffix morphological rules with a mutative ending in the last 
letter. Such rules account for many cases of the irregular suffixation as, 
for instance, t ry  - y + ied = tried; 

• Prefix - prefix morphological rules with no mutative segments (0). Such 
rules account for the regular prefixation as, for instance, 
Un q- s c r e w  ~ u n s c r e w ;  
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• Ending- - ending-guessing rules for hyphenated words; 

• Ending c - ending-guessing rules for capitalized words; 

• Ending* - ending-guessing rules for all other (nonhyphenated and 
noncapitalized) words. 

3. Guessing-Rule Induction 

As already mentioned, we see features that our guessing-rule schemata is intended 
to capture as general language regularities rather than properties of rare or corpus- 
specific words only. This significantly simplifies training data requirements: we can 
induce guessing rules from a general-purpose lexicon. 4 First, we no longer depend on 
the size or even existence of an annotated training corpus. Second, we do not require 
any annotation to be done for the training; instead, we reuse the information stated 
in the lexicon, which we can automatically map to a particular tag set that a tagger 
is trained to. We also use the actual frequencies of word usage, collected from a raw 
corpus. This allows for the discrimination between rules that are no longer productive 
(but have left their imprint on the basic lexicon) and rules that are productive in 
real-life texts. For guessing rules to capture general language regularities, the lexicon 
should be as general as possible (i.e., should list all possible pos-tags for a word) 
and large. The corresponding corpus should also be large enough to obtain reliable 
estimates of word-frequency distribution for at least 10,000-15,000 words. 

Since a word can take on several different POS-tags, in the lexicon it can be repre- 
sented as a [string/Pos-class] record, where the POs-class is a set of one or more POS-tags. 
For instance, the entry for the word book, which can be a noun (NN) or a verb (VB) 
would look like [book (NN VB)]. Thus the nth entry of the lexicon (Wn) can be represented 
as [W C]n where W is the surface lexical form and C is its pos-class. Different lexicon en- 
tries can share the same POs-class but they cannot share the same surface lexical form. 
In our experiments, we used a lexicon derived from CRLEX (Burnage 1990), a large 
multilingual database that includes extensive lexicons of English, Dutch, and German. 
We constructed an English lexicon of 72,136 word forms with morphological features, 
which we then mapped into the Penn Treebank tag set (Marcus, Marcinkiewicz, and 
Santorini 1993). The most frequent open-class tags of this tag set are shown in Table 1. 
Word-frequency distribution was estimated from the Brown Corpus, which reflects 
multidomain language use. 

As usual, we separated the test sample from the training sample. Here we followed 
the suggestion that the unknown words actually are quite similar to words that occur 
only once (hapax words) in the corpus (Dermatas and Kokkinakis 1995; Baayen and 
Sproat 1995). We put all the hapax words from the Brown Corpus that were found 
in the CnLEx-derived lexicon into the test collection (test lexicon) and all other words 
from the CELEx-derived lexicon into the training lexicon. In the test lexicon, we also 
included the hapax words not found in the CELEx-derived lexicon, assigning them the 
POS-tags they had in the Brown Corpus. Then we filtered out words shorter than four 
characters, nonwords such as numbers or alpha-numerals, which usually are handled 
at the tokenization phase, and all closed-class words, s which we assume will always 
be present in the lexicon. Thus after all these transformations we obtained a lexicon 
of 59,268 entries for training and the test lexicon of 17,868 entries. 

4 As opposed to a corpus-specific one. 
5 The closed class consists of a finite and well-established list of words  such as prepositions, articles, 

wh-words, etc. 
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Our guessing-rule induction technique uses the training and test data prepared as 
described above and can be seen as a sampling for the best performing rule set from 
a collection of automatically produced rule sets. Here is a brief outline of its major 
phases: 

Rule Extraction Phase (Section 3.1) - sets of word-guessing rules, (e.g., 
Prefix, Suffix °, Suffix 1, Ending, etc.) are extracted from the lexicon and 
cleaned of redundant and infrequently used rules; 

Rule Scoring Phase (Section 3.2) - each rule from the extracted rule sets 
is ranked according to its accuracy, and rules that scored above a certain 
threshold are included in the working rule sets; 

Rule Merging Phase (Section 3.3) - rules that have not scored high 
enough are merged together into more general rules, then rescored, and, 
depending on their score, added to the working rule sets; 

Direct Evaluation Phase (Sections 3.4) - working rule sets produced with 
different thresholds are evaluated to obtain the best-performing ones. 

3.1 Rule Extraction Phase 
For the extraction of the initial sets of prefix and suffix morphological guessing rules 
(Prefix, Suffix °, and Suffix1), we define the operator Vn where the index n specifies 
the length of the mutative ending of the main word. Thus when the index n is set to 
0 the result of the application of the V0 operator will be a morphological rule with no 
mutative segment. The V1 operator will extract the rules with the alterations in the 
last letter of the main word. When the ~ operator is applied to a pair of entries from 
the lexicon ([W C]i and [W C]j), first, it segments the last (or first) n characters of the 
shorter word (Wj) and stores this in the M element of the rule. Then it tries to segment 
an affix by subtracting the shorter word (Wj) without the mutative ending from the 
longer word (Wi). If the subtraction results in an non-empty string and the mutative 
segment is not duplicated in the affix, the system creates a morphological rule with 
the POs-class of the shorter word (Cj) as the/-class, the POS-class of the longer word 
(Ci) as the R-class and the segmented affix itself in the S field. For example: 

[booked (JJ VBD VBN)] V0 [book (NN VB)] --+ e[-ed +"" ?(NN VB) ---+(JJ VBD VBN)] 
[advisable (JJ)] V1 [advise (NN VB)] ---+ e[-able +"e" ?(NN VB) ---~(JJ) ] 

The V operator is applied to all possible pairs of lexical entries sequentially, and, if 
a rule produced by such an application has already been extracted from another pair, 
its frequency count (f) is incremented. Thus, prefix and suffix morphological rules 
together with their frequencies are produced. Next, we cut out the most infrequent 
rules, which might bias further learning. To do that we eliminate all the rules with 
frequency f less than a certain threshold 8, which usually is set quite low: 2-4. Such 
filtering reduces the rule sets more than tenfold. 

To collect the ending-guessing rules, we set the upper limit on the ending length 
equal to five characters and thus collect from the lexicon all possible word-endings 
of length 1, 2, 3, 4, and 5, together with the POS-classes of the words in which these 
endings appeared. We also set the minimum length of the remaining substring to three 
characters. We define the unary operator A, which produces a set of ending-guessing 
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rules from a word in the lexicon ([W C]i). For instance, from a lexicon entry Idifferent 
(JJ)] the operator A will produce five ending-guessing rules: 

A [different 0J)] = { 

e[--t + .... ?-- ~ (J J)] 
e[--nt + .... ?-- --+ (JJ)] 
e[-ent + .... ? -  ~ (J J)] 
e[-rent + .... ?-- --* (J3)] 
e[-erent + .... ? -  --+ 0J)] 

The G operator is applied to each entry in the lexicon, and if a rule it produces 
has already been extracted from another  entry in the lexicon, its frequency count (f) 
is incremented. Then the infrequent rules with f < 0 are eliminated from the ending- 
guessing rule set. 

After applying t h e / k  and V operations to the training lexicon, we obtained rule 
collections of 40,000-50,000 entries. Filtering out the rules with frequency counts of 1 
reduced the collections to 5,000-7,000 entries. 

3.2 Rule Scoring Phase 
Of course, not all acquired rules are equally good at predicting word classes: some 
rules are more accurate in their guesses and some rules are more frequent in their 
application. For every rule acquired, we need to estimate whether  it is an effective rule 
worth  retaining in the working rule set. To do so, we perform a statistical experiment 
as follows: we take each rule from the extracted rule sets, one by one, take each word- 
type from the training lexicon and guess its POs-class using the rule, if the rule is 
applicable to the word. For example, if a guessing rule strips off a particular suffix 
and a current word from the lexicon does not have this suffix, we classify that word 
and the rule as incompatible and the rule as not applicable to that word. If a rule is 
applicable to a word, we compare the result of the guess with the information listed 
in the lexicon. If the guessed class is the same as the class stated in the lexicon, we 
count it as a hit or success, otherwise it is a failure. Then, since we are interested in 
the application of the rules to word-tokens in the corpus, we mult iply the result of the 
guess by the corpus frequency of the word. If we keep the sample space for each rule 
separate from the others, we have a binomial experiment. The value of a guessing rule 
closely correlates with its estimated proportion of success (/5), which is the proportion 
of all positive outcomes (x) of the rule application to the total number  of the trials (n), 
which are, in fact, the number  of all the word tokens that are compatible to the rule 
in the corpus: 

x: number of successful guesses 
= n: number of the compatible to the rule word-tokens 

The 15 estimate is a good indicator of the rule accuracy but  it frequently suffers 
from large estimation error due to insufficient training data. For example, if a rule 
was found to apply just once and the total number  of observations was also one, its 
estimate p has the maximal value (1) but  clearly this is not a very reliable estimate. We 
tackle this problem by calculating the lower confidence limit 71" L for the rule estimate, 
which can be seen as the minimal expected value of/~ for the rule if we were to draw 
a large number  of samples. Thus with a certain confidence c~ we can assume that if we 
used more training data, the rule estimate/~ would  be not worse than the 7rL. The rule 
estimate then will be taken at its lowest possible value which is the ~L limit itself. First 
we adjust the rule estimate so that we have no zeros in positive (/~) or negative (1 - ]5) 
outcome probabilities, by adding some floor values to the numerator  and denominator:  
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df  1 2 3 4 5 . . .  30 40 60 infinity 

to.a/o5 6.314 2.920 3.353 2.132 2.015 . . .  1.697 1.684 1.671 1.645 

Figure 1 
Values of d/ df based on sample size. t(1_0.90)/2 ~ to.05 

]5~ = xi+0.5 The lower confidence limit 7 r  L then is calculated as (Hayslett  1981): 
ni+l  " 

7rL /~* .(n-l) = ~ . _ ~ ( n - 1 )  / ff/~*(l~-/~*) = -- t(I_cQ/2 * Sp ~(1-c~)/2 * - 

d/ 
where  t(l_c0/2 is a coefficient of the t-distribution. It has two parameters:  c~, the level of 
confidence and dr, the number  of degrees of freedom, which is one less than the sample 

size (dr n 1). e/ = - t(l_~)/2 can be looked up in the tables for the t-distribution listed 
df df in every  textbook on statistics. We adopted  90% confidence for which t(1_o.9o)/2=to.o5 

takes values depending  on the sample size as in Figure 1. 
Using ~-L instead of ]~ for rule scoring favors higher  estimates (/3) obtained over  

larger samples (n). Even if one rule has a high estimate value but  that estimate was 
obtained over a small sample, another  rule with a lower estimate value but  obtained 
over a large sample might  be valued higher  by  ~rL. This rule-scoring function resembles 
the one used by  Tzoukermann,  Radev, and Gale (1995) for scoring Pos-disambiguation 
rules for the French tagger. The main difference between the two functions is that there 
the t value was implicitly assumed to be 1, which corresponds to a confidence level 
of 68% on a very  large sample. 

Another  important  consideration for rating a word-guessing rule is that the longer 
the affix or ending (S) of this rule, the more  confident we are that it is not  a coincidental 
one, even on small samples. For example,  if the estimate for the word-ending  o was 
obtained over a sample of five words  and the estimate for the word-ending  fu lness  
was also obtained over a sample of five words,  the latter is more  representative, even 
though the sample size is the same. Thus we need to adjust the estimation error in 
accordance with the length of the affix or ending. A good way  to do this is to decrease 
it proport ional ly  to a value that increases along with the increase of the length. A 
suitable solution is to use the logari thm of the affix length: 

^ . (o , - , I  / p t ( 1  - ^ *  
scorei -= Pt - to.os * V n. Pi )/(1 + log(ISil)) 

When the length of S (the affix or ending) is 1, the estimation error is not  changed 
since log(l)  is 0. For the rules with an affix or ending length of 2 the estimation error 
is reduced by  1 + log(2) = 1.3, for the length 3 this will be 1 + log(3) = 1.48, etc. 
The longer the length, the smaller the sample that will be considered representat ive 
enough for a confident rule estimation. 

Setting the threshold (0s) at a certain level we include in the working rule sets 
only those rules whose  scores are higher  than the threshold. The method  for finding 
the optimal threshold is based on empirical evaluations of the rule sets and is de- 
scribed in Section 3.4. Usually, the threshold is set in the range of 65-80 points and 
the rule sets are reduced down  to a few hundred  entries. For example,  when  we set 
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Table 2 
Top scored Prefix and Suffix ° guessing rules. 

Prefix /-class R-class Suffix /-class R-class 

r e  JJ NN VBG JJ NN VBG 

e x  NN NN 

s e l f -  N N  NN 

inter JJ JJ 
non Jl Jl 
u n  RB RB 

d i s  JJ JJ 

a n t i -  NN JJ 

d e  jj VBD VBN JJ VBD VBN 

i n  RB RB 

m e n t  VB VBP NN 

ing NN VB VBP JJ NN VBG 

ed NN VB VBP JJ VBD VBN 

s NN VB VBP NNS VBZ 

m e n t  NN VB VBP NN 

ly JJ NN RB ", RB 

ness JJ NN 
ship NN NN 

a b l e  NN VB VBP JJ 

s NN NNS 

the threshold (0s) to 75 points, the obtained ending-guessing rule collection (Ending*) 
comprised 1,876 rules, the suffix rule collection without mutation (Suffix °) comprised 
591 rules, the suffix rule collection with mutation (Suffix 1) comprised 912 entries and 
the prefix rule collection (Prefix) comprised 235 rules. Table 2 shows the highest-rated 
rules from the induced Prefix and Suffix ° rule sets. In general, it looks as though the 
induced morphological guessing rules largely consist of the standard rules of English 
morphology and also include a small proportion of rules that do not belong to the 
known morphology of English. For instance, the suffix rule e[ -et +"" ?(NN) --,(NN)] does 
not stand for any well-known morphological rule, but its prediction is as good as 
those of the standard morphological rules. The same situation can be seen with the 
prefix rule b[ -st +"" ?(NNS) --+(NNS)I, which is quite predictive but at the same time is not 
a standard English morphological rule. The ending-guessing rules, naturally, include 
some proper English suffixes but mostly they are simply highly predictive ending 
segments of words. 

3.3 Rule Merging Phase 
Rules which have scored lower than the threshold are merged together into more 
general rules. These new rules, if they score above the threshold, can also be included in 
the working rule sets. We merge together two rules if they scored below the threshold 
and have the same affix (S), mutative segment (M), and initial class (i).6 We define the 
rule-merging operator ®: 

Ai @ Aj = At: [Si, Mi, Ii, Ri U Rj] if Si = Sj & Mi = Mj & Ii = Ij 

This operator merges two rules with the same affix (S), mutative segment (M) and 
the initial class (I) into one rule, with the resulting class being the union of the two 
merged resulting classes. For example, 

e[-s +"" ?(NN VB) --*(NNS)] • e[--S +"" ?(NI~ VB) ---~(NNB VBZ)I 
= e[-s +"" ?(NN VB) --fiNNS VBZ)] 

b[--un +"" ?(VBD VBN) -*(JJ)] • b[--un +"" ?(VBD VBN) --*(VBN)] 
= b[--un +"" ?(VBD VBN) --*(JJ VBN)] 

6 For ending-guessing rules, this is always the case. 
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Possible Tags JJ N N  NNS RB VB VBD VBG VBN VBZ 

Lexicon Information V V V 
Guesser Assigned V V V v V 

Figure 2 
Lexicon entry and guesser's categorization for [developed (JJ VBD VBN)]. 

The score of the resulting rule will be higher  than the scores of the individual  
rules since the number  of positive observations increases and the number  of the trials 
remains the same. After a successful application of the • operator, the resulting general 
rule is substi tuted for the two merged  ones. To per form such rule merging over  a rule 
set the rules that have not  been included into the working rule set are first sorted by  
their score and the rules with the best scores are merged  first. After each successful 
merging, the resulting rule is rescored. This is done recursively until the score of the 
resulting rule does not  exceed the threshold, at which point  it is added  to the working 
rule sets. This process is applied until no merges can be done to the rules that scored 
poorly. In our  exper iment  we noticed that the merging added  30-40% new rules to the 
working rule sets, and therefore the final number  of rules for the induced sets were: 
Prefix - 348, Suffix ° - 975, Suffix 1- 1,263 and Ending* - 2,196. 

3.4 D irec t  E v a l u a t i o n  P h a s e  
There are two important  questions that arise at the rule acquisition stage: how to 
choose the scoring threshold Os and what  the performance of the rule sets p roduced  
with different thresholds is. The task of assigning a set of POS-tags to a word  is actually 
quite similar to the task of document  categorization where  a document  is assigned a 
set of descriptors that represent  its contents. There are a number  of s tandard parame- 
ters (Lewis 1991) used for measuring performance on this kind of task. For example,  
suppose that a word  can take on one or more  POS-tags from the set of open-class 
POS-tags: qJ NN NNS RB VB VBD VBG VBN VBZ). To see how well the guesser performs,  we 
can compare  the results of the guessing with the Pos-tags known to be true for the 
Word (i.e., listed in the lexicon). Let us take, for instance, a lexicon entry [developed (JJ 
VBD VBN)]. Suppose that the guesser categorized it as [developed (JJ NN RB VBD VBZ)]. We 
can represent this situation as in Figure 2. 

The performance of the guesser can be measured  in: 

• recall - the percentage of POS-tags correctly assigned by  the guesser, i.e., 
two (jJ VBD) out  of three (JJ VBD VBN) or 66%. 100% recall would  mean  
that the guesser had assigned all the correct pos-tags but  not  necessarily 
only the correct ones. So, for example, if the guesser had assigned all 
possible POS-tags to the word  its recall would  have been 100%. 

• p r e c i s i o n  - the percentage of POS-tags the guesser assigned correctly (JJ 
VBD) over the total number  of POS-tags it assigned to the word  (Jl NN RB 
VBD VBZ), i.e., 2 / 5  or 40%. 100% precision would  mean that the guesser 
did not  assign incorrect POS-tags, a l though not  necessarily all the correct 
ones were assigned. So, if the guesser had assigned only (JJ) its precision 
would  have been  100%. 

• coverage - the propor t ion  of words  guesser was able to classify, but  not  
necessarily correctly. So, for example,  if we had evaluated a guesser with 
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Table 3 
Comparative performance of different guessing rule sets. 

Measure Sample Xerox Ending Suffix ° Suffix I Prefix Cascade 

Recall Training 0.958045 0.965378 0.978751 0.966475 0.973135 0.966327 
Test 0 .956262  0.951916 0.973245 0.956031 0.947015 0.952491 

Precision Training 0.648983 0.760492 0.977273 0.969032 0.959782 0.82257 
Test 0 .719206  0.782712 0.979964 0.96761 0.935075 0.851626 

Coverage Training 0.872842 0.946309 0.493283 0.307658 0.048635 0.950581 
Test 0.856372 0.918876 0.367574 0.26542 0.0653175 0.926553 

100 random words from the lexicon and the guesser had assigned 
something to 80 of them, its coverage would have been 80%. 

The interpretation of these percentages is by no means straightforward, as there 
is no straightforward way of combining these different measures into a single one. 
For example, these measures assume that all combinations of POS-tags will be equally 
hard to disambiguate for the tagger, which is not necessarily the case. Obviously, the 
most important measure is recall since we want all possible categories for a word to be 
guessed. Precision seems to be slightly less important since the disambiguator should 
be able to handle additional noise but obviously not in large amounts. Coverage is a 
very important measure for a rule set, since a rule set that can guess very accurately 
but only for a tiny proportion of words is of questionable value. Thus, we will try 
to maximize recall first, then coverage, and, finally, precision. We will measure the 
aggregate by averaging over measures per word (micro-average), i.e., for every single 
word from the test collection the precision and recall of the guesses are calculated, 
and then we average over these values. 

To find the optimal threshold (0s) for the production of a guessing rule set, we 
generated a number of similar rule sets using different thresholds and evaluated them 
against the training lexicon and the test lexicon of unseen 17,868 hapax words. Every 
word from the two lexicons was guessed by a rule set and the results were compared 
with the information the word had in the lexicon. For every application of a rule set 
to a word, we computed the precision and recall, and then using the total number 
of guessed words we computed the coverage. We noticed certain regularities in the 
behavior of the metrics in response to the change of the threshold: recall improves as 
the threshold increases while coverage drops proportionally. This is not surprising: the 
higher the threshold, the fewer the inaccurate rules included in the rule set, but at the 
same time the fewer the words that can be handled. An interesting behavior is shown 
by precision: first, it grows proportionally along with the increase of the threshold, 
but then, at high thresholds, it decreases. This means that among very confident rules 
with very high scores, there are many quite general ones. The best thresholds were 
obtained in the range of 70-80 points. 

Table 3 displays the metrics for the best-scored (by aggregate of the three metrics 
on the training and the test samples) rule sets. As the baseline standard, we took the 
ending-guessing rule set supplied with the Xerox tagger (Cutting et al. 1992). When 
we compared the Xerox ending guesser with the induced ending-guessing rule set 
(Ending*), we saw that its precision was about 6% poorer and, most importantly, it 
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could handle 6% fewer unknown words. Finally, we measured the performance of the 
cascading application of the induced rule sets when the morphological guessing rules 
were applied before the ending-guessing rules (Prefix+Suffix°+Suffix 1 +Ending -c*). We 
detected that the cascading application of the morphological rule sets together with 
the ending-guessing rules increases the overall precision of the guessing by about 8%. 
This made the improvement over the baseline Xerox guesser 13% in precision and 7% 
in coverage on the test sample. 

4. Unknown-Word Tagging 

The direct evaluation phase gave us a basis for setting the threshold to produce the 
best-performing rule sets. The task of unknown-word guessing is, however, a subtask 
of the overall part-of-speech tagging process. Our main interest is in how the advan- 
tage of one rule set over another will affect the tagging performance. Therefore, we 
performed an evaluation of the impact of the word guessers on tagging accuracy. In 
this evaluation we used the cascading guesser with two different taggers: a c++ imple- 
mented bigram HMM tagger akin to one described in Kupiec (1992) and the rule-based 
tagger of Brill (1995). Because of the similarities in the algorithms with the LISP imple- 
mented Xerox tagger, we could directly use the Xerox guessing rule set with the HMM 
tagger. Brill's tagger came pretrained on the Brown Corpus and had a corresponding 
guessing component. This gave us a search-space of four basic combinations: the HMM 
tagger equipped with the Xerox guesser, the Brill tagger with its original guesser, the 
HMM tagger with our cascading (Prefix+Suffix°+Suffixl+Ending-C*) guesser and the 
Brill tagger with the cascading guesser. We also tried hybrid tagging using the output 
of the HMM tagger as the input to Brill's final state tagger, but it gave poorer results 
than either of the taggers and we decided not to consider this tagging option. 

4.1 Setting up the Experiment 
We evaluated the taggers with the guessing components on all fifteen subcorpora of 
the Brown Corpus, one after another. The HMM tagger was trained on the Brown 
Corpus in such a way that the subcorpus used for the evaluation was not seen at the 
training phase. All the hapax words and capitalized words with frequency less than 
20 were not seen at the training of the cascading guesser. These words were not used 
in the training of the tagger either. This means that neither the HMM tagger nor the 
cascading guesser had been trained on the texts and words used for evaluation. We do 
not know whether the same holds for the Brill tagger and the Brill and Xerox guessers 
since we took them pretrained. For words that the guessing components failed to 
guess, we applied the standard method of classifying them as common nouns (NN) if 
they were not capitalized inside a sentence and proper nouns  (NNP) otherwise. When 
we used the cascading guesser with the Brill tagger we interfaced them on the level 
of the lexicon: we guessed the unknown words before the tagging and added them to 
the lexicon listing the most likely tags first as required. 7 Here we want to clarify that 
we evaluated the overall results of the Brill tagger rather than just its unknown-word 
tagging component. Another point to mention is that, since we included the guessed 
words in the lexicon, the Brill tagger could use for the transformations all relevant Pos- 
tags for unknown words. This is quite different from the output of the original Brill's 
guesser, which provides only one Pos-tag for an unknown word. 

In our tagging experiments, we measured the error rate of tagging on unknown 

7 We estimated the most likely tags from the training data. 

417 



Computational Linguistics Volume 23, Number 3 

words  using different guessers. Since, arguably, the guessing of proper  nouns  is eas- 
ier than is the guessing of other categories, we also measured  the error rate for the 
subcategory of capitalized unknown  words  separately. The error rate for a category of 
words  was calculated as follows: 

Error x = Wrongly_Tagged_Words_from_Set_X 
Total_Words_in_Set_X 

Thus, for instance, the error rate of tagging the u n k n o w n  words  is the propor t ion  of 
the mistagged u n k n o w n  words  to all unknown  words.  To see the distribution of the 
workload be tween different guessing rule sets we also measured  the coverage of a 
guessing rule set: 

CoverageR = Assigned_Wordsday_Rule_Set_R 
Total _Unknown _Words 

We collected the error and coverage measures for each of the fifteen subcorpora  8 of 
the Brown Corpus  separately, and, using the boots t rap  replicate t echn ique  (Efron 
and Tibshirani 1993), we calculated the mean  and the s tandard error for each combi- 
nation of the taggers with the guessing components .  For the fifteen accuracy means  
{al, d2 . . . .  , a15} obtained upon  tagging the fifteen subcorpora  of the Brown Corpus,  we 
generated a large number  of bootstrap replicates of the form { b l ,  b 2 , . . . ,  b15} where  
each mean  was randomly  chosen with replacements such as, for instance, 

{bl = a11, b2 = a4, b3 = • ,  b4 = a n  . . . .  , b14 = a~9, b15 = a4}. 

Using these replicates, we calculated the mean  and s tandard error of the whole  boot- 
strap distribution as follows: 

deB = [0*(b) - 0*(.)]2/(B - 1) 

where  

• B is the number  of bootstrap replications; 

• 0* (b) - is the mean  estimate of the bth bootstrap replication; 

• 0"(.) = Y ~ - I  O*(b)/B - is the mean  estimate of the whole bootstrap 
distribution; 

This way  of calculating the est imated s tandard error for the mean  does not  assume 
the normal  distribution and hence provides  more  accurate results. 

We noticed a certain inconsistency in the markup  of proper  n o u n s  (NNP) in the 
Brown Corpus  suppl ied with the Penn Treebank. Quite often obvious proper  nouns  
as, for instance, Summerdale, Russia, or Rochester were marked  as co m m o n  n o u n s  (NN) 

and sometimes lower-cased common  nouns  such as business or church were marked  
as proper  nouns.  Thus we decided not  to count  as an error the mismatch of the 
NN/NNP tags. Using the HMM tagger with the lexicon containing all the words  from 

8 Each subcorpus belongs to a different genre ranging from news to fiction. 
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Table 4 
Results of tagging the unknown words in the Brown Corpus. 

Unknown Words Unknown Common Words Unknown Proper Nouns 
Tagger Guesser Metrics Error Error Coverage Error Coverage 

HMM Xerox mean 17.851643 30.022169 37.567270 10.785563 63.797113 
s-error 0.484710 0.469922 1.687396 0.613745 1.714969 

HMM Cascade mean 12.378716 21.266264 36.507909 7.776456 64.795969 
s-error 0.917656 0.403957 2.336381 0.853958 2.206457 

Brill Brill mean 14.688501 27.411736 38.998687 6.439525 62.160917 
s-error 0.908172 0.539634 2.627234 0.501082 4.010992 

Brill Cascade mean 11.327863 20.986240 37.933048 5.548990 63.816586 
s-error 0.761576 0.480798 2.353510 0.561009 3.775991 

the Brown Corpus,  we obtained the error rate (mean) 0* (.)=4.003093 wi th  the s tandard  
error deB=0.155599. This agrees wi th  the results on the closed dict ionary (i.e., wi thout  
u n k n o w n  words)  obta ined by  other researchers for this class of the mode l  on the same 
corpus  (Kupiec 1992; DeRose 1988). The Brill tagger  showed  some better  results: error 

rate (mean) 0* (.)=3.327366 with  the s tandard  error deB=O. 123903. Al though our  p r i m a r y  
goal was  not  to compare  the taggers themselves  but  rather  their pe r fo rmance  wi th  the 
guessing components ,  we  attr ibute the difference in their pe r formance  to the fact that 
Brill's tagger  uses the informat ion about  the mos t  likely tag for a word whereas  the 
H M M  tagger  did not  have  this informat ion and  instead used  the priors  for a set of 
POS-tags (ambigui ty  class). When  we r em oved  f rom the lexicon all the hapax  words  
and,  following the r ecommenda t ion  of Church (1988), all the capital ized words  wi th  
f requency less than 20, we obtained some 51,522 u n k n o w n  word- tokens  (25,359 word-  
types) out  of more  than a million word- tokens  in the Brown Corpus.  We tagged the 
fifteen subcorpora  of the Brown Corpus  by  the four combinat ions  of the taggers and  
the guessers  using the lexicon of 22,260 word- types .  

4.2 Results of  the Experiment 
Table 4 displays the tagging results on the u n k n o w n  words  obtained by  the four  differ- 
ent combinat ions  of taggers and  guessers. It shows the overall  error  rate on u n k n o w n  
words  and  also displays the distr ibution of the error rate and  the coverage  be tween  
u n k n o w n  proper  nouns  and  the other u n k n o w n  words.  Indeed  the error rate on the 
p roper  nouns  was  m u c h  smaller  than on the rest of the u n k n o w n  words ,  which  means  
that they are m u c h  easier to guess. We can also see a difference in the distr ibution 
(coverage) of the u n k n o w n  words  using different taggers. This can be accounted for 
by  the fact that the unguessed  capital ized words  were  taken by  default  to be p roper  
nouns  and  that  the Brill tagger and  the H M M  tagger  had  slightly different strategies 
to app ly  to the first word  of a sentence. The cascading guesser  ou tpe r fo rmed  the other 
two guessers in general  and  mos t  impor tan t ly  in the n o n - p r o p e r  noun  category, where  
it had  an advan tage  of 6.5% over  Brill's guesser  and  about  8.7% over  Xerox's guesser. 
In our  exper iments  the category of u n k n o w n  proper  nouns  had  a larger share (63- 
64%) than we expect in real life because all the capital ized words  wi th  f requency less 
than 20 were  taken out of the lexicon. The cascading guesser  also he lped  to improve  
the accuracy on u n k n o w n  proper  nouns  b y  about  1% in compar i son  to Brill's guesser  
and  about  3% in compar i son  to Xerox's guesser. The cascading guesser  ou tpe r fo rmed  
the other two guessers  on every subcorpus  of the Brown Corpus.  Table 5 shows the 
distr ibution of the work load  and  the tagging accuracy a m o n g  the different rule sets 
of the cascading guesser. The default  ass ignment  of the NN tag to unguessed  words  
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Table 5 
Distribution of the error rate and coverage in the cascading guesser. 

Metrics Prefix Suffix ° Suffix 1 Ending -c* Default 
Error Coverage Error Coverage Error Coverage Error Coverage Error Coverage 

mean 10.92 5.64 11.95 33.78 17.33 7.00 26.84 46.61 44.00 8.17 
s-error 0.95 0.19 0.65 0.84 1.19 0.17 0.91 0.83 3.17 0.25 

performed very poorly, having the error rate of 44%. When we compared this distri- 
bution to that of the Xerox guesser we saw that the accuracy of the Xerox guesser 
itself was only about 6.5% lower than that of the cascading guesser 9 and the fact that 
it could handle 6% fewer unknown words than the cascading guesser resulted in the 
increase of incorrect assignments by the default strategy. 

There were three types of mistaggings on unknown words detected in our ex- 
periments. Mistagging of the first type occurred when a guesser provided a broader 
POS-class for an unknown word than a lexicon would, and the tagger had difficul- 
ties with its disambiguation. This was especially the case with the words that were 
guessed as noun/adjective (NN JJ) but, in fact, act only as one of them (as do, for ex- 
ample, many hyphenated words). Another highly ambiguous group is the ing words, 
which, in general, can act as nouns, adjectives, and gerunds and only direct lexicaliza- 
tion can restrict the search-space, as in the case of the word seeing, which cannot act 
as an adjective. The second type of mistagging was caused by incorrect assignments 
by the guesser. Usually this was the case with irregular words such as cattle or data, 
which were wrongly guessed to be singular nouns (NN) but in fact were plural nouns 
(NN8).  We also did not include the "foreign word" category (FW) in the set of tags to 
guess, but this did not do too much harm because these words were very infrequent 
in the texts. And the third type of mistagging occurred when the word-POS guesser 
assigned the correct Pos-class to a word but the tagger still disambiguated this class 
incorrectly. This was the most frequent type of error, which accounted for more than 
60% of the mistaggings on unknown words. 

5. C o n c l u s i o n  

We have presented a technique for fully automated statistical acquisition of rules that 
guess possible Pos-tags for words unknown to the lexicon. This technique does not 
require specially prepared training data and uses for training a pre-existing general- 
purpose lexicon and word frequencies collected from a raw corpus. Using such training 
data, three types of guessing rules are induced: prefix morphological rules, suffix 
morphological rules, and ending-guessing rules. 

Evaluation of tagging accuracy on unknown words using texts and words unseen 
at the training phase showed that tagging with the automatically induced cascading 
guesser was consistently more accurate than previously quoted results known to the 
author (85%). Tagging accuracy on unknown words using the cascading guesser was 
87.7-88.7%. The cascading guesser outperformed the guesser supplied with the Xerox 
tagger and the guesser supplied with Brill's tagger both on unknown proper nouns 

9 We attr ibute this to the  13% lower precision of the  Xerox guesser.  

420 



Andrei Mikheev Unknown-Word Guessing 

(which is a relatively easy-to-guess category of words) and on the rest of the unknown 
words, where it had an advantage of 6.5-8.5.%. When the unknown words were made 
known to the lexicon, the accuracy of tagging was 93.6-94.3% which makes the accu- 
racy drop caused by the cascading guesser to be less than 6% in general. 

Another important conclusion from the evaluation experiments is that the mor- 
phological guessing rules do improve guessing performance. Since they are more ac- 
curate than ending-guessing rules they were applied first and improved the precision 
of the guesses by about 8%. This resulted in about 2% higher accuracy in the tag- 
ging of unknown words. The ending-guessing rules constitute the backbone of the 
guesser and cope with unknown words without clear morphological structure. For 
instance, discussing the problem of unknown words for the robust parsing Bod (1995, 
84) writes: "Notice that richer, morphological annotation would not be of any help 
here; the words "return", "stop" and "cost" do not have a morphological structure 
on the basis of which their possible lexical categories can be predicted." When we 
applied the ending-guessing rules to these words, the words return and stop were 
correctly classified as noun/verbs (NN VB VBP) and only the word cost failed to be 
guessed by the rules. 

The acquired guessing rules employed in our cascading guesser are, in fact, of a 
standard nature, which, in some form or other, is present in other word-Pos guessers. 
For instance, our ending-guessing rules are akin to those of Xerox and the morpho- 
logical rules resemble some rules of Brill's, but ours use more constraints and provide 
a set of all possible tags for a word rather than a single best tag. The two additional 
types of features used by Brill's guesser are implicitly represented in our approach 
as well: One of the Brill schemata checks the context of an unknown word. In our 
approach we guess the words using their features only and provide several possi- 
bilities for a word; then at the disambiguation phase the context is used to choose 
the right tag. As for Brill's schemata that checks the presence of a particular char- 
acter in an unknown word, we capture a similar feature by collecting the ending- 
guessing rules for proper nouns and hyphenated words separately. We believe that 
the technique for the induction of the ending-guessing rules is quite similar to that of 
Xerox 1° or Schmid (1994) but differs in the scoring and pruning methods. The major 
advantage of the proposed technique can be seen in the cascading application of the 
different sets of guessing rules and in far superior training data. We use for training 
a pre-existing general-purpose (as opposed to corpus-tuned) lexicon. This has three 
advantages: 

• the size of the training lexicon is large and does not depend on the size 
or even the existence of the annotated corpus. This allows for the 
induction of more rules than from a lexicon derived from an annotated 
corpus. For instance, the ending guesser of Xerox includes 536 rules 
whereas our Ending * guesser includes 2,196 guessing rules; 

• the information listed in a general-purpose lexicon can be considered to 
be of better quality than that derived from an annotated corpus, since it 
lists all possible readings for a word rather than only those that happen 
to occur in the corpus. We also believe that general-purpose lexicons 
contain less erroneous information than those derived from annotated 
corpora; 

10 Xerox's technique is not documented and can be determined only by inspection of the source code. 
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• the amount  of work required to prepare the training lexicon is minimal 
and does not require any additional manual  annotation. 

Our experiments with the lexicon derived from the CELEX lexical database and 
word frequencies derived from the Brown Corpus resulted in guessing rule sets that 
proved to be domain- and corpus-independent (but tag-set-dependent), producing 
similar results on texts of different origins. An interesting by-product  of the pro- 
posed rule-induction technique is the automatic discovery of the template morpholog- 
ical rules advocated in Mikheev and Liubushkina (1995). The induced morphological 
guessing rules turned out to consist mostly of the expected prefixes and suffixes of 
English and closely resemble the rules employed by the ispel| UNIX spell-checker. The 
rule acquisition and evaluation methods  described here are implemented as a modular  
set of c++ and AWK tools, and the guesser is easily extendible to sublanguage-specific 
regularities and retrainable to new tag sets and other languages, provided that these 
languages have affixational morphology. 
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