DHONOLOGICAL RULES FOR A TEXT-TO-SPEECH SYSTEM
SHARON HUNNICUTT
Natural Language Processing Group
Research Laboratory of Electronics Massachusetts institute af Technology
CAMbRIDGE 02139

This work was supported originally by the Joint Services Electronics Program, Contract DAAB07-71-C-0300, and more 'recently by the National Science Foundation (Grant EPP74-12653)

Copyright C1976
Association for Computational Linguistics

Summary

The phonological rules discussed in this paper are part of a system which has been under development at M.I.T. to convert unrestricted text to speech. The system utilizes a morph lexicon and a vocal tract model. Although most of the linguistic analysis is done by decomposing words into their constituent morphemes, such a system is not sufficient for unrestricted text. In order to attain the competence of a comprehensive system, it was necessary to develop a scheme for dealing with unrecognizable words. This is called the "letter-to-sound" system.

When a decomposition fails, that is, when a word cannot be decomposed into its constituent morphs or when it is too infrequent in the English language to be included in the morph lexicon, the "letter-to-sound" system is invoked. The letter string which it receives is converted into a stressed phoneme string using two sets of ordered phonological rules. The first set to be applied converts letters to phonemes, first stripping affixes, then converting consonants and finally converting vowels and affixes. The second set applies an ordered set of rules which determine the stress contour of the phoneme string.

These rules were developed by a process of extensive statistical analysis of English words. The form of the rules reflects the fact that pronunciation of vowels and vowel digraphs, consonants and consonant clusters, and prefixes and suffixes is highly dependent upon context. The method of ordering rules al lows converted strings which are highly dependable to be used as context for those requỉing a more complex framework. Detailed studies of allowable suffix combinations and the effect of suffixation on stress and vowel quality have also provided for more reliable reswlts.

-3-
 Table of Contents

I. The Text-to-Speech Sys'tem 4
II. Letter-to-Sound 9
III. Lexical Stress Placement 30
IV. Reliability 51
Appendix 59
Phoneme Table 62
Listing of Letter-to-Sound Rules 6:
Figures

1. Application of Letter-to-Sound Rules 12
2. Cyclic Rules (First Phase); Domain of Application 22
3. Notation 23
4. Stress Rules - Flow Chart 25
5. Stress Placement Rules 28
Examples
Letter-to-Sound
A., PTOLEMAIC 14
B. TABLE 15
C. CARIBOU 17
D. SCENARIO 18
E. SUBVERSION 19
F. SCIENCE 21
Lexical Stress Placement
Main Stress Rule 31, 32
Stressed Syllable Rule 38, 39
Alternating Stress Rule 40
Destressing Rule 42
Compound Stress Rule 43, 44
Strong First Syllable Rule 46, 47
Cursory Rule 47
Vowel Reduction Rule 48
A Complete Example 49,50

I. The Text-to-Speech System

A system to convert unrestricted printed text to speech has been under development for several years at M.I.T. ${ }^{1,2,3}$ The approach has been to model the process employed by a native speaker of English when reading aloud. In order to develop correct computational algorithms for the pronunciation of English words, it has been necessary to reflect the basic nature of linguistic processes. Consequently, considerable emphasis has been placed on the development of morphological and phonological analysis, stress patterns, parsing systems and prosodic correlates.

It is possible, using the current system, to convert any Fnglish word or string df words in a textual representation to intelligible speech. In order to effect this conversion, a number of subsystems are utilized including moxphological analysis, letter-to-sound rules, stress rules and phonemic speech synthesis. Prosodic studies are now in progress; experimental parameters for f_{o} contours and timing patterns will soon be included in the system.

The letter. string which represents a word is usually converted to a phoneme string in preparation for speech synthesis by a process of morphological analysis. A morph lexicon containing approximately 11,000 entries has been developed and is used in ronjunction with a morph decomposition algorithm. Included in the lexicon are two major classes of morphs. One class is composed of roots such as "trust" and "snow," i.e.; words which car occur alone, and bound roots such as -ceive perceive, receive, conceive), rot- (rotary, rotate, rotor) and -miss- (dismıss, missive, permissiveness).

Affixes make up the second class and may be attached either to roots or to
bound morphemes. Accompanying each lexical entry is its phonemic representation, its morph class and its part(s) of speech.

Algorithmic decomposition of letter-strings models the procedure used by a native speaker when confronted by a word which he does not immediately recognize or has previously not encountered. If the word is not immediately recognizable, i.e., if it is not in the "lexicon" of the native speaker in its entirety, an attempt will be made to break it apart into its constituent morphs. Such a process is probably used when one reads a word sutch as "antidisestablishmentarianism," earthrise" or "cranapple" for the first time

The algorithm also models the ability to recognize mutations such ás the dropping of a final silent $j e^{-4}$ (observe - observance), the doubling of a final consonant (red-reddest) and the substitution of [i] for final [y] preceding vocalic suffixes (glory - glorious). Morphophonemic rules are also included, modeling the ability to give a correct pronunciation for any plural (horses, cats, dogs) or past tense (quieted, hushed, whispered), and to palatalize in appropriate contexts (sculpt - sculpture, confuse - confusion).

Another feature of the algorithm is a set of selectional rules which, although very simple in form, choose the corfect morphemic analysis from all possibilities in a large number of cases. A standard form for sequences of morphemes is compared with each possibility, and rules describing preferred composition are used in a pairwise comparison leading to an acceptable result. The word "formally" provides an example in which the only rule needed is one stating that a root followed by a suffix is preferable to two concatenated roots. Possible decompositionsof the word "formally" are
detected as follows (R represents "root" and S, "suffix"):
form $(R)+a 1(S)+1 y(S) \quad$ form $(R)+a l l y$
for. $(R)+\operatorname{mall}(R)+y(S) \quad$ form $(R)+a l l(R)+y(S)$

It is clear that the correct decomposition is the only candidate having the form of a single root followed by suffixes.

When a complete morphemic analysis fails, that is, when a word encountered by a native speaker cannot be separated into its constituent morphemes, or when it is so infrequent in the English language that he has previously not encountered it, a "letter-to-sound" system is invoked, i.e., an attempt is made to sound out the word letter by letter. The competence of a native speaker which allows him to perform this conversion is based on correspondences between letters and sounds in English which have been internalized through experience. (A native speaker will also apply the same correspondences to a foreign word from any language of which he has nQ knowledge.) A scheme to model this process, must be made available, sequenced after the decomposition algorithm, in, order to be ablè to convert unrestricted text to speech. The text-to-speech system includes a phonological model having a two-phase structure: the first phase is a set of rules which converts letters to phonemes, and the second is an algorithm for placement of stress on the converted phonemes.

This system has been implemented in BCPL on a DEC PDP-9 and on a PDP-10 in. MAC LISP.

One might ask why, with a set of letter-to-sound rules available, it is necessary to have a lexicon. There ire three reasons; all are restrictions which must be imposed on any viable letter-to-sound system. First, it has
been observed that high-frequency wotds perhaps because of extensive use, do not always follow letterto-sound rules. For example, the only instance in which a final $[f]$ is pronounced as /v/ is in the word "of " The letter [w] following a consonant is generally pronounced like the $[w]$ in "sweet" or "twill," but in the word "two" it is not pronounced at all. A study ${ }^{5}$ of the 200 most frequent words in English according to the Brown Corpus ${ }^{6}$ was made to determine their regularity of pronunciation. It was found that although the regular case is that a final [e] preceded by a single consonant (other than [r]) lengthens the preceding vowel, four of the 200 words, i.e., "have" (compare "behave," "shave"), "one," "some" and "come." (compare "lóne," "ode") are exceptions. The case of initial [th] is even more irregular among highfrequencywords. In most English words, initial thi is unvoiced as in "thistle," "thin," "thesis:" However, twelve of the 200 words began with voiced [th].

Secondly, it must be recognized that the letter-to-sound rules which operate within a morpheme do not necessarily apply across morph boundaries. In particular, the pronunciation of compounds requires a lexicon. Such words as "hothouse" or "potherb" might qtherwise appear to contain the consonant cluster [th], and the morph-final silent e] in "houseboat" would certainly not be silent if the word were not recognized as a compound. The application of letter-to-sound rules must therefore be restricted to words containing no more than a single root.

Thirdly, foreign words which retain their original pronunciation must be lexical entries. The entries may be made in the same way a native speaker of English would add a foreign word to his vocabulary, i.e., by pronouncing it
as if if were an English word (using English letter-to-sound rules) until informed of its correct pronunciation, and then plading it in his mental lexicon.

It is apparent, then, that both morphological and phonological systems are necessary and that together, in sequence, they can provide a phonemic representation for any English word presented for conversion to speech.

Although, at present, there is no interaction between the decomposition and letter-to-phoneme algorithms, a more highly efficient system could be developed in the future. The size of the lexicon fould be reduced, for example, by application of stress placement rules to the output of the decomposition algorithm or by omitting unnecessary phonemic representations

II. Letter-to-Sound

The conversion of a letter string to a phoneme string in the letter-tosound program proceeds in three stages. In the first stage, prefixes and suffixes are detected, (c£. Figure 1) Such affixes appear in the list, of phonological rules. Each is classified according to ilf its possible parts of speech, (2) the possible parts of speech of a suffix preceding it, (\$) its restriction or lack of restriction to word-final position and (4) its ability to change a preceding [y] to [i] or to cause the omission of a preceding [e]. Prefixes are given no further specification.

Detection of suffixes proceeds in a right-Eo-left, longest-match-first
fashion. When no additional suffixes can be detected, or when a possible suffix is judged as syntactically incompatible with its right-adjacent suffix by a parts-of-speech test using classifications (1) and (2) above, the process is terminated. Finally, prefixes are detected łeft-to-right, also by longest match first. If at any time the removal of an affix would leave no consonant or no vowel in the remainder of the word, the affix is not removed. Example: dictatorship dict i+ ate + or + ship possible suffix analysis ship: (a) nominal suffix
(b) follows nominal suffix
or: (a) nominal suffix
(b) follows verbal suffix
ate: (a) verbal, nominal and adjectival
(b) follows verbal, nominal and adjectival suffixes
dict + ate + or + ship
parts of speech are compatible; anàlysis accepted.

Example: passing

```
    pa + s + s + ing possible suffix analysis
    ing: (a) nominal and
                                    verbal suffix
    (b) follows nominal
    or verbal suffix.
    s: (a) nominal and
        verbal suffix
        (b) follows nominal and
        verbal suffixes
        (c) appears only in unacceptable analysis
        in word-final position
    pass + ing corrert analysis
```

Example: finishing
fin + ish + ing possible suffix analysıśs
ing: (a) nominal and verbal
suffix
(b) follows nominal or verbal suffix
ish: (a) adjectival
parts of speech not compatible
(b) follows nominal o' \dot{r} adjectival suffix
finish + ing
correct analysis: root functions as verb with verbal ending, ish

The domain of application of the second stage rules excludes any previously recognized affixes and is assumed to be a single morpheme. This stage is intended primarily for consonant rules and proceeds from the left of the string to the right. Extending the domain to the whole letter string once again for the third stage, a phonemic representation is given to affixes and to vowels and vowel digraphs, (cf. Figure l).

Phonemic representations are produced by a set of ordered rules which convert a letter string to a phoneme staigg in a given context. Both left and right contexts are permitted in the expression of a rule, and may contain. variables as well as letters or phonemes Any one context may be composed of either letters and letter variables or of phonemes and phoneme variables. Comibination of these possibilities for both left and right contexts aklows for four possible context types. One rype of rule, for example, makes it possible to convert a particular letter string to a phoneme string only if the left context is a specified phoneme string and the right context is a specified letter string.

The method of ordering rules allows converted strings which are highly dependable to be used as context for those requiring a more complex framework. Because the pronunciatioh of consonants is least dependent upon context, phonological rules for consonants are applied first, i.e., in the second stage. Rules for vowels and affixes, requiring more specification of environment, are app1ied in the third-and final stage. With the benefit of a previously converted consonant framework and the option of including as context any phoneme to the left of a string under consideration, the task of converting vowexs and affixes is simplified.

DENOMINATIONS	Input		
DENOMIN + ATE + ION + S	Stage 1:	(a)	recognition and isolation of suffixes
$\mathrm{DE}=$ NOMIN $+\mathrm{ATE}+\mathrm{ION}+\mathrm{S}$		(b)	recognition and isolation of prefixes
-- $=\mathrm{n}-\mathrm{m}-\mathrm{n}+\mathrm{-}$-- + --- + -	Stage 2:	conversion of consonants in root	
$\mathrm{d} x=\mathrm{n}-\mathrm{m}-\mathrm{n}+\cdots+\cdots+\cdots$	Stage 3:	(a)	conversion of prefix
$\mathrm{d} \geq=$ namrn $+\ldots+\ldots+\cdots$		(b)	conversion of vowels in. root
$d I=n a m r n+e \int+\partial n+z$		(c)	conversion of suffixes

$d x=\stackrel{2}{n a m i n}+\stackrel{1}{e} \int+\ni n+z \quad$ Result of Stress Placement Rules

All phonemes are given in IPA symbols. A dash (-) serves as a place-holder for a letter which has not yet heen converted; an equals sign (=) follows each prefix; a plus (+) precedes each suffix The result. of stress placement rules is also given.

Figure 1
Application of Letter-to-Sound Rules-

Within the two sets of rules for conversion of consonants and vowels, ordering proceeds from longer strings to shorter strings and, for each string,.from specific context to general context. The rule for pronunciation of [cch], then, appears before the rules for [cc] and [ch], each of which is ordered before rules for [c] and [h]. Procedures for the recognition of prefixes and suffixes also require an ordering: t'ie prefixes [com] and [con] must be ordered before [co]; any suffix ending with the letter [s] must be recognized before the suffix consisting of that letter only.

As an example of ordexing rules for a particular string, consider the vowel [a] and assume that it is followed by the letter [r]. This [a] may be pronounced like the [a] in "warp," "lariat" or "carp" depending upon specification of further context. It is pronounced like the [a] in "carp" if it is followed by $[\mathrm{r}]$ and another consonant (other than $[\mathrm{r}]$) and if it is preceded by any consonant phoneme except /w/ (note "quarter,". "wharf") Consequently, a rule for [a] in the context of being preceded by the phoneme /w/ and.followed by the sequence $[\mathrm{rc}]^{7}$ is placed in the set. of rules. Specification of a left context in the rule for the [a] in "carp" is subsequently unnecessary. If the [a] is preceded by a/w/, this rule will never be reached; if preceded by a vowel, a rule for vowel digraphs will already have- applied. Using this method. rules may be stated simply and without redundancy.

Development of the set of phonological rules was begun by informal inspection and reference to published works, e.g., Venezky. ${ }^{8}$ By a process of extensive statistical analysis, other rules were added and ordered
appropriately. The principal source of words was the Merriam Webster Pocket Dictionary. ${ }^{9}$ A computer print-out was generated in which all words containing each letter and each specified cluster of letters were isolated. Within each category, words were sorted alphabetically according to the right-hand context of the letter(s) under consideration. In addition, Walker's rhyming dictionary ${ }^{10}$ was used to determine pronunciation of suffixes and the effect of suffixation on preceding phonemes. Words from thie Brown Corpus, the Heritage English Dictionary ${ }^{11}$ and Stedman's Medical Dictionary ${ }^{12}$ have been used in testing procedures.

Examples of Rule Application

In this section, a number of words will be analyzed according to the phonological rule program. Intermediate output, i.e., the results of the first and second stages, will be provided for each word, and the rules which have been applied to produce this output will be discussed. Generalizations of these rules and rules. which are believed to be related will bẻ included in the discussion whenever possible. All phonemes are given in IPA symbols; a dash (-) is a place-holder for aletter which is to be converted in a later stage. The result of application of stress rules (to be discussed later) is given without comment following each derivation.

In the first stage, [ic] is recognized as a suffix and a plus (+) is inserted to its left. Since no other affixes are recognized, Stage 1 is terminated.

Morph-initial [pt] is pronounced /t/, and [1] and [m] are given the pronunciatinns /1/ and /m/ respectively, according to the most general rule in the rule sequence for each. (The most general rule is the final rule in the rule sequence and contains no specified context.)

In Stage 3, the contexts of the vowels [o] and [e] are not among those contexts specified in the sequence of rules and are pronounced according to the final, context-independent rule. The vowel [a], on the other hand, precedes another vowel and, for this reason is lengthened (tensed). The suffix [+ic] is word-final and receives the pronunciation/Ik/. In the final result, stress rules have been applied and unstressed non-tense vowels have been reduced.

Generalizations and Related Rules

1.) Morph-initial [pm] and [ps] are given the promunciations $/ \mathrm{n} /$ and /s/ respectively, the [p] remaining silent as in morph-initial[pt].
2.) Vowels in pre-vocalic position are usually lengthened (tensed).

3-) There is only one context in which [ic] is pronounced /is/ rather than /xk/, i.e., preceding the variable representing the vowels [i], [e] and [y].
B. TABLE

TABLE Result of Stage 1
t-b . $1 \quad$ Result of Stage 2
tet 1

Iaput

Result of Stage 3
teb. $1 \quad$ Final result after stress

The, result of Stage 1 , in this case, is the same as the input since no affixes are detected.

The letter [t] is pronounced by the most general rule in its rule sequence, and $[b]$ has oniy one given pronunciation. However, [1] precedes morph-final [e] and is itself preceded by another consonant, [b]. In this context, [I] is syllabic.

The sequence [ble] now forms a very specific context for the third stage. . The letter [a] when followed by [Cle] is lengthened if the consonant, C, is neither [r] nor [1]. The vowel [e] is morph-final and therefore silent.

Generalizations and Related Rules

1.) The rules for $[\mathrm{bt}]$ and $[\mathrm{mb}]$ in which the $[\mathrm{b}]$ is silent are sequenced preceding the single rule for [b].
2.) All vowels except [e], if located in the first syllable of a morph, are long if followed by [Cle\#] where C is peither [r] nor [1]. Examples are "maple," "bible," "ogle" and "bugle." An exception is "triple." The letter [e] apears to be long In this context only if it is part of a vowel digraph, e.g., the vowel in "treble" is short, but the vowel digraphs in "eagle," "people" and "beetle" are long. Vowels in this context which do not appear in the first syllable must be converted to short pronunciations so that they will not be given primary stress by the stress rules, e.g., "monocle," "'barnacle."

C. CARIBOU	Input
CARIBOU	Result of Stage 1
$k-r-b--$	Result of Stage 2
k วerrbu	Result of Stage 3

During Stage 1, no affixes are detected. Converting consonants in Stage 2 , we find that $[r]$ is pronounced according to the most general rule in its rule sequence and that $[b]$ has only one given pronunciation. The letter [c], because it precedes $[a$], is pronounced $/ k /$.

When [a] precedes [r] which, in turn, precedes either a vowel or another $[r]$ within the same morph, it usually has the pronunciation $/ \partial e /$. The letter [i], following its most general pronunciation, is assigned the phoneme /工/. Morph-Final [ou] is given the pronunciation /u/.

Generalizations and Related Rules

1.) The letter $[r]$ is syllabic if preceded by a consonant other than $[r]$ and followed by a morph-firtal [e], (e.g, "acre"), or the inflectional suffixes $[t s]$ or [ted].
2.) The letter [c]is palatalized in some cases, e.g., "special," (context: [V_iV]) "ancient," (context: [n_iV]). It is assigned the phoneme /g/ latér in its rule sequence if it is followed by $[e]$, [i] or [y]. It may be noted that this is the same context which assigns the pronunciation /rs/ to the suffix [+ic]. If [c] is followed by [a], [o] or [u], it is usually pronounced $/ k /$, as in this example..
3.) Then [a] precedes $[r]$ and $[r]$ is not followed by either a vowel or another $[r]$ within the same morph, $[a]$ is pronounced /a/, (e.g., "far," "cartoon") unless preceded by the phoneme /w/, e.g., "warble," "warp," "war," "wharf," "quarter").
4.) In a word such as "macaroon," the $[a]$ preceding $[\mathrm{rV}]$ is assigned pronunciation /ae/ in the phonological rules and is reduced to schwa in the stress rules because it is unstressed.
D. SCENARIO

SCEENARIO Result of Stage 1
ss-n-r-- Result of Stage 2
ssenzerio Result of Stage 3
srnderio Final kesult after stress
In Stage 2 we find that the consonant cluster [sc], like the letter [c], usually has the sound of /s/ preceding [e], [i] or [y]. The letter [r] does not occur in any context given in its rule sequence and is therefore given its most general pronunciation. There is only one rule for the pronunciation of [n].

Moving on to Stage 3, the vowel [e] receives the pronunciation $/ \varepsilon /$ given by its most general rule. The vowel [a] follows the rule given in the previous example. The yowel [0] is morph-final and has the feature [-constricted pharynx], and is lengthened accordingly. Because the vowel [i] precedes another vowel, it is lengthened also. ${ }^{13}$

Generalizations and Related Rules
1.) The consonant cluster [sc] is given the representation of a
double phoneme because the information that it is orthographically a double consonant is needed both in the vowel rules and in the rules for stress; it is later reduced to a single phoneme.
2.) Two other contexts of [sc] must be ordered before the rule which applied to "scenario." If [sc] precedes [i] followed by anocner vowel, and certain letters precede $[s c]$, a palatalization effect is observed. When preceded by a vowel in this context, [sc] becomes $/ S /$, e.g., "prescience"; when preceded by an $[n]$, it bedmes /č/ or /ts/, e.g., "c̣onscious."
3.) The pranunciation [sc] receives in "scenario" is also found preceding syllabic [1] in example B.
4.) If none of the contexts mentioned in 2.) or 3.) are found, the phonemic representation of $[s c]$ becomes /sk/.
5.) The reduction of $/ \varepsilon /$ to $/ \bar{\Sigma} /$ occurs in the stress rules.
E. SUBVERSION

$$
\text { SUB }=\text { VERS }+ \text { ION }
$$

$$
---=v-r z \quad+---
$$

$$
s a b=v \wedge r \check{z}+\partial n
$$

sob=v $3 \check{z}+a n$

Input
Result of Stage 1
Result of Stage 2
Result of Stage 3

Final result after stress

In this example, the suffix. [tion] and the prefix $[s u b=]$ are recognized in Stage 1.

There is only one pronunciation provided for the consonant [v], and [r], because it does not fit a specified context for syllabic [r] is given the standard pronunciation. The letter $[s]$ is followed by the sequence $[t i v]$,
making it a candidate for palatalization. The palatalization rulé whỉch applies assigns the phoneme $|\bar{z}|$

In the final stage of letter-to-phoneme conversion, the affixes and vowels are considered. The prefix $[s u b=]$ has only one possible pronunciation. The letter [e], because it precedes the sequence $[r C$] where the consonant, C, is not an $[r]$, is given the pronunciation / $\mathrm{N} /$. The palatal phoneme $/ \Sigma / /$ now forms a left context for the suffix [fion], which, being word-final, is pronounced /an/.

Generalizations and Related Rules

1.) Because $[+s]$ is marked as occurring in word-final position orly, the [s] preceding [tion] is not recognized as a suffix:. This step also prevents the [er] preceding the [s] from consideration as a possible suffix.
2.) When an [s] preceding the sequence [tiv] or [iV] is preceded by either a vowel or an $[r]$, it is usually pronounced /z/. Some examples are "revision," "artesion," "Persian" and "dispersion"; two exceptions are "controversial" and "torsion." When [s] is preceded by [1], and when it occurs as part of the consonant cluster [ss], the phoneme preceding the vowel sequence is $/ 5 /$, e.g., "emulsion," "Russian." A third pronunclation $1 s$ observed when [s] is preceded by [n], e.g., "transient," "comprehensiun."
3.) The sequence $/ \wedge r /$ is later changed to $/ \mathcal{K} /$.
4.) The sequence [ion] following a non-palatalized consonant is pronounced /ian/, e.g., "oblivion," "criterion," "champion."
5.) The suffix [+ion] may be given other pronunciations if not morphfinal. For example, it is pronounced /+ian/ in ganglionic" and "histrionic."
F. SCIENCE

SCI + ENCE
ss- + ----
ssa + Ins

Input
Result of Stage 1
Result Stage 2
Result of Stage 3
sau+Ins

Final result after stress

In Stage 1, [tence] is recognized as a suffix. The consonant cluster [sc.] precedes [i] and is therefore given the pronunciation/ss/, later changed to /s/ as described earlier. The pronunciation of [i] preceding a vowel as /ay/ is a consequence of its left context being a morph-initial consonant cluster.

Generalizations and Related Rules

1.) Although [+ience] is a possible suffix, it is not recognized as such in this case because of the requirement that at least one consonant and one vowel remain in the "root." This stipulation forces the correct suffix, [tence], to be reçognized.
2.) Because [sc] is morph-initial, it is not palatalized even though it precedes the sequence [iv].

3,) The letter [i] is also pronounced /ay/ if it is followed by a vowel and is morph-initial, e.g., "iota," "1ambic."

NEUTRALIZATIONS

Figure 2
Cyclic Rules (First Phase)
Domain of Application

NOTATION
C_{i}
cj

$$
\dot{X}, Y,
$$

W

[]

$\left\{\begin{array}{c}A \\ B \\ \vdots \\ P\end{array}\right\}$
[9
()$_{a}()_{b}$
vowel
consonant
at least i consonants
at most j consonants
at least i consonants; at most j conlsonants
variables
a weak syllable, i.e a sh甲rt vowel followed by no mpre than one consonant (a syllable begins with a vowel and terminates (a) immediately before the next vowel or (b) immediately before a formative boundary if one occurs before the next vowel
a feature, e.g., [-long], [1 stress], or a phoneme with specified feature(s), e.g., $\left[\begin{array}{c}\mathrm{V} \\ 1\end{array}\right.$ stress.$]$.
either A or B or ... or P
optional element; material in parentheses is neglected if and only if it does not correspond to context in the word under consideration -word context is compared with rule context by first comparing it with the maximum string in the rule, i.e., with all parentheses remóved, wand then by ignoring parenthesized material beginning at the innermost parentheses and proceeding to the outermost parentheses
aomain of rule -- formative boundaries of st'ring under consideration for cyclic rules, word-boundaries for last cycle and tor non-cyclic rules
subscripts making appearance of optional elements conditional (actual condition given below rule)

Figure 3.

$$
\begin{aligned}
& X \rightarrow[y] / Y-Z \\
& X \rightarrow[y] . / Y\left[\frac{\cdot}{z}\right] Z
\end{aligned}
$$

assign feature(s) $[y]$ to element X in the context YXZ
assign feature (s) $[y]$ to an element X with specified feature $(\dot{s})[z]$ in the context $Y X Z$

Figure 4 (continued)

Figure 4. (concluded)

Main Stress Rule (cyclic)

$$
\mathrm{v} \rightarrow\left[\begin{array}{ll}
1 & \text { stress }
\end{array}\right] /\left[\left[\mathrm{X} _\mathrm{C}_{0}\left(\left(\left\{\begin{array}{l}
\mathrm{W} \\
\mathrm{~V}
\end{array}\right\}\right)\left\{\left[\begin{array}{c}
\mathrm{V} \\
-\mathrm{long}
\end{array}\right] \mathrm{C}_{0}\right\}\right)\right]\right]
$$

Conditions: (1) no stress placement to the left of a prefix boundary
(2) if right-most morph is a suffix, test for special stress placement category; assign [1 stress] or skip cycle according to category.
Stressed Syllable Rule (cyclic)

$$
\mathrm{v} \rightarrow[1 \text { stress }] /\left[\mathrm{x} _\mathrm{c}_{0}\left(6\left(\left\{\begin{array}{l}
W \\
v
\end{array}\right\}\right) \mathrm{vc}_{0}\right)\left[\begin{array}{c}
\mathrm{v} \\
1 \text { stress }]
\end{array}\right] \mathrm{Y}\right]
$$

Conditions: (1) Y contains no primary stress
(2) no stress placement to the left of a prefix boundary

Alternating Stress Rule (cyclic)

$$
V \rightarrow\left[\begin{array}{ll}
1 & \text { stress }
\end{array}\right] /\left[\begin{array}{ll}
X & C_{\theta}(V) \\
V C_{\theta} & \left.\left[\begin{array}{c}
v \\
1 \text { stress }
\end{array}\right] c_{0} B\right]
\end{array}\right.
$$

Destressing Rule (non-cyclic)

$$
\begin{aligned}
& \mathrm{V} \rightarrow\left[\begin{array}{l}
\text { - long' } \\
\text {-stress }
\end{array}\right] /\left[\mathrm{C}_{0}\left(\mathrm{VC}_{\mathrm{O}} \mathrm{X}\right)_{a}\left[\begin{array}{c}
(- \text { long })_{b}
\end{array}\right] \mathrm{C}\left[\begin{array}{c}
\mathrm{V} \\
+ \text { stress: }
\end{array}\right] \mathrm{Y} \mathrm{y}\right] \\
& \text { Conditions: (1) if () a is not present, (})_{2} \\
& \text { must be present } \\
& \text { (2) not applied to the first vowel } \\
& \text { if applied to second' vowel }
\end{aligned}
$$

Compound Stress Rule (non-cyc1ic)

Conditions: (1) Y contains no 1 stress
(2) if right-most morph is a suffix, check for special stress retetion or stress exclusion category and reassign [1 stress] according to category.

Figure 5.
Stress Placement Rules

Strong First Syllable Rule (non-cyclic)

$$
v \rightarrow[2 \text { stress }] /\left[\left[\mathrm{C}_{0}\left[\begin{array}{l}
(+ \text { long })_{a}
\end{array}\right]\left(\stackrel{C}{2}_{2}\right)_{b} \mathrm{Y}\right]\right.
$$

Condition: (1) () ${ }_{a}$ or ($)_{b}$ must be

Cursory Rule (non-cyclic) -

$$
\begin{aligned}
& \left.\mathrm{V} \rightarrow\left[\begin{array}{l}
- \text { long } \\
- \text { stress }
\end{array}\right] \quad /\left[\mathrm{X}\left[\begin{array}{c}
\mathrm{V} \\
\text { stress }
\end{array}\right] \epsilon_{0} \ldots \mathrm{cV} \mathrm{Y}\right]\right] \\
& \text { Condition: (1) if rightmost morph is a } \\
& \text { suffix, check for stress } \\
& \text { exclusion category }
\end{aligned}
$$

Vowel Reduction Rules (non-cyclic)

$$
\begin{aligned}
& {\left[\begin{array}{l}
\{\mid I / \\
\mid \varepsilon / \\
\text {-stress }
\end{array}\right] \rightarrow \overline{\mathrm{I} / \mathrm{X}} \mathrm{X}} \\
& {\left[\begin{array}{c}
v \\
- \text { long } \\
- \text {-stress }
\end{array}\right] \rightarrow \partial / X _Z}
\end{aligned}
$$

Figure 5. (concluded)

III. Lexical Stress Placement

The stress rules which have been implemented are a modification of a set of ordered rules developed by Halle. ${ }^{14}$ Modifications fall into three categories: (1) adjustments due to the condition that input is completely phonemic, (2) reduction of the number of stre \quad ls to 1 stress (primary) 2, stress (stress less than primary) anu 0 stress, and (3) addition of special suffix-dependent stress categories.

Application of the rules proceeds in two phases. The first phase consisis of the application of three ordered rules which are applied cyclically, first to the root, then to the root and left-most suffix combined. The process continues with one more suffix adjoined to the string under consideration before each cycle begins until the end of the word is reached. This cyclic phase is devoted solely to the placement of primary stress. The second, non-cyclic phase, includes the application to the entire word of ordered rules and reduces all but one of the primary stress marks to secondary or zero stress.

In the following section, stress placement rules will be given in symbolic form. Each rule which contains more than one case is broken down into cases for whick brief descriptions and examples are given. The rules are listed in the order in which they apply and are marked either "cyclic" or "non-cyclic." Particular modifications to each rule will be given at the end of the discussion about that rule under the subheading Modifications. (See Figure 3 for an explanation of notation, Figure 4 for a flow ahart of the stress rules and Figure 5 for the complete set of stress-placement rules, in linguistic notation.

Main Stress Rule (cyclic)

$\left.\left.\mathrm{V} \rightarrow\left[\begin{array}{ll}1 & \text { stress }\end{array}\right] /\left[\begin{array}{ll}\mathrm{X} _\mathrm{C}_{0} & \left(\left(\left\{\begin{array}{l}W \\ \mathrm{~V}\end{array}\right\}\right)\left\{\left[\begin{array}{c}\mathrm{V} \\ -1 \text { ing } \\ \mathrm{V}\end{array}\right]\right.\right.\end{array} \begin{array}{l}\mathrm{C}_{0}\end{array}\right\}\right)\right]$
Condition: (1) no stress placement to the left of a prefix boundary
(2) if right-most morph is a suffix, test for special stress placement category ; assign [l stress] or skip cycle according to category.

Case 1. (Maximum string; all parentheses removed)
$\left.\mathrm{v} \rightarrow\left[\begin{array}{ll}1 & \text { stress }\end{array}\right] /\left[\begin{array}{ll}\mathrm{X} _c_{0}\end{array}\left\{\begin{array}{l}\mathrm{w} \\ \mathrm{V}\end{array}\right\}\left\{\begin{array}{c}\mathrm{V} \\ \operatorname{-1ong} \\ \mathrm{V}\end{array}\right] \mathrm{c}_{0}\right\} 5\right]$
(a) Assign 1 stress to the vowel in a syllable preceding a weak cluster followed by a morph-final syllable containing a short vowel and zero or more consonants:
difficult $\quad 1$
(b) Assign 1 stress to the vowel in a syllable preceding a weak cluster followed by a morph-final vowel:

1
oregano
jregreno
(c) Assign 1 stress to the vowel in a syllable preceding a vowel followed by a morph-final syllable containing a short vowel and zero or more consonants:

1
secretariat
sekretæeriæt
(d) Assign 1 stress to the vowel in a syllable preceding a vowel followed by a•morph-final vowel:
oratorio
or みetうrio

Case 2. (Innermost parenthesized string excluded)
$\mathrm{v} \rightarrow[1$ stress $] /\left[\underset{\mathrm{X}}{\mathrm{X}} \mathrm{C}_{0}\left\{\underset{\mathrm{~V}}{\left.\left[\begin{array}{c}\mathrm{V} \\ -1 \text { ong }\end{array}\right]^{\mathrm{C}_{0}}\right\}}\right\}\right.$
(a) Assign 1 stress to the vowel in a syllable preceding a short vowel and zero or more consonants:

1 edit $\quad \varepsilon$ dIt bitumen bdytumen
(b) Assign 1 stress to the vowel in a svllable preceding a morph-final vowel:
agenda
$x{ }_{j}^{v}$ End x
Case 3. (All parenthesized strings excluded)

$$
\mathrm{V} \rightarrow[1 \text { stress }] /\left[\mathrm{X}-\mathrm{C}_{0} 5\right]
$$

(a) Assign 1 stress to the vowel in the last syllable:

1 1
sitand staend go go
parole prerol hurricane lariken (reduced to 2 stress by a later rule)

Conversion of the Main Stress Rule into aigorithmic form is facilitated by ordering the above cases in the following manner:

Algorithmic Order of Application: (1) If the final syllable is the only syllable, or if it consists of a long vowel followed'by at least one consonant, the final vowel receives primary strqss. Otherwise, (2) if there are only two syllables, or if the penultimate syllable terminates in more than one consonant or if it consists of a long vowel followed by at least one consonant, the penultimate vowel receives primary stress. Otherwise, (3) the antepenultimate vowel receives primary stress.

Modifications: The presence of the optinnal vowel immediately preceding another vowel and the presence of the morph-final vowel are necessary
modifications of the Main Stress Rule due to the difficulty of retrieving the long (tense) pronunciation of a laxed vowel when its orthographic representation is no longer available.

The Main Stress Rule, as developed by Halle, applies only to roots which function as nouns and to suffixed forms. However, until parsing methods are further developed, it will not be possible to take advantage of known parts of speech. ${ }^{15}$ For this reason, the Main Stress Rule is currently applied to all roots.

The suffixes referred to in Condition (2) fall into two categories. Some suffixes are marked to force stress to be placed on either the final or the penultimate syllable of the root and suffixes under consideration. This placement of stress replaces the MSR on the cycle in which the special suffix is the right-most morph. These suffixes are listed below with the phonemic representation which actually appears as input.

Example

EE - /ii/, final-syllable stress, retained by special categorization

EER - /rr/,final-syllable stress, retained by special 2 1 categorization

ESCE - /Ės/, final-syllable stress, retained by special categorization

ESQUE - /Esk/, final-syllable stress, retained by special categorization

ETTE - / ε t/, final-syllable stress, retained by special categorization

OON - /un/3 final-syllable stress, retained by special categorization
buccaneer
21
luminesce
21
arabesque

$$
\begin{array}{cc}
2 & 1 \\
\text { marionette }
\end{array}
$$

SELF - /sعlf/, final-syllable stress, retained by special categorization	$\begin{gathered} 2 \\ \text { herself } \end{gathered}$
FUL - /fUl/, final-syllable stress, later reduced by Compound Stress Rule	$\begin{array}{cc} 1 & 2 \\ \text { bushelful } \end{array}$
HOOD - /hUd/, final-syllable stress, iater reduced by Compound Stress Rule	$\begin{array}{cc} 1 & 2 \\ \text { womanhood } \end{array}$
IFY - /Ifdy/, final-syllable stress, latẹr reduced by Compound Stress Rule	$\begin{array}{r} 21 \\ \text { humidify } \end{array}$
IZE - / ayz/, final-šyllable stress, later reduced by Compound Stress Rule	$\begin{array}{lc} 1 & 2 \\ \text { radicalize } \end{array}$
OID - / y ydx, final-syllable stress, later reduced by Compound Stress Rùle	$\begin{aligned} & 12 \\ & \text { ovoid } \end{aligned}$
SHIP - / JIp/, final-syllable stress, later reduced by Compound Stress Rule	$\begin{array}{cc} 1 & 2 \\ \text { friendship } \end{array}$
ISM - /Izam/, penultimate-syllable stress, later reduced by special categorization	$\begin{array}{cc} 21 & 2 \\ \text { romanticism } \end{array}$
ARY - / วeri/, / ε ri/, /Err/, penultimate-syllable stress reduced by Compound Stress Rule	$\begin{aligned} & 2^{2}{ }^{1} \\ & \text { tionary } \end{aligned}$
penultimate-syllable stiress, deleted by ,Cursory Rule	$\begin{aligned} & 2 \\ & \text { infirmary } \end{aligned}$
$\begin{gathered} \text { ORY - /ori/, /ori/, penultimate-syllable stress, } \\ \text { reduced by Compound Stress Rule } \end{gathered}$	$\underset{\text { inhibitory }}{2}$
penultimate-syllable stress, deleted by Cursory Rule	refractory
ERY - /eri/, penultimate-syllable stress, reduced by Compound Stress Rule	$\stackrel{1}{\text { stationery }} \stackrel{2}{2}$
penultimate-syllable stress, deleted by Cursory Rule	$\stackrel{1}{\text { slippery }}$
ATORY - /atəri/, penultimate-syllable•stress, reduced by Compound Stress Rule*	$\stackrel{1}{\text { systematory }} \stackrel{2}{2}$
ITION - / \int ¢n/, penultimate-syllable stress, fetained	sedition

IFIC - /IfIk/,	$\stackrel{1}{\text { specific }}$
	21
penultimate-syllable stress, reduced by Destressing Rule	specificitey
	21
$\begin{gathered} I C=-/ I k /, / I s /, \text { penultimate-syllable stress, retained } \\ \text { penultimate-syllable stress, reduced by } \end{gathered}$	orthographic simplícity
Compound Stress Rule	

The other category of suffixes referred to in Condition (2) does not affect stress; the cycle in which such a suffix is right-most in the domain is skipped. Later cycles, however, do include the suffix $\overline{\text { as }}$ part of their* domain of application. These suffixes are listed below, and are accompanied by examples demonstrating their inclusion in this category.

ABLE: (a) all words terminating in LCABLE, e.g., eradicable, 1 communicable 1 1 1
(b) formidable, noticeable, manageable, knowledgeable

ABLY: as with ABLE above
AGE: (a brigandage, vagabondage, chaperonage 12
(b) anecdotage -- at the time Walker's rhyming dictionary was compiled, the two stresses were interchangea 1
DOM: (a) bachelordom
(b) words such as christendom and martyrdom do not stpply evidence; "dom" must be considered a separate syllable, i.e., the syllable preceding "om" is not strong

ED: (a) opinionated, talented, shepherded
(b) Exceptions occur in words with no secondary stress and with primary stress more than two syllables to the left before the affixation of ted, e.g., $\begin{array}{llll}1 & 2 & 1\end{array}$ precedented, interested (in some dialects)
(c) Note that $E D$ has no vowel in its pronunciation if not preceded by $[t]$ or $[d]$, i.e., it is not a separate syllable.

EER: (a) caravaneer, charioteer
EN: There is no evidence of stress change due to the suffixation of "en"; most words to which it is added are l-syllable roots.

ER: $\quad \underset{2}{1} \quad \underset{1}{1}, \underset{2}{1}{ }_{1}^{1}{ }_{1}^{2}$
ESQUE: Raphaelesque, harlequinesque
ES: (a) privileges, cartilages, luridnesses
1
(b) impoverishes
(c) Note that ES (and S affixed to morph-final [e]) has no yowe. in its pronunciation if not preceded by $s, z, s, c ̌, x$, or $\}$.

EST: There is no evidence of stress change due to the suffixation of "est."

1
ETH: seventieth
FUL: No evidence of stress change
HOOD: parenthood 11
IBLE: (a) eligible, intelligible
(b) words such as putrescible and fermentescible are not exceptions; the verbal ending ESCE always carries primary stress

IBLY: as with IBLE above
1 1
ILE: replicatile, fluviatile
1 1
ING: (a) conveyancing, countenancing
(b) Exceptions may occur in those contexts mentioned under ED. In the case of "countenancing," the syllable consisting of "en" is generally so reduced that it is imperceptible as a syllable.

1 1
ISH: (adjectiva1) amateurish, sycophantish
$\begin{array}{llll}1 & 2 & 1 & 2 .\end{array}$
ISM: (a) Pharisaism, Sadduceeism
(b) invalidism, theatricalism
(c) vagabondism, monarchism

1	2	1	2	1	2

IZE: (a) standardize, jeopardize, energize

1	2	1	2	1	2	1	2

(b) radicalize, memorialize, secularize, proselytize 1 l 1
LESS: conscienceless, characterless, objectless
LET: No evidence of stress change due to the affixation of "let." 111
LY: • particularly, passionlessly, precipitously

```
1 I
```

MENT: (a) Words such as government and sojournment indicate that MENT should be placed in this category.
(b) Most words of four or more syllables are given alternate pronunciacions corresponding to the placement of MENT in either this category or in the category of regular stress placement, e.g.,

111
1 1
advertisement / advertisement, medicament / medicament
1
1
NESS: disintērestedness, haphazardness
$1 \quad 1 \quad 1 \quad 2$
QR:: governor, warrantor, incubator $1 \quad 1 \quad 1$
RY: heraldry, wizardry, charlantanry
SELF: No evidence of stress change
$1 \quad 2$
SHIP: (a) umpireship
$\begin{array}{llllllll}1 & 2 & 1 & 2 & 1 & 2 & 1 & 2\end{array}$
(b) advocateship, candidateship,, laureateship, carainalship

SOME: No evidence of stress change
TY: sheriffalty, suzerainty
111
URE: judicature, triplicature, caricature
All other suffixes not in the above categories receive stress according to the general form of the Main Stress Rule.

Stressed Syllable Rule (cyclic)

$$
\begin{aligned}
& V \rightarrow\left[\begin{array}{ll}
1 & \text { stress }]
\end{array} /\left[\left[\mathrm{X} _C_{0}\left(\left(\left(\left\{\begin{array}{l}
W \\
V
\end{array}\right\}\right) V C_{0}\right)\left[\begin{array}{cc}
\mathrm{V} \\
1 & \text { stress }
\end{array}\right]\right) \quad \mathrm{Y}_{2}\right]\right.\right. \\
& \text { Conditions: (1) Y contains no primary } \\
& \text { stress }
\end{aligned}
$$

(2) no stress placement to the left of a prefix boundary

Case 1. (Maximum string: all parentheses removed)

(a) Assign 1 stress to the vowel in a sy11able preceding a weak cluster followed by a vowel and any number of consonants which is followed by the right-most primary-stressed vowel:
oxygenate
(1) aksijenet
(stress on final syllable later reduced)
(b) Assign 1 stress to the vowel in a syllable preceding a vowel followed by a vowel and any number of consonants which is followed by the right-most primary-stressed vowel:
> stereobate
(1) 1
steriobet
(stress on final syllable later reduced)

Case 2. (Innermost parenthesized string excluđed)
$\mathrm{V} \rightarrow$ [1 stress $]$
$\left[\begin{array}{cc} & \\ 1 & \text { streśs }\end{array}\right]$
Y. $]$
(a) Assign 1 stress to the vowel two syllables to the left of the right-most primary-stressed vowel:
propaganda prapjegzendse
(stress on left-most stressed vowel later reduced)

Case 3. (Next innermost parenthesized string excluded)
$\mathrm{V} \rightarrow\left[\begin{array}{ll}\mathrm{i} & \text { stress }]\end{array}\right]\left[\begin{array}{lll}\mathrm{X} & \left.\mathrm{C}_{0}\left[\begin{array}{ll}1 & \mathrm{~V} \text { ress }\end{array}\right] \mathrm{Y}\right]\end{array}\right]$
(a) Assign 1 stress to the vowel one syllable to the left of the right-most primary-stressed vowel, i.e., to the vowel in the first syllable of the root:
hormone
(1) 1
hormon

Case 4. (All parenthesized strings excluded)

(a) Assign 1 stress to the vowel in the last syllable, i.e:, to the vowel in the only syllable of the root:

1
stand st \neq nd
(assigning 1 stress to a vowel which already carries 1 stress has no effect unless the rule specifies as in the Compound Stress Rule, that the vowel must previously be 1-stressed.)

Algorithmic Order of Application: (1) If the right-most syllable containing primary stress is the left-most syllable in the word, no stress is assigned. Otherwise, (2) if the syllable preceding the right-most stressed syllable is. the only syllable preceding it, assign primary stress to the vowel in that syllable. Otherwise, (3) if the second syllable to the left of the rightmost stressed syllable is the leftmost syllable, or if it terminates in more than one consonant or consists of a long vowel followed by at least one consonant, assign primary stress to the vowel in that syllable. Otherwise, (4) the vowel in the third syllable to the left of the right-most _stressed syllable receives stress.

Modifications: The optional vowel in prevocalic position appears in the Stressed Syllable Rule as well as in the Main Stress Rule. Its presence prevents words such as "stereobate," "alveolate," and "heliotrope" from being stressed incorrectly.

The Stressed Syllable Rule, as developed by Halle, places stress on the final syllable of the non-nouns which have been excluded from the domain of application of the Main Stress Rule. Words for which the categorization of noun/non-noun appear to be most useful are those in which a one-syllable.
prefix precedes a one-sy1lable root or bound morpheme, e.g., [permit $]_{\mathrm{N}}$ vs. $\left[\begin{array}{c}1 \\ {[\text { permit. }]_{V},}\end{array} \begin{array}{c}1 \\ \text { insult }\end{array}{ }_{N} \text { vs. [insult }\right]_{V}$ Because there are many more verbs of this sort than nouns, the Stressed Syllable Rule has been modified to prevent the retraction of stress into a prefix. The effect of this modification is to produce only the verbal pronunciation of two-syllable noun/verb pairs. Another more positive, effect is the correct placement of stress in verbs 111 such as edit,: inhibit and pummel. However, two-syllable nouns of the form "prefix-root" which. have no verbal counterpart are stressed incorrectly, egg. $1 \quad 1$ empire, inverse. (This modification will be removed or changed after a parsing algorithm is incorporated in the system.)

Alternating Stress Rule (cyclic)
$\mathrm{V} \rightarrow[1$ stress $] /\left[\mathrm{X} _\mathrm{C}_{0}\right.$ (V) $\mathrm{VC}_{0}\left[\begin{array}{lll}1 & \left.\text { stress }] \quad \mathrm{C}_{0} 5\right]\end{array}\right.$
Case 1. (Maximum string)
$\mathrm{V} \rightarrow\left[\begin{array}{lll}1 & \text { stress }\end{array}\right] \quad /\left[\mathrm{X} \quad \mathrm{C}_{0} \mathrm{VVC}_{0^{*}}\left[\begin{array}{c}\mathrm{V} \\ 1\end{array}\right.\right.$ stress $] \mathrm{C}_{0}$ g
(a) Assign 1 stress to the vowel three syllables to the left of a primary-stressed vowel occurring in the last syllable if the. following syllable contains only a vowel:
heliotrope hiliotrop
(stress in last syllable later reduced)
Case 2 (Parenthesized string excluded)
$\mathrm{V} \rightarrow\left[\begin{array}{ll}1 & \text { stress }]\end{array} /\left[\mathrm{X} _\mathrm{C}_{0} \mathrm{vC}_{0}\left[\begin{array}{c}\mathrm{V} \\ 1 \\ \text { stress }\end{array}\right] \mathrm{C}_{0}\right.\right.$ 包
(a) Assign 1 stress to the vowel two syllables to the left of a primary-stressed vowel occurring in the last syllable:
gelinate
(stress in first syllable later deleted; stress in last syllable later reduced)

Algorithmic Order of Application: (1) If there are at least two

 syllables preceding a primary-stressed vowel in the last syllable of the phoneme string, and if the first of these two syllables is composed of more than a single vowel, place primary stress on the vowel two syllables to the left of the vowel with primary stress. Otherwise, (2)'if there are at least three syllables to the left, the second of which is composed of a single vowel, place primary stress on the vowel three syllables to the left of the vowel with primary stress. Otherwise, (3) no stress assignment is made.Exceptions: Note that words such as peregrinate, oxygenate and metropolitanate which are correctly stressed ∂y the Stressed Syllable Rule are stressed incorrectly, thereafter, by the Alternating Stress Rule.

Modification: The optional vowel in pre-vocalic position appears in the Alternating Stress Rule as well as in the Main Stress and Stressed Syllable rules.

Proposed Modification: The restriction'of the Alternating Stress Rule to words in which a prefix boundary does not precede the final primarystressed syllable could be constrained to werbs. Such a constraint would provide the correct stress placement in nouns and adjectives such as multiform, contraband; intercept and miniskirt while retaining correct. stress placement in the verbs intercept, contradict and comprehend. Such a modification would require moving the̦ Strong First Syllable Rule in Halle's scheme to follow the Compound Stress Rule, assiigning [2 stress] in the same context in which [1 stress] was previously assigned. This modification has already been implemented in this program for independent reasons.
and is discussed under the heading Modifications in the Strong First Sy11able Kule.

Destressing Rule (non-cyclic, applicable to all vowels having required context)
$V \rightarrow\left[\begin{array}{l}- \text { long } \\ - \text { stress }\end{array}\right] /\left[\mathrm{Ce}_{0} \quad\left(\mathrm{VC}_{0} \mathrm{X}\right)_{a}\left[\begin{array}{l}(-\overline{\text { long }})_{b}\end{array}\right]\right.$ C $\left[\begin{array}{c}\mathrm{V} \\ 4 \text { stress }\end{array}\right]$ Y 5
Conditions: (1) if () ${ }_{\mathrm{a}}^{\text {is not present; }} \begin{aligned} & \text { must be present }\end{aligned}$
(2) not applied to first vowel if. applied to second vowel

Case 1. (Vowel to be reduced not in first syllable)
$\mathrm{V} \rightarrow\left[\begin{array}{l}- \text { long } \\ - \text { stress }\end{array}\right] /\left[\mathrm{C}_{0} \mathrm{VC}_{0} \mathrm{X} _\mathrm{C}\left[\begin{array}{c}\mathrm{V} \\ \text { +stress }\end{array}\right]\right.$ Y $]$
(a) Shorten and destress any vowel not in the first syllable which is followed by a single consonant and a stressed vowel:
instrumental Instrumentæ̊
(/u/ reduced to / U/, later to / $/$ /)
Case 2. (Vowel to be reduced is in first syllable) $\mathrm{V} \rightarrow[$-stress $] /\left[\begin{array}{ll}\mathrm{C}_{0} & {[-\overline{\text { long }}}\end{array}\right] \mathrm{C}\left[\begin{array}{c}\mathrm{V} \\ + \text { +stress }\end{array}\right] \mathrm{Y}$ 万
(a) Destress a non-long vowel in the first syllable which is followed by a single consonant and a stressed vowe1:
gelat.inate
$x^{x^{0}} 1 \quad 1$
jelatinet

Algorithmic Application: (1) If a vowel not in the first syllable is immediately followed by one consonant and a vowel which has' previously been assigned primary stress; shorten (lax) it if iE is long, and remove any stress it has been assigned. (2) If a short vowel is in the first syllable, and is immediately followed by one consonant and a vowel which has previously been assigned primary stress; and if (1) does not apply to the vowel in the second syllable, remove any stress that has beefl assigned to
the vowel in the first syllable.
Modification: The single required consonant preceding the primary stressed vowel has been changed from C_{0}^{1} (zero or one consonant) to C (exactly one consonant) so that prevocalic vowels are not shortened.

Compound Stress Rule (non-cyclic)

This rule, as developed by Halle, applies to both compounds and non-compounds. As it applies to words converted by letter-to-phoneme rules in the program, and therefore to non-compounds only, its effect is to locate the primary stress which is to be retained. All other primary stress is reduced to secondary. Halle has used the Nuclear Stress Rule for both phraselevel stress and the reduction of secondary to tertiary stress in lexical. items. Neither is necessary in this algorithm; the Nuclear Stress Rule has therefore been omitted.

Condition: (1) Y contains no 1 stress
(2) if right most morph is a suffix, check for special stress retention or stress exclusion category and reassign [1 stress] according to category

Case 1. (Maximum string)
$\left[\begin{array}{c}\mathrm{V} \\ 1 \\ \text { stress }\end{array}\right] \rightarrow\left[\begin{array}{ll}1 & \text { stress }\end{array}\right] /\left[\left[\mathrm{X} \quad \mathrm{YVC}_{0}\left[\begin{array}{c}/ i / \\ - \text { stress }\end{array}\right]\right]\right.$
(a) Retain 1 stress on a vowel if it is followed by at least one syllable and a word-final unstressed /i/. Reduce all other 1 stress to 2 stress:

legendary

$\left[\begin{array}{l}\frac{\text { Case } 2}{\mathrm{~V}} \\ 1 \\ \text { stress }\end{array}\right] \rightarrow\left[\begin{array}{ll}\text { stress }]\end{array}\right.$ (Innermost parenthesized string excluded)
(a) Retain 1 stress on a vowel if it is followed by at least one syllable. Reduce all other 1 stress to 2 stress:

	$1 \Vdash^{2}$		$\chi^{72} 1$
hurricane	hariken $x^{2} 1$	gastritis	grestratis
trinitarian	trinct		

Case 3. (A11 parenthesized strings excluded)
$\left[\begin{array}{lll}1 & \text { stress }\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & \text { stress }]\end{array}\right]\left[\left[\begin{array}{lll}\mathrm{X} & \mathrm{Y}\end{array}\right]\right.$
(a) Retain 1 stress on the only vowel to which it has been assigned:

	$\stackrel{1}{\text { stand }}$
difficult	starnd
difffranlt	

Algorithmic Order of Application: (1) If primary stress occurs only once, no changes are made. Otherwise, (2) if the right-most vowel with primary stress is followed by at least one more syklable, the right-most of which is not composed of an unstressed /i/, it retains primary stress and all other primary stress is reduced to secondary. (3) If the right-most vowel with primary stress is (a) the right-most vowel in the word, or (b) the right-most vowel with the exception of a final syllable cotmposed of an unstressed /i/, the first primary-stressed vowel to its left retains primary stress and all other primary stress is reduced to secondary.

Modifications: As mentioned previously, input to the stress rules from the letter-to-phoneme program does not include compounds. The part of the rute designed for compounds is, theiefore, omitted.

This rule formerly contained the letter [y] instead of $\left[\begin{array}{c}/ i / \\ \text {-stress }\end{array}\right]$ which has been substituted due to unavailability of the original orthography.

The suffixes referred to in Condition (2) fall into two categories. Those suffixes discussed under Condition (2) of the Main Stress Rule which do not affect stress placement are excepted from the domain of the Compound Stress Rule if they are either word-final or precede another word-final suffix in the same category.

The other category of suffixes is marked for special stress retention. The fellowing suffixes retain primary stress in word-final position under Condition (2) of the Compound Stress Rule:
$\begin{array}{llll}2 & 1 & 2 & 1\end{array}$
EE: trainee, legatee

| 2 | 1 | 2 |
| :--- | :--- | :--- | :--- |

EER: buccaneer, engineer 211
ESCE: luminesce, acquiesce
211
ESQUE: arabesque, Romanesque 2112 1
ETTE: marionette, majorette ? 1 1
OON: macaroon, baboon
The following suffix does not retain primary stress on the penultimate syllable under Condition (2) of the Compound Stress Rule:

12212
ISM: Babism, Romanticism
Note: Thís categorization is equivalent to the statement that syllabic M does not function as a syllable in morph-final position. The same stress pattern appears in words ending in [ithm], although it is not included here as a suffix, e.g.,

1212
logarithm, algorithm.
The same categorization should be extended to morph-final syllabic [1]. However, it does not function as a suffix, e.g.,

1
corpuscle

The original set of stress rules included the Trisyllabic Shortening Rule at this point in the ordering. The rule was stated as follows:

$$
\left.\left[\begin{array}{cc}
\mathrm{V} \\
1 & \text { stress }
\end{array}\right] \rightarrow[- \text { long }] /\left[\begin{array}{ll}
\mathrm{X} & \mathrm{C}
\end{array} \begin{array}{cc}
\mathrm{V} \\
- \text {-stress }
\end{array}\right] \cdot \mathrm{CV} \quad \mathrm{Y}\right]
$$ Condition: (1) does not apply to /u/

Test results indicated mispronunciations arising from its application. A study ${ }^{16}$ was undertaken to determine the usefulness of this rule and to uncover problem areas which might lead to a more proper resolution of observed effects for which the Trisyllabic Shortening Rule was formulated. It was found that a restatement of phonological rules, including the requirement of a short vowel in a one-syllable root preceding a single consonant and certain suffixes, obviated the need for the Trisyllabic Shortening Rule in the set of stress rules.

Strong First Syllable Rule (non-cyclic)
$\mathrm{V} \rightarrow[2$ stress $] /\left[\mathrm{C}_{0}\left[\begin{array}{l}\left.\dot{(+ \text { long })}{ }_{\mathrm{a}}\right]\end{array}\left(\mathrm{C}_{2}\right)_{\mathrm{b}} \quad \mathrm{Y} 5\right]\right.$
Condition: (1) $\underset{\text { present }}{)_{a}^{a}}$ or ($)_{b}^{\text {b must }}$ be
Case 1. (Maximum string)
$\mathrm{V} \rightarrow[2$ stress $] /\left[\mathrm{C}_{\mathrm{O}}[\overline{\text { long }}] \quad \mathrm{C}_{2} \quad \mathrm{Y}\right.$]
(a) Assign $2 \cdot$ stress to the vowel in the, first syllable if it is long and followed by at least two consonants:

$$
\text { hydrosanitation } \quad \text { hadrosjencte } \int \partial n
$$

Case 2. (First subscripted optional string excluded)
$V \rightarrow[2$ stress $] /\left[C_{0} \quad C_{2} \quad Y\right]$
(a) Assign 2 stress to the vowel in the first syllable if it is followed by at least two consonants:
$1 \quad 1 \quad 1$ circumnavigation sArkAmnかvige an

Case 3. (Second subscripted optional string excluded)
$\mathrm{V} \rightarrow[2$ stress $] /\left[\mathrm{C}_{0}\left[\begin{array}{l}+ \text { long }\end{array}\right]\right.$ Y 2$]$
(a) Assign 2 stress to the vowel in the first syllable if it is long: (1) 11
dielectric dajelektrrk
Algorithmic Application: If the first syllable is strong, i.e., if it contains either a long vowel or two or more consonants assign the vowel. primary stress.

Modifications: This rule has been extended to include both the‘first syllable of the root and the first syllable of the left-most prefix.

This rule has been moved to follow the Compound Stress Rule to prevent the retention of primary stress in prefixes by the Compound Stress Rule in words such as recruit and intend.

Cursory Rule (non-cyclic)

$$
\mathrm{V} \rightarrow\left[\begin{array}{l}
- \text { long } \\
- \text { strèss }
\end{array}\right] /\left[\mathrm{X}-\left[\begin{array}{c}
\mathrm{V} \\
1 \\
\text { stress }
\end{array}\right] \quad \mathrm{C}_{0} \mathrm{CV} \quad \mathrm{Y} 5\right]
$$

Condition: (l) if right-most morph is a suffix, check for stress exclusion category.

Algorithmic Application: (only one case of the Cursory Rule) The vowel following the primary-stressed vowel, if it is not the last vowel in the word, is shortened and its stress removed.

$$
212^{10} 1 \quad 270 \quad 12^{70}
$$

Examples: infirmary, cursory, curative (/e/ $\rightarrow /$ e/; later reduced to /a/.)

Modifications: Pre-vocalic vowels are not shortened.
The suffixes discussed under the Main Stress Rule which do not affect stress placement are excepted from the domain of the Cursøry Rule if they are either word-final or precede another, word-final suffix in the same category.

Vowel Reduction Rule (non-cyclic, applicable to all vowels having required

$$
\left[\begin{array}{lll}
\left\{\begin{array}{lll}
\mathrm{l} & \varepsilon & / \\
/ & I & /
\end{array}\right\} \\
\text {-stress }
\end{array}\right\} \rightarrow \bar{I} / \mathrm{X} \quad \mathrm{Y}
$$

$$
\left[\begin{array}{c}
\mathrm{V} \\
- \text { stress } \\
- \text { long }
\end{array}\right] \rightarrow \partial / X _Y
$$

Case 1. (reduction of $/ \varepsilon^{\prime \prime} /$ and $/ x /$)
21 ptolemaic $\quad(|E / \rightarrow / \bar{\Sigma} /,| \boldsymbol{I} / \rightarrow / \overline{\mathbf{I}} /)$

Case 2. (reduction of, other short non-stressed vowels) 1 curator $\quad(|x / \rightarrow / \partial /, / \partial / \rightarrow| a /)$

Algorithmic Application: All non-long unstressed vowels are reduced,. $/ \mathcal{E} /$ and $/ I /$ to $/ \bar{I} /$, i.e., reduced I, and all others to / $/$ /.

Modification: The phonemes $/ \varepsilon /$ and $/ I /$ are reduced to $/ \bar{I} /$ rather than to $/ 2 /$.

A Stress-Dependenf Letter-to-Phoneme Rule
The rule which follows appears to be stress-dependent and was placed in the stress placement section rather than with other letter-to-phoneme rules:

Rule: The phoneme $/ t /$ is changed to $/ \bar{c} /$ and the phoneme $/ \mathrm{d} /$ to $/ \mathrm{j} /$ if it is not in the initial consonant cluster and precedes unstressed /u/ or /U/, or if it precedes unstressed / $/$ / which was /u/ or / $/$ / before application of stress placement rules.
$\begin{array}{cccc}2 & 1 & & 2 \\ \text { perpetuity } & (/ t /) & 1 \\ \text { perpetual } & \left(/ v^{v} /\right)\end{array}$
Example: perpetuity (/t/) perpetual (/č/)
Examples (showing words which do not fit the context of the rule and sherefore retain $/ t /$ or $/ \mathrm{d} /$ as pronunciation):
$\begin{array}{cccccc}1 & 1 & 1 & 1\end{array}$
(a) tutor, duty, studious, duration, tureen

In these cases, the /t/ or /d/ is in the initial consonant cluster
$\begin{array}{lllll}2 & 1 & 1 & 1\end{array}$
(b) adumbration, modus, status

The /t/ or /d/ in these cases is not in the initial consonant cluster; but precedes unstressed $/ \partial /$ which was not $/ u /$ or / U/ before application of stress rules.
$2 \begin{array}{lllllll}1 & 2 & 1 & 1 & 1 & 2\end{array}$
(c) institution, centurion, Hindu, constitute

In the above cases, /t/ or /d/ is not in the initial consonant cluster and precedes stressed /u/ or /U/.

The stress program has been modified to effect this change. The phonemes $/ t /$ and /d/ preceding unstressed /u/ or /U/ not in the first syllable are changed following the cyclic rules which place all stress. After the Destressing Rule and the Cursory Rule, a change is also made if the destressed (and possibly shortened) vowel was previously a /u/ or / U/ and not in the first syllable.

A Complete Example

MULTINUCLEOLATED
MULTI $=$ NUCLEOL + ATE + ED
--m--n-n-kI--1+---+
m^lti=nuklioltet+Id
1

1
(1)

Input
Result of Stage 1
Result of Stage 2
Result of Stage 3
Main Stress Rule, cycle 1
(domain: multi=nuklio1)
Stressed Syllable Rule, cyclel.
Alternating Stress Rule, cycle 1
Main Stress Rule, cycle 2 (domain: m^lti=nukliol+ets)
(1)
(1)

1
-stress
-long
2112
∂ I

21
2
mantinukioletax

Stressed Syllable Rule, cycle 2
Alternating Stress Rule, cycle 2
(There are no further cycles since Condition (2) of the MSR applies to +ED)

Strong First Syllable Rule

Destressing Rule
Compound Stress Rule
Vowel Reduction RuIe

Final Result

Two studies have been made to determine the accuracy of phonological and stress placement rules' and to select a minimal set of rules which will produce accurate results in as many cases as possible. The set of letter-to-phoneme rules used in the first testing procedure contained 534 rules: included were 127, consonant rules, 46 prefix rules (giving pronunciations for 40 prefixes), 155 suffix rules (covering 96 suffixes) and 206 vowel rules. The Trisyllabic Shortening Rule was included in the set. of stress rules. A sample of 4,725 words from the Brown Corpus was cested with the following results.

Percentage given
Number of Words
acceptable pronuncia'tion
1- to 5-1etter words. $2,914 \quad 82$
7-1etter words $\quad 1,174 \quad 73$
12 - to 21-letter words 637

An acceptable pronunciation.is one which is given in Webster's 17
Third International Dictionary, either preferred or alternate. Of the 2,375.1- ta 5-1etter words which receiyed acceptable pronunciations, 2,135 wefe given preferred pronunciations, 228 were given alternate pronunciations and 12 received the verbal pronunciation of noun/verb pairs.

A table of frequency of use and statistical accuracy of each rule was derived from this study. These results led to the removal of the Trisiyllabic Shortening Rule and to the formulation of eight sets of phonological rules ranging from a maximal set of 557 rules to a minimal set of 277 rules.

In the second study, these eight sets of rules were each applied to a new group of test words which was composed of a random sampling of sixletter words from the Brown Corpus (250 words), the Heritage English Dictionary (150 words) and Stedman's Medical Dictionary (100 words). Results of this study are as follows:

Number of Rules
Percentage given acceptable pronunciation

	$\frac{\text { Heritage }}{}$	Brown Corpus	Stedman's 557
73	69	65	
431	72	69	64
413	72	69	64
359	72	67	53
308	70	65	49
286	68	64	43
277	67	63	44

Note: The addition of special medical prefixes would increase the accuracy of rules applied to the sample from Stedman's Medical Dictionary by approximately ten per cent.

The set of rules currently being used in the text-to-speech system is the set containing 413 rules A list of the maximal set of 557 rules together with instructions for extracting the other sets of rules is given in the appendix.

There are a number of problem areas, many of which derive from the lack of a lexicon. Problems of this type include incorrect suffix or prefix
recognition and the treatment of compounds as single norphs. Some examples from each problem area are given below:

Mispronunciation of single vowel:

international	$/ \mathrm{e} /$	modeled	$\mathrm{j} /$
menu	/u/	strategically	$/ \mathrm{E} /$
environmental	$/ \mathrm{I} /$	buried	$/ \mathrm{yu} /$
hotels	$\mathrm{la} /$	two	$/ \mathrm{l}$

The pronunciations of the underlined vowels in the contexts above arè encountered infrequently, and, in most cases, are not predictable. In the word international, the context which determines the pronunciation of $\left[a^{\circ}\right]$ is the right-hand context [C+iv]. A lots vowel almost always is found in this context as in nation, station, explanation, observational, sensational. A short [e] is usually found preceding [C+iC], e.g., malefic, angelic, systemic, photogenic, and is long only in a few words, e.g., strategic, scenic, and in the suffix tplegic. There are very few words ending in the vowel [u] most are either low frequency words or proper names. The palatalization in menu is not found in other words with final [u], e.g., flu, emu, gnu, impromptu. The word two is very irregular in pronunciation. Most words ending in $[0]$ such as go, no, so, calico, echo have the sound $/ 0 /$. It may be noted, however, that two other words which, like two, ere very high frequency words, have the same pronunciation of final $[0]$ as two, i.e., do, to. The mispronunciation of the $[\mathrm{e}]$ in modeled is due to the assumption, lacking a lexicon, that the morphemic analysis is model + ed.

Mispronunciation of vowel digraph :

said	$/ \mathrm{e} /$	shoes	$/ \mathrm{l} /$
break	$/ \mathrm{i} /$	guitars	$/ \mathrm{u} /$
forfeit	$/ \mathrm{i} /$	should, would	$/ \mathrm{l} /$
endowed	$10 /$	theirs	$/ \mathrm{i} /$

The reasons for mispronunciation of the vowel digraphs underlined above fall into a number of categories. There are very high frequency words, said, should and would, which do not follow letter-to-sound rules. Said may be contrasted with the words laid, maid, paid, and raid; the words should and would contrast with mould, shoulder and boulder. The sequence [eir] as in theirs, heir, weir is not found frequently in English, nor is the sequence [feit] as in forfeit, surfeit and counterfeit. Rules for [ei] in these two contexts were،énsidered unproductive. Final [oe] in English is usually pronounced as in oboe, toe and foe; the pronunciation found in shoe, and also in canoe, is rare. Rules governing the pronunciation of [ow] (endowed) and [ui] (guitars) are statistically based. Although therye are many-words in-which simlar non=context dependent pronunciations are found, e.g., cow, allow, eyebrow and build, guilt, guinea, other pronunciations are statistically more likely, e.g., those found in shadow, glow, follow and bruise, juice, nuisance. The pronunciation of break is not•predictable -- the word steak has the same digraph pronunciation, but other similur words such as creak, freak and streak are pronounced like the majority of words containing the digraph [ea].

Mispronunciation of single consonant:

of	$/ \mathrm{f} /$	corp	$/ \mathrm{p} /$
eager	$/ \mathrm{y} /$	exhaust	$/ \mathrm{h} /$
two	$/ \mathrm{w} /$	physiological	$/ \mathrm{s} /$
deserts	$/ \mathrm{s} /$	schizophrenic	$/ \mathrm{z} /$

The consonants underlined above are either silent or have unpredictable or unusual pronunciations. Silent consonants are found in two, corp and exhaust. The word two is a high-frequency word in which both the [jं $]$ and [0] have unusual pronunciations. Silent [w] is rare, although it is also found in the word sword. Final silent [p], as found in corp is also rare. (This word is considered in this section because the pronunciation of both the, $[\mathrm{r}]$ and the [p$]$ are determined by rules for single consonants.) There are a few words, like exhaust, in which [h] is silent following [ex], e.g. exhibit, exhilarate, exhort and exhume. However, this rule is not sufficiently productive to merit inclusion.

The letter [g]preceding $[\mathrm{e}],[\mathrm{i}]$ and [y]in English usually has a soft sound as in integer and wager. In particular, many words ending in [ger] are a combination of a root with final [e] and the suffix [ter], e.g., forager, manager, merger, all of which have a soft [8] sound. The pronunciation of the lg] in eager is unusual and not predictable. Another pronunciation which is frequently unpredictable, i.e., not context-dependent, is that of the lefter [s] between vowels. The rule for this context predicts the more frequent sound /s/ whereas the sound /z/ is found in deserts and physiological. The letter $[z]$ in schizophrenic has the rare pronunciation /ts/, and the word if,
as previously discussed, is the only English word in which a final [f] is pronounced as /v/.

Mispronuncijation of consonant cluster:

chef	/c/	laugh	$/-/$
would, should	$/ 1 \mathrm{~d} /$	c1iches	$/ \mathrm{c} /$
calf	$/ \mathrm{ff} /$	issue	$/ \mathrm{s} /$
tsar	$/ t s /$	these	$/ \theta /$

Consonant clusters are infrequently mispronounced The cluster [ch] is the most frequent problem in this category, its pronunciation being determined, in many cases, by the Greek or Latin origin of the word in which it appears. The pronunciation $/ \int /$ as in chef and cliches is less frequent than. either /č/, e.g., church, or $/ \mathrm{k} /$, e.g., chemical. Morphfinal [gh] may be pronounced either if/ as in laugh, enough and cough or, with slightly higher probability, nat pronounced, as in high, weigh and dough. Unusual and rare pronunciations of the clusters ts, ss, 1d and 1f are found in other words above. The pronunciation of [ss] as /S/ is found preceding certain suffixes, e.g., . depression, fissure, but rarely within a morph, (tissue, above). Rwssian orthography is still reflected in the English spelling of tsar even, though the pronunciation has been Anglicized. A silent [1] appears in could, would and calf. The words could and would are high freauency words and also differ fron regular pronunciation in the vowel digraph [ou]. Although half like calf, also has a silent [1], in most words a final [1f] is pronounced /1f/, e.g., elf, shelf, self, gu1.f. The high-frequency-word pronunciation of morph-initial [th] as $/ \delta \%, e . g .$, these, then, the, has been discussed previousi" "

Incorrect suffix recognition:

	1		1
water	$/ \mathrm{we}=\mathrm{t}+3 /$	guy	/gyu+i/
thu	/日A+z/ 1	disengagement	1
relying	/ ril+i+テ̄ŋ /	exist	$/ \varepsilon k s+\text { Ist }$
heated	/hitet+ixd/	alas	/aelatz/

Almost all problems in this category arise from the lack of a morph lexicon. Words are pronounced incorrectly because letter strings in a root which appear to be suffixes are converted to phonemes using rules for suffix pronunciation. It may be seen in the examples above that a mistake in morph analysis can cause obvious errors in pronunciation.

Incorrect prefix recognition:

	1		1
unit		decimal	
	1		1
cool	/ko=al/	emerald	/tm=rrald /
	1		1
realm	/ri=am ${ }_{1}$	encouragement	
depm	/di=em/	experimenters.	$/ \mathrm{kss}=\mathrm{par}=$ Imot $+\mathrm{ar}+\mathrm{z} /$

Mistakes in morph analysis produce prohunciation errors, as in the previuas category.

Non-recognition of prefix

	/bepart/
apart	/ riftar/
refer	/distant/
dissent	1122
	hydrocele

oinhibitory	
berated	/ber + et+Id/
respondent	$\underline{2} \frac{1}{1}$ despand+znt/
ricardiorrhaphy	$/ \mathrm{p} \xi^{\prime}=\overline{\mathrm{I}} \mathrm{k} \partial \mathrm{erdx} \frac{1}{\mathrm{r}} \mathrm{r} 3 \mathrm{fti} /$

There are many technical prefixes which have not been included in the prefix list. These may be added by a user with particular tèchnical needs. A few prefixes such as[a] in apart and [e] in eject have not been
included because a high error rate would result, i.e., all words beginning in a or e would be incorrectly analyzed. In the remaining cases, prefixes were incorrectly analyzed as part of a root after suffixes were incorrectly removed. Errors in pronunciation, and particularly in stress are the result.

Incorrect stress:

Most of the words in this category have unusual stress patterns which are unpredictable. A comparison with similar words shows the regular stress pattern:
$\quad 1$
mote1
1
palette
1
sonata
1
urea
1
uncomfortable
1
lunatic
1
renegade

The word selects is stressed incorrectly due to lack of information concerning its part of speech (c.f., discussion of modifications in the Main Stress Rule).

The results of this study indicate that the lettex-to-phoneme system is quite powerful, even in isolation. When considered in the domain of the over-all text-to-speech system in which a lexicon is available for highfrequency words and compounds, the letter-to-phoneme system should be highly reliable.

NOTES

1. Allen, J. "Speech Synthesis from Unrestricted Text" in Speech Synthesis, edited by J. L. Flanagan and L. R. Rabiner, Stroudsburg, 1973.
2. Allen, J. "Reading Machines for the Blind: The Technical Problems and Methods Adopted for their Solution," IEEE Transactions on Audio and Electroacoustics, Vol. Au-21, No. 3, June 1973, 259-264.
3. Allen, J. "Synthests of Speech from Unrestricted Text," Proceedings of the IEEE, Vol. 64, No. 4, April 1976, 433-442.
4. Brackets will be used to denote letter, slashes to denote phonemes.
5. Hunnicutt, S. "Pronunciation of High-Frequency English Words," Natůral Language Processing Group Memo, M.I.T., 1973.
6. Kucera, H. and. Francis, W. N. Computational Analysis of Present-Day American English, Providence, R. I., Brown University Press, 1967.
7. The symbol C is used to denote a consonant, the symbol V to denote a vowel.
8. Venezky, R. A Study of English Spelling-to-Sound Correspondences on Historical Principles, Ann Arbor, 1965.
9. This source is available on tape from J. Olney, System Development Corporation, Santa Monica, Califormia.
10. Walker, J. Rhyming Dictionary of the English Language, London, 1924
11. The American Heritage Dictionary of the Eng1ish Language, Paperback edition, New York, 1973.
12. Stedman's Medical Dictionary, Baltimore, 1961
13. Although some phonologists would consider both prevocalic [i]and morphfinal [0] to be underlyingiy short (lax), and would apply a lengthening (tensing) rule to them after stress placement (N. Chomsky and M. Ha1le, The Sound Pattern of English (New York, 1968), p. 74; M. Halle and S.J. Keyser, English Stress (New York, 1971) p. 30), it has been necessary, because of the difficulty of preserving orthographic information, to consider both vowels as being long before stress placement, exempting them from stress by a contextual analysis. The replacement of the required feature [-10w] in the lengthening rule for morph-final voweis by the feature [-constricted pharynx] is due to Halle (Course 23.76l, M.I.T.), Nov. 1972.
14. Class lectures, Course 23.761, M.I.T., Fall 1972. Professor Halle has since revised this set of rules.
15. Changes to the stress rules due to the incorporation of a parsing algorithm in the system will be made during the summer, 1976.
16. Hunnicutt, S. "Removal of the Trisyllabic Shortening Rule from Stress," Natural Language Processing Group Memo, M.I.T., 197.5.
17. Webster's Third New International Dictionary, Springfield; 1966.

APPENDIX

The set of rules which follows is a maximal set．The $n^{\text {th }}$ largest set of rules may be derived by deleting all lines preceded by integers less than n ．

Preceding the rules are three lists of variables．（A variable is symbolized by a letter or the sequence＂up－arrow＂－letter，ヨ．g．，个L pre－ ceded by a dollar sign．）The first list contains only two variables，$\$ B$, which represents either a word boundary（非）or a suffix boundary（ + ），and \＄D，which represents either a word boundary or a prefix boundary（＝）． The second list consists of variables representing letters，and the final list，of variables representing phonemes A table of the symbols used to represent phonemes with the corresponding IPA symbol immediately precedes the list of rules：

The generan form of a rule is

$$
\mathrm{s}_{1}>\mathrm{s}_{2} \quad / \quad \mathrm{s}_{3} \leftarrow \mathrm{~s}_{4}
$$

where the S_{i} are strings $\left(S_{1} \neq \emptyset\right)$ ，／（slash）is one of four possible con－ texts to be explained below，and（back－arrow）is a place－holder for S_{1} ． The string S_{1} is a letter string which is to be converted into the phoneme string S_{2} if it $\left(S_{1}\right)$ is preceded by S_{3} and followed by S_{4}, S_{3} and S_{4} may be either letter strings or phoneme strings set by the following context markers：

| charactev expecto | $\frac{\text { left context }}{\text { right context }}$ | |
| :---: | :---: | :---: | :---: |
| $]$ | letter | letter |
| $[$ | phoneme | letter |

continued:

character	expects	left context	right contex't
)	letter	phoneme	
$($	phoneme	phoneme	

In a left context, variables are followed, rather than preceded by a dollar sign.

The final two sections in the set of rules are marked PREFIX and SUFFIX respectively. Prefixes are listed left-to-right longest-matchfirst fashion (e.g., extra precedes ex, uni precedes un) within a left-toright alphabetical sort.

Suffixes are listed right-to-left longest-match-first, (e.g., uous precedes ous which precedes us which precedes s) within a right-to-left alphabetical sort. Each suffix is preceded by a letter and a 2- or 3digit number. The letter represents the type of suffix as follows:

P a non-vocalic suffix (suffix which does not begin with a vowel) before which a [y]may change to [i]

E a suffix (generally vocalic and very short) which is recognized only before inflectional and consonantal suffixes
$F \quad$ regular suffix
The number preceding each suffix is the octal representation of a code describing the syntactic compatibility of that suffix with other suffixes. The right-most digit represents the possible parts of speech of a preceding suffix (a suffix to the left of the suffix under consideration). If the suffix may be preceded by an adjectival suffik, the digit is

1, if possibly preceded by a verbal or nominal suffix, the digit is 2 or 4 respectively; if the suffix may be preceded by a combination of these, the digit is the sum of the corresponding digits.

The digit immediately to the left of the right-most digit represents the possible parts of speech of the suffix under consideration; it is calculated as above. If the number contains 3 digits, its left-most digit is a 1 , indicating that the suffix occurs only at the end of a word.

Example: \quad F 166-ES
The suffix is a regular (non-special) suffix; it occurs only in word-final position; it forms nouns (4) and verbs (2) and may be preceded by a nominal (4) or verbal (2) suffix. (In each case, 4 and 2 are summed.)

Rules．	IPA	Rules	IPA
E	i	R	r
$\uparrow \mathrm{I}$	I	L	1
A	ey	J	y
$\uparrow \mathrm{E}$	ε	H	h
＂A	3	P	p
－\uparrow A	a	B	b
个0	＇	M	m
0	0	T	t
TU	U	D	d．
U	u	N	n
4 Y	n	K	k
YR，\uparrow	3	G	g
I	$a y$	TG	η
${ }^{40}$	y	F	£
＇U	at	V	v
＂I	王，	$\uparrow T$	θ
Y	2	pD	ஏ
$\uparrow L$	． 1	S	s
$\uparrow \mathrm{R}$	． \mathbf{r}	Z	z
YL	－1	$\uparrow s$	\int
YR	－r	qZ	z
W	w	个C	č
TW	M	$\uparrow \mathrm{J}$	y

＊部，\＃，＋

的，\＃，＝

／LETTER VARIABLES

\＄W，$A, E, I, O_{1}, U_{1}, Y,+A,+E_{1}+I,+0,+U,+Y$, LE\＃，RE\＃
\＄F，$I, E, Y,+I,+E,+Y$
$\$^{\wedge} F, A, O, U,+A_{2}+O_{1}+U$
\＄L，B，C，D，$F, G, J, K, L, M, N, P, R, S, T, V, Z, X,+C,+D,+F,+H,+L \quad+M,+N,+P,+R,+S,+T,+W,+{ }_{\prime} S$
\＄X，＋IENT，＋IOUS，＋ION，＋IAL，＋IAN，＋IENCE，＋EON，IA\＃
\＄${ }^{\prime} A, P, T, K, F, S, C, S H, C H, H,+T,+S$
\＄＾B，A，E，I，O，U，Y，W，H，B，G，L，M，N，R，V，Z
\＄＾I，＋ED，＋ING，＋ER，＋EST，＋ES，E\＃，E＋
\＄＾E，N，L，LL
＊＾K，＋ES，＋ED
\＄S，A，E，I，O，U，Y，R，P，K，C
＊V，N，S
ST，L，S
$\$ R, A, E, I, O, U, Y, R$
\＄ $\mathrm{L}_{1}+\mathrm{IC},+\mathrm{ITY},+\mathrm{IFY},+\mathrm{IENT},+$ IOUS，＋ION，＋IAL，＋IAN，＋IENCE
\＄＾M，＋IVE，＋AL，＋OUS，＋AGE，＋L，Y
\＄＾N N_{1} IBLE + IBLY，＋IBILITY，＋IFIC，＋IC，＋ACE，＋ICE，＋URE，＋UTE，＋ULE，＋ITY，＋IFY，＋ATIVE
\＄＾P，＋ATORY，＋ITION，＋IFICATIVE，＋IFICATION，＋UON，＋ARCHY，＋ILAR + ＋UAL，＋UOUS
\＄＾0，＋SIS，＋TY
\＄E，TH，ST
\＄H，L，R
／PHONEME VARIABLES
\＄C，P，T，K，B，D，G，F，S，V，Z，M，N，L，R，W，J，H，＾T，${ }^{\wedge} D,{ }^{\wedge} S,{ }^{\prime} Z,{ }^{\prime} C,{ }^{\prime} J,{ }^{\prime} G$
\＄G，P，B，F，M
\＄，J，P，T，K，F，＾T，S，＾S，＾C，H

${ }^{\wedge} M, D,{ }^{1} R$
\＄＾H，K，G
\＄M，D，T
\＄N，S，Z，＾S，＾C，＾Z，＾J
\＄Q，$A_{1} \wedge A, " A, E, \wedge E, I, \wedge I, 0, \wedge^{\wedge}, " O, U, \wedge U, " U, Y, \wedge Y, " I,+A, \wedge^{\wedge} A,+" A,+E,+\wedge E,+I,+\wedge I,+0,+\wedge 0$, $+" 0,+U,+\wedge U,+" U,+Y,+\wedge Y,+" I$
\＄Z，\＃，＝，B，P，M，F，V，K，G，H，T，D，N
\＄1，へ」，＾C，＾S，＾Zっ」
\＄A，＾D，＾Z，V
$\%$ QCON

4	CHEM	$>$ K＾EM $^{\wedge}$	$j+$	
6	PSYCH	$>$	SIK	$j+$
3	TECH	$>$	TAEK $^{\wedge}$	$j+$
6	ARCH	$>$	AARK	$1+$

／TRIFLE CONGONANTS

2	$\mathrm{CCH}>\mathrm{K}$	］
5	CHR＞KR	］
6	$\mathrm{CHL}>\mathrm{KL}$	3
2	CHN $>\mathrm{KN}$	3
	$\mathrm{NCH}>\mathrm{N}^{\wedge} \mathrm{C}$	］ 4 \＄ $\mathrm{B}^{\text {d }}$
6	NCH $>$＾GK	$]$
2	NGU＞＂G	$]+E \notin B$
5	NQU＞＾GKW	$1 *$
5	SCH＞SK	］ 4
2	THM＞＾D＇M	］+ ＋ $\mathrm{LL}^{\text {L }}$
2	THM＜${ }^{\text {A }}{ }^{\prime} M$	］$¢$ \＃
	TCH $>{ }^{\text {＾}}$ C	＋

／DOUBLE CONSONANTS

	$\mathrm{SH}>{ }^{\wedge} \mathrm{S}$	］	＋
	TH $>{ }^{\circ} \mathrm{D}$	］	＋${ }^{+}$
	TH＞＾T	1	\leftarrow
4	BT＞TT	1	＊\＃
4	BT $\geqslant \mathrm{TT}$	J	＋\＄＾I
6	CC $>\mathrm{kS}$	$]$	＊${ }^{\text {F }}$
	CC $>\mathrm{KK}$	3	\leftarrow
	CK $>\mathrm{KK}$	］	＋
	$\mathrm{CH}>{ }^{\circ} \mathrm{C}$	］	＋
	DG＞＾J＾J	］	\leftarrow
5	DJ＞＾J＾J	］	＋
4	GG $\geqslant \mathrm{GG}$	］	＊\＄B
4	GG＞「Jへ」	］	＊ $\boldsymbol{\$ F}^{\text {F }}$
3	GH $\geqslant \mathrm{G}$	］ D \＄	\leftarrow
	GH $>$	J	\leftarrow
4	GN $>\mathrm{N}$	］ D （	＊
3	$G N>N$	］	\leftarrow
4	GN $>\mathrm{N}$	1	＊＋\＄
4	GN＞N	］	$\leqslant \$^{\prime} \mathrm{I}$
2	$G M>M$	1	＋\＄B
5	GU $>\mathrm{G}$	］	＊\＄ 1
2	GU \geqslant GW	$1 \cdot \mathrm{~N}$	＋\＄W
	GU $>$ Gull	］	＋${ }^{\text {¢ }} \mathrm{B}$
2	GU $>$ GW	］W\＄	\leqslant \＄W
	$\mathrm{KN}>\mathrm{N}$	］ D \＄	4
4	LK $>\mathrm{KK}$	］	＊
4	LK＞KK	］	＊ \＆$^{\text {c }}$
4	$L K>K K$	］	＋＋\＄
4	$L M>M$	］A	＊\＄B
4	MB＞MM	］	\leftarrow
4	MB＞MM	］	\leftarrow ¢＾I
4	MB＞MM	］	＋＋＋
4	MN＞MM	1	＋
4	MN＞MM	］	¢ ${ }_{\text {¢ }}$

4	MN＞MM	］	$\leqslant+$ \＄
	NK $>$ 「GK	］	4
2	NC $3 \mathrm{~N}^{\wedge} \mathrm{C}$	］	\＆$\ddagger \mathrm{X}$
	NC＞NS	］	＋ $\mathrm{FF}^{\text {F }}$
	NC $>$＾GK	1	4
	NG ${ }^{\prime}$＇G	］	\＆
7	NG $>{ }^{\wedge} \mathrm{G}$	］	＋＋\＄
4	NG $>\mathrm{Na}^{N} \mathrm{~J}$	］	＋＋ES\＃
	NG \rangle N＾J	］	－E\＃
7	NG＞${ }^{\wedge} \mathrm{G}$	］	＋\＄＾I
	NG \％＇GG	1	＋
3	NX $>$＾GKS	］	\leftarrow
	$\mathrm{PH}>\mathrm{F}$	1	＋
	QU $>\mathrm{K}$	］	\＆\＄＾1
3	QU $>\mathrm{K}$	］	¢ ET\＄E
	QU $>\mathrm{KW}$	1	\leftarrow
2	RH ；R	］	4
3	ST＞ 5	1	－LE\＄B
4	ST >5	］W	－＋EN
2	SL 3 ＾${ }^{\text {S }}$	］S ${ }^{\text {a }}$	＋\＄ X
6	SL $\mathrm{SC}^{\prime \prime}$	］V\＄	＋\＄X
	$\mathrm{SC}>\mathrm{SS}$	］	＋${ }^{\text {F }}$
2	SC >55	］	\leftarrow LE¢B．
	SC $\geqslant \mathrm{SK}$	］	\leftarrow
2	SM＞${ }^{\prime}$＇M	］	＊＋${ }_{\text {L }}$
2	SM＞Z＾M	1	＊
	SS $>{ }^{\text {＾}}$ S	］	$\leftarrow \$ X$
3	SS $>{ }^{\text {A }}$ S	］	＋＋URE
2	$T Z>T S$	］	4
	WH $>\mathrm{HW}$	］ D \＄	＋
	WR ， $\mathrm{S}^{\text {R }}$	］D\＄	\leftarrow

／SINGLE CONSONANTS

	$\mathrm{B}>\mathrm{B}$	］	＋
6	C $>{ }^{\wedge} \mathrm{S}$	］ 5	＋$\$ \mathrm{X}$
2	c $>^{\wedge} \mathrm{C}$	］V\＄	＋$\$ \mathrm{X}$
3	C＞${ }^{\text {c }}$	］ 5 \＄	＊＋EOUS
3	C $>\wedge$ c	］V\＄	＋＋EOUS
	［ >5	］	＋\＄F
	$C \geq K$	$]$	\leftarrow
	D＞D	1	\leftarrow
	$F>\mathrm{F}$	3	＋
	G $>\mathrm{N}$	］	＋ $\mathbf{F F}^{\text {F }}$
	G $>\mathrm{G}$	］	\leftarrow
	H $>$	］	\leftarrow \＄${ }^{\text {E }}$
3	H $>$	］ W \＄	＋\＄
	$H>H$	］	＋
	」 $>$ NJ	］	4
	$k>k$	1	\leftarrow
	$\mathrm{L}>\mathrm{L}$	］ H	f

－68－									
	＋ANT	；＋＂AN＾C	〕	＋${ }^{\text {X }}$	1	＋IAL	＞＋E＂AL	1	\leftarrow
	＋ANT	$\rangle+$＂ANT	1	＋	12	＋IAN	$>+E A N$	1	＋\＄ X
4	＋AN	$3+A N$	］	＋\＄ X	12	＋IAN	；＋E＂AN	］	＋${ }^{\text {＊}}$ L
	＋AN	$>+$＂AN	1	＋	13	＋IAN	$>+Y \mathrm{~N}$	I ${ }^{\text {l }}$	\leftarrow
3	＋ARCHY	＞＋＾ARKE	1	\leftarrow	1	＋IAN	\％＋E＂AN	1	\leftarrow
4	＋ARIAN	3 ＋＾EREYN	t	＋	1	＋IBILITY	ン＋＾18＾1L＾＾ITE	1	\leftarrow
4	YARY	$\rangle+\wedge E R^{\wedge} \mathrm{I}$	］	＊＋LY	1	＋IBLE	$3+1$ IBYL	1	\leftarrow
	＋ARY	；＋＾ERE	1	4	15	＋IBLY	$>+\wedge$ IBLE	1	\leftarrow
	＋AR ${ }^{\text {c }}$	$\rangle+$＂AR	1	$+$	14	＋ICE	$2+115$	1	\＃
	＋ATE	＞＋YT	3	＊\＄＾M	15	＋IC	$\cdots+1 \times 5$	］	＋\＄${ }^{\text {¢ }}$
	＋ATE	$\cdots+A^{\prime} S$	］	－\＄${ }^{\text {d }}$	15	＋IC	$3+\wedge$ IS	］	＋${ }^{\text {F }}$
7	＋ATE	$>+$＂AT	］	$\leftarrow \$^{\prime} L$	1	＋IC	$>+$ IK	1	$+$
	＋ATE	$\rangle+$ AT	1	＋	12	＋IENCE	$\rangle+$ YNS	（ 1 ${ }^{\text {¢ }}$	＋
5	＋ATIVE	；＋AT＾IV	f	$+$	1	＋IENCE	＞＋E＾ENS	1	\leftarrow
4	＋ATORY	$>+Y T^{\wedge}$ ORE	$($	$+$	13	＋IENT	$\geqslant+\mathrm{E}^{\wedge} \mathrm{EN}^{\wedge} \mathrm{C}$	1	＋$\$ \mathrm{X}$
5	＋ATRY	$3+$＂ATRE	1	\leftarrow	12	＋IENT	$\geqslant+E^{\wedge} E N T$	］	－${ }^{\prime}$ L
3	＋CRACY	$>+K$ R＾ASE	1	＋	12	＋IENT	$>+$ YNT	（ I ${ }^{\text {b }}$	＋
1	＋DOM	$>+D^{\wedge} A M$	1	\leftarrow	1	＋1ENT	$\cdots+E^{\prime}$ ENT	1	＋
5	＋EAL	＞＋E＂AL	S	$+$	13	＋IETY	$\cdots+1 \wedge E T E$	1	4
	＋ED	$>+\wedge$ ID	］	＋＋+L	1	＋IFICATION		1	t
	＋ED	\％＋${ }^{\text {I }}$ ID	（ M \＄	$+$	12	＋IFICATIVE	$\cdots+\wedge I F^{\wedge} I K A T \wedge I V$	1	4
	＋ED	－＋D	（ K	$+$	1	＋IFIC	二＋＇IF＇IS	］	＊\＄F
	＋ED	$\rangle+T$	1	＋	1	＋IFIC	$\geqslant+\cdots \mathrm{IF}$＾IK	1	\leftarrow
4	＋EER	＞＋＾IR	1	t	15	＋IFY	\％+ IFI	（	＋
6	＋EE	$3+E E$	1	4	15	＋ILE	シ＋IL	$($	＋
7	＋ENCE	$>{ }^{\prime}+$ ENS	1	\leftarrow	11	＋IMONY	$\rangle+\wedge$ IMONE		＋
	＋ENT	${ }^{\prime}+{ }^{\wedge} E N^{\wedge} \mathrm{C}$	］	\leftarrow ¢ X	1	＋ING	$\rangle+\wedge \mathrm{I}^{\wedge} \mathrm{G}$	1	＋
	＋ENT	\％＋${ }^{\text {E ENT }}$	$($	\leftarrow	12	＋ION	$>+E O N$	1	＊$\$ \mathrm{X}$
	＋EN	$\rangle+\wedge E N$	$($	$+$	12	＋ION	$>+E^{\wedge} \mathrm{AN}$	］	＋${ }^{\prime}$ L
5	＋EON	$\rangle+Y \mathrm{~N}$	（ I ${ }^{\text {¢ }}$	＋	1	＋ION	$>+Y \mathrm{~N}$	（ I	＋
5	＋EAN	$>+E^{\wedge} A N$	1	＋	1	＋ION	$3+\mathrm{E}^{\wedge} \mathrm{AN}$	1	4
5	＋EOUS	$\rangle+Y S$	3 C	4	17	＋10us	；+YS	（ I ${ }^{\text {d }}$	＋
5	＋EOUS	\％＋EYS	1	\leftarrow	17	＋10us	\rangle＋EYS	1	＋
5	＋ERY	$\rangle+\wedge$ ERE	1	＋	1	＋ISH	$>+\wedge 1 \wedge 5$	1	$+$
	＋ER	3 ＾ER	］	＊＋AT	12	＋ISM	$>+$ IZYM	］	＋＋\＄L
	＋ER	$\rangle+Y \mathrm{R}$	1	＋	1	＋ISM	$>+\wedge$ IZYM	1	＋\＃
2	＋ESCE	＞＋＾ES	1	4	1	＋ISM	$>+\wedge$ IZM	1	$+$
	＋EST	；＋＇EST	1	4	1	＋15T	$>t^{\wedge} 15 T$	1	4
2	＋ESQUE	＞＋＾ESK	1	4	15	＋15	\％＋＂15	1	－4
	＋ES	；＋＾12	（ N ${ }^{\text {¢ }}$	＋	1	＋ITION	$>+へ$ I＾SYN	1	＋
	＋ES	$>+Z$	（ K ${ }_{\text {¢ }}$	＋	12	＋ITIS	$2+$ ITYS	$($	＋
	＋ES	$>+5$	（	4	1	＋ITY	$\rangle+\wedge$ ITE	，	＋
3	＋ETTE	；＋＾ET	1	＋	，	＋IVE	$\rangle+\wedge$ IV	，	＋
1	＋ETH	う＋＾E＾「	1	＊	1	＋12E	$>+12$	1	$+$
	＋EY	$>+E$	（	4	14	＋LESS	$>+L \wedge E S$		＋
1	＋FOLD	$>+$ FOLD	1	4	14	＋LET	$>+L^{\prime} \mathrm{ET}$	1	4
5	＋FUL	$>+$ FYL	1	＊	13	＋LIK．E	$>+$ LIK	1	$\stackrel{+}{+}$
6	＋HOOD	$>+\mathrm{H}^{\wedge} \mathrm{UD}$	1	＊	1	＋LOG	$\cdots+L^{\wedge} A^{\wedge} J$	］	＋${ }_{\text {F }}$
2	＋IAL	$>+E A L$	］	＋$\ddagger \times$	1	＋LOG	$>+L \wedge A G$	，	＋
3	＋IAL	＞＋E＂AL	］	＋${ }^{\prime}$	，	＋LY	$>+$ LE	1	＋
	＋IAL	$>+\mathrm{YL}$	（15	＋	1	＋MENT	$\rangle+M^{\wedge} E N T$	1	＋

2	＋METER	$\rangle+M \wedge E T Y R$	1	\leftarrow	I		$+Y$	$>+{ }^{\wedge} \mathrm{I}$		］	$t+L Y$
2	＋METRY	$3+$ M＾ETRE	1	4	1		$+Y$	$\rangle+E$		1	4
1	＋MOST	$\rangle+$ MOST	，	＋	1		＋${ }^{\prime}$	$\rangle+{ }^{+} I Z$		（ N ${ }^{\text {S }}$	＋
	＋NESS	$3+N^{\wedge}$ ES	1	\leftarrow	1		＋＇S	$\rangle+5$		（ ل ${ }^{4}$	＋
4	＋OGIZE	$>+\wedge{ }^{\wedge} \mathrm{O}^{\wedge} \mathrm{JIZ}$	1	\leftarrow	1		＋＇S	$>+Z$		1	t
	＋OID	$\rangle+$＂OD	（	＋	1						
3	＋OLIZE	$3+$ OLIZ	1	\leftarrow	1	／DIGRAPH RULES：A－					
4	＋OMETER	$>+\infty{ }^{+} M^{\wedge} E T Y R$	1	\leftarrow	1						
2	＋OMETRY	$>+\wedge$ AM＾ETRE	1	\leftarrow	1	4	$A E>\wedge E$	（ D ${ }^{\text {\％}}$	\leftarrow		
2	＋OMIZE	$3+$ MOMIZ	1	\leftarrow	1	4	$A E>E$	1	\leftarrow		
5	＋00N	$>+$ UN	\}	4	1		$A I>$＂AY	$]$		R	
2	＋OPHIZE	$\rangle+$＾OFIZ	1	\leftarrow	1		$A I>A$	1	\leftarrow		
1	＋OQUIZE	$\rangle+\wedge$ OKWIZ	1	\leftarrow	1		AU $>$＾0	1	． 4		
1	＋OQUY	$3+$ aOKWE	1	4	1		AY $3 . A$	1	\leftarrow		
2	＋ORY	$>^{6}+\wedge$ OR＾I	］	$4+L Y$	1		$A W>\wedge 0$	1	4		
	＋ORY	\rangle＋＾${ }^{\wedge}$ ORE	i	\leftarrow	1						
	＋OR	$\rangle+\wedge$ OR	1	4	1		／DIGRAPH	RULES：E－			
	＋0SIS	$\rangle+0 S Y S$	$($	4	1						
	＋OUS	$\rangle+Y S$	1	4	1	4	$E A 弓 E$		\leftarrow	\＃	
5	＋PHILE	$\rangle+F I L$	1	4	1	5	$E A 弓 E$	（ D\＄${ }^{\text {d }}$ \＄	4	\＃	
1	＋PLASTY	$>+$ PL＂ASTE	（	4	1	5	$E A>E Y$	1	¢	\＃	
2	＋RY	$\rangle+R^{\wedge} I$	］	$\leftarrow+L Y$	1		$E A>M Y$	1	＋	R \＄C	
	＋RY	$\rangle+$ RE	1	\leftarrow	1	6	$E A>E$	$($	\leftarrow	R	
	＋${ }^{\prime}$	$\rangle+\wedge I Z$	1	N表 4	1	4	$E A>{ }^{\wedge} E$	$($	4	L央C	
	＋5＇	$\rangle+5$	（		1	2	$E A \geqslant E$	$($	\leftarrow	\＄ $\mathrm{A}+$ \＄0	
	$+5$	$3+2$	（	\leftarrow	1	2	$E A 3$ AE	1	＋	\＄${ }^{\text {¢ }}$ \＄ 0	
3	＋SELF	$3+5^{\wedge}$ ELF	1	4	1		$E A \geqslant E$	1	\leftarrow		
	＋SHIP	$\rangle+\wedge{ }^{\wedge}$ IP	$($	4	1						
6	＋SIS	$3+5^{\wedge}$ IS	1	4	1	2	EI $>-I$	］D\＄S	\star		
3	＋SOME	$\rangle+5 Y M$	1	\leftarrow	1	6	EI $>\mathrm{A}$	J	＋	6	
	＋5	\rangle	$]$	$5 \leftarrow$	1	4	EI $>A$	$] V$	\leftarrow		
	＋5	$>+5$	（	物 4	1		$E I>E$	1	4		
	＋S	$3+2$	（	4	1	1	$E U>J^{\wedge} \backslash$		＊	R	
	＋TY	$>+T E$	$($	\leftarrow	1	3	EU $>J^{\wedge} \mathrm{U}$	［ D\＄2\＄	4	R	
5	＋UAL	$\rangle+J \wedge$ UWYL	（	4	1	1	EU $>\mathrm{MU}$			R	
3	＋ULAR	$\rangle+J \wedge$ ULYR	（	4	1	2	$E U>\mathrm{M}$	［ D\＄${ }^{\text {d }}$	\leftarrow	R	
	＋ULE	$3+J U L$	［	Z嵒 4 \＃	1	4	EU $>Y$	］	\llcorner	R\＄B	
	＋ULE	$3+U L$	1	↔ \＃	I	2	EU $>\mathrm{U}$	（ D\＄C\＄2\＄	＋		
5	＋ULE	$\rangle+$ UUL	［		1	4	EU $>\mathrm{U}$	（ D\＄ F \＄	＋		
5	＋ULE	$3+$ UL	1	＊\＄＾I	1		EU $>$ U	1 D \＄	\dagger		
	＋ULE	$>+J \wedge$ UL	［		I	2	EU $>$ U		4		
	＋ULE	$>+$ 시	1	\leftarrow	1	2	$E U>U$	（ D\＄ C $^{\text {S }}$	＋		
3	＋UOUS	$\rangle+J \wedge$ UWYS	1	4	1	1	$E U>U$	［ Z \＄	\leftarrow	\＄L\＄＾L	
	＋URE	$3+J \wedge$ UR	1	4	1	1	EU $>\cup$	］	\leftarrow	\＄ W $^{\text {¢ }}$ 人	
5	＋US	$\rangle+\wedge Y S$	1	14	1	1	$\mathrm{EU}>\mathrm{EY}$	1	\leftarrow	\＄L\＄B	
5	＋UTE	3 ＋J＾S	［		1		$E U>U$	（ Z \＄	4		
5	＋UTE	\rangle tUUT	［	［ Z ${ }^{\text {＋}}$	1		EU $>\mathrm{U}$	1	4		
5	＋UTE	$>+U^{\wedge} \mathrm{S}$	］	］$\leftarrow 4 X$	1		EW $>\mathrm{JU}$	（ Z ${ }^{\text {S }}$	4		
5	＋UTE	$\rangle+U T$	1	$1 \leftarrow$	1		EW 3 U	1	\leftarrow		
2	＋WISE	3 ＋WIZ	1	4	1		EY 3 A	1	\leftarrow		
3	＋WORTHY	$\rangle+W Y R^{\wedge} D E$		\leftarrow							

	／DIGRAPH RULES［－				
2	1 A	；I＂A	1	口\＄С¢С\＄	4
	IA	\Rightarrow I＂A	1	D\＄0．	\leftarrow
1	IA	$>$ IY	］		$\leftarrow \mathrm{H}$ \＄ C
2	IA	$\geqslant J Y$	］	$W_{\text {¢ }}$＾E ${ }^{\text {a }}$	＋\＄B
3	IA	$>E Y$	1		ヶ ${ }^{\text {B }}$
3	IEU	λu	1		4
7	IE	＞I	1		$\leftarrow \#$
2	IE	＞I	1		$\leqslant+$ ¢
	IE	；E	1		\leftarrow

4 IU $>$ EY $1 \quad \leftarrow$ \＄C
／DIGRAPH RULES．O－

4	OA	$>\mathrm{OY}$	1	＊
	OA	>0	1	＋
	OE	＞0	1	＋\＃
2	OE	＞～Y	］	$\leftarrow \mathrm{R}$
	OE	$>0^{\wedge} E$	1	\leftarrow
	OI	>10	1	4
6	OU	$>\mathrm{U}$	1	＋\＄B
4	OU	＞ 0	J	＋GHT
5	OU	$>\mathrm{U}$	J	＋P
	OU	； 0	1	\leqslant L\＄C
2	OU	$>\mathrm{UU}$	（ D\＄C\＄C ${ }^{\text {（ }}$	＋R ${ }^{\text {¢ }}$ B
	OU	$>\mathrm{MU}$	（ D\＄C ${ }^{\text {¢ }}$	$\leqslant \mathrm{R} \mathrm{B}^{\text {B }}$
3	OU	210	（ C ${ }^{\text {c }}$	$\leqslant \mathrm{R}$ ¢ C （ B
2	$0 \cup$	>0	］L\＄	\leftarrow R¢LE\＄B
	04	3 Y	］	$\leftarrow \mathrm{R}$
	OU	$>\mathrm{UU}$	1	\leftarrow
3	OY	>10	（	\leftarrow
	OW	$\rightarrow 0$	1	\leftarrow

／DIGRAPH RULES $U-$

1	UA	$>\wedge A$	］	\leqslant \＄ $\mathrm{L}+\mathrm{IC}$
1	UA	3 WA	15	\leftarrow
	UE	$>\mathrm{U}$	1	＊\＄${ }^{\text {P }}$
7	UE	$>U^{\prime}{ }^{\wedge} \mathrm{E}$	（ Z\＄	＋
3	UE	$>U^{\wedge} \mathrm{E}$	1	＊
1	UI	$>\wedge 1$	$(\mathrm{K}$	$\leqslant T$
	UI	＞ 1	1	\leftarrow

fBIGRAPH RULES．DOUBLE VOWELS

／VOWEL RULES

	$A>{ }^{\wedge} A$	］	＋\＃
4	$A>\wedge A$	］	\leqslant LM\＃
4	$A>{ }^{\circ} 0$	］	－LK\＃
	$A>90$	］	＋LL＇¢＾I
		］	＋X
	A $\gg 0$	（ W	＋R ¢ $^{\text {c }}$
	A $>$＂A	］	＊R ${ }^{\text {Wh }}$
	$A \geqslant M A$	$]$	$\ddagger \mathrm{RR}{ }^{\text {¢ }}$＾I
	$A>1 A$	］	$\leqslant \mathrm{RR}$
	$A>\wedge A$	］	$\leftarrow R$
	$A>A$	］	＊\＄EE\＄B
6	$A>A$	］	＋ $\mathrm{ILIF}^{\text {＋}}$ W
6	$A>A$	1	\leqslant ¢L＋I生W
6	$A>A$	］	\leqslant \＄LE\＄W
6	$A>A$	］	＋\＄L＋E\＄W
	$A>A$	］	＋\＄${ }_{\text {¢ }}$＾I
5	$A>1 A$	$($ W	＋\＃${ }^{\text {H }}$
5	$A>1 A$	［ D\＄C\＆C\％	＋\＄L＊N
2	$A \gg A$	［ D\＄C	－\＄L\＄＾N
2	$A \geqslant 7$	［ D＊	＋\＄L\＄＾N
	$A>A$	［ D\＄C．${ }^{\text {c }}$ ¢	＊ $\mathrm{LL}_{\text {＋}+ \text { W }}$
	$A>A$	［ D\＄C．	\leftarrow ¢ + ＋\＄W
	$A>A$	［ D\＄．	＋ $\mathrm{LL}^{\text {＋}}$ \＄W
4	$A>A$	［ D\＄C $\$^{\text {d }}$	＋\＄L \＄HE\＄E
2	$A>A$	［ D\＄C ${ }^{\text {b }}$	＋\＄ ¢ $_{\text {H }}$＾＾I
	$A>A$	］	＋\＄W
	$A \geqslant n A$	（ W	$+$
	$A>4 \mathrm{~A}$	1	\leftarrow
5	$E \because E$	（ D\＄C．${ }^{\text {（ }}$ ¢	＊\＄${ }^{\text {B }}$
	$E>E$	（ D\＄ C $^{\text {¢ }}$	\leftarrow \＄ B
	E ${ }^{\text {P }}$	1	\leftarrow \＃
5	E $>$	［ ${ }^{\text {H }}$	$\leftarrow+$ ¢ ${ }^{\text {¢ }}$
b	$E>{ }^{\wedge} \mathrm{E}$	］	＋${ }^{\text {¢ }}$
	E＞	］	＋＋\＄L
	$E>{ }^{\text {A }}$ E	］	$\leftarrow X$
	$E>{ }^{\wedge} \mathrm{E}$	1	＋L\＄C

	$E>{ }^{\wedge} \mathrm{E}$	J	* RR	1		$0>{ }^{\wedge} \mathrm{A}$]	$\pm X$
	E $>{ }^{\wedge} \mathrm{Y}$	1	* R ${ }^{\text {c }}$ C	1		$0>{ }^{0}$]	+ LL\#
	E $>^{\text {c }}$ I	$]$	* RE\$B	1		$0>\wedge \mathrm{A}$]	+ LL
5	$E>E$	1	+ \$ LI ${ }^{\text {W }}$	1		$0>0$	1	+ L c $_{\text {c }}$
5	$E>E$	1		1		$02{ }^{\wedge}$	(W	$\leftarrow \mathrm{R}+\mathrm{C}$
5	E $) \mathrm{E}$]	* *LE昣	1		$0>{ }^{\text {¢ }}$]	$\leftarrow \mathrm{R}$
5	$E>E$]	\leqslant \$ + E ${ }^{\text {+ }}$ W	,	3	$0>0$]	+ \$LI\$W
	$E>E$	$]$	+ \$ ${ }^{\text {¢ }}$ ^1	,		$0>0$	1	* $\$ \mathrm{~L}+\mathrm{I} \$ \mathrm{~W}$
2	E $)^{\wedge} \mathrm{E}$	[D\$C ${ }_{\text {c }}$	+ \$ \$ $^{\text {¢ }}$ N	,		$0>0$	$]$	+ \$LE\$W
2	$E>{ }^{\text {¢ }} \mathrm{E}$	[D\$C	* \$ \$ $^{\text {人 }}$ N	1		$0>0-$	$]$	* ${ }^{\text {cta }}$ +W
3	E $>{ }^{\wedge} \mathrm{E}$	[D \$	* \$ $\$$ ^N	1		$0>0$]	\leftarrow \$L\$^I
	$E>E$	[D\$C*C ${ }^{\text {c }}$	+ $\mathrm{LL}_{\text {+ }}$ \$W	1	3	$0>\wedge A$		
	$E>E$	[D\$C ${ }^{\text {c }}$	* $+L+\$ W$	1	6	$0>\wedge A$	[D\$C	+ \$L\$^N
	E $>\mathrm{E}$	[D ${ }^{\text {\% }}$	+ $\$ \mathrm{~L}+$ + W	1		$0>0$	[D\$CWC	¢ $\mathrm{wL}_{\text {L }}$ \$W
	E $>\mathrm{E}$]	+ \$W	1		$0>0$	[D\$C	+ \$L+\$W
	$E>{ }^{\wedge} \mathrm{E}$	1	\leftarrow	1		$0>0$	[D $\$$	* \$L+\$W
	$1>E$	1	+	1	2	$0>0$]	
	$1>\wedge 1$	J	$\leqslant X$	1		$0>0$	[D\$C	* ¢L \$W\#
	$1>\wedge{ }^{\text {¢ }}$	(+ R ¢ $^{\text {c }}$	1	2	$0>0$	[D\$C	\leftarrow \$L\$ ${ }^{\text {HEE }}$ B
2	$1>1$]	+ EEE $^{\text {P }}$ B	1	3	$0>0$	[D\$C*	
5	$1>\wedge 1$]	¢ $\$ \mathrm{~L}+\mathrm{I} \$ \mathrm{~W}$	1		$0>\wedge 0$	1	$\leftarrow{ }^{\wedge} \mathrm{G}$
5	$1>\wedge 1$]	¢ \$ $\mathbf{L}+\mathrm{E}$ \$W	1	2	$0>0$	1	+ \$W
	131	J	* $\$$ L ¢ $^{\text {A }}$	1		$0>\wedge A$	1	+
3	I > ${ }^{\text {I }}$	[D\$C ${ }_{\text {c }}$	+ \$ $\mathrm{L}_{\text {¢ }}$ N N	1		$u>u$	1	+ \#
4	$1>\wedge 1$	[D $\$$ C $\$$	+\$L\$^N	1	4	$U>\wedge Y$]	$\leqslant X$
	131	J	$\leftarrow \mathrm{GH}$	1		U $>$ Ju	[2 \$	- R ${ }^{\text {WW }}$
3	$1>1$]	- ND* ${ }^{\text {B }}$	1		U > ¢	[$\leftarrow \mathrm{R}$ WW
	$1>1$	[D\$C $\mathrm{C}_{\text {c }}$	+ $\$ \mathrm{~L}+$ + W	1		$\mathrm{U}>\mathrm{JU}$	[\% $^{\text {d }}$	¢ $\$ \mathrm{~L}$ \$ W
	$1>1$	[D\$C	+ \$ $\mathrm{L}+$ \$ W	1		$u>u$	[.	+ \$L\$W
	$1>1$	[D*	* \$ + + W	1	2	U > Juw	[${ }^{\text {\% }}$	*\$W
	I > ^I	1	$\leqslant L L$	1	2	$U>\mathrm{UW}$	[- \$W
5	131	[D\$C ${ }^{\text {c }}$	¢ \$ ¢ $_{\text {HE }}$ \$B	1		$U>\prime U$	[G	+ L L
2	$1>1$	[D\$C		1		$\mathrm{U}>{ }^{\wedge} \mathrm{Y}$	(4
	$1>1$	[D\$C ${ }^{\text {¢ }}$ C	¢ \$ W	1		W > W	1	\leftarrow
	$1>1$	[D\$C ${ }^{\text {c }}$	* ${ }^{\text {W }}$	1				
6	I-> I	[D ${ }^{\text {c }}$	+ \$W	1		\%PREFIX		
	I > E	J	* \$W	1		ANTI		
	I > ^I	1	\leftarrow	1	5	BE		
	$Y>1$	1	*	1		BI		
	$\mathrm{Y},{ }^{\text {A }} \mathrm{I}$]	$\leqslant X$	1	5	CIRCUM		
4	$Y>01$	1	* L ¢ C	1		COM		
2	$Y>\wedge$	$($	*R*C	1		CON		
3	$Y>1$]	\leftarrow ¢ ${ }_{\text {\% }}$ ¢ 1	1		CO		
2	$Y>1$	[D*C\$C	* \$ + + W	1		DE		
3	$Y>1$	[D\$ ${ }^{\text {c }}$	\leqslant + + + W	1		DIS		
2	$Y>1$	[D	\& $\$ \mathrm{~L}+$ \$W	1		EM		
2	$Y>1$	[D\$C	+ \$ \$ HE \$ B	1		EN		
4	$Y>I$	[D*C		1		EXTRA		
6	$Y>1$	J	\leqslant + W	1		EX		
	$Y>$ AI	1	\leftarrow	I	4	HYPER		
	$0>0$	1	+ ${ }_{\text {¢ }}$ B	1		IM		

	INTER	1	2	F 100-WISE	1	5	F 10-EOUS
4	INTRA	1		F 77-ATE	1	7	F 15-10US
	IN	1	3	F 45-ETTE	1	3	F 15-uous
6	MAL	1	5	F 70-UTE	1		F 17-0U5
1	MAXI	1	2	F 14-ESQUE	1	5	F 174-1JS
5	MICRQ	1	2	F 10-IFICATIVE	1		F 167-5
1	MINI	1	5	F 57-ATIVE	1	4	F 40-LET
	MIS	1		F 52-IVE	1		F 51-ANT
2	MULTI	1	4	F 20-0GIZE	1		F 55-IENT
1	NEO	1	2	F 20-OPHIZE	1		P 42-MENT
	NON	1	3	F 20-OLIZE	1		F 51-ENT
	PER	1	2	F 20-0MIZE	1		F 111-EST
	PRE	1	1	F 20-00UIZE	1		F 55-1ST
	PRO	1		F 25-12E	1	1	F 111-MOST
2	PSEUDO	1	3	F 100-SELF	1	3	F 47-CRACY
5	PSYCHO	1		F 66-ING	1		F 50-EY
	RE	1		F 40-LOG	1	5	F 21-IFY
3	SELF	,		F $15-\mathrm{ISH}$	1	3	F 47-ARCHY
2	SEMI	1	1	F 50-ETH	1	3	F 10-WORTHY
4	SUB	1	5	F 10-EAL	1	5	F 103-ABLY
3	SUPER	1		F 55-IAL	1	5	F 102-IBLY
	TRANS	1	5	F 10-UAL	1		P 15-LY
4	ULTRA	1		F 55-AL	1	1	F 47-IMONY
	UNDER	1	5	F 44-FUL	1		F 54-ARY
4	UNI	1	1	F 40-DOM	1	5	F 54-ERY
	UN	1		F 45-15M	1	4	F 51-ATORY
		1	4	F 44-ARIAN	1		F 56-0RY
	\%SUFFIX	1		F 55-IAN	1	5	F 40-ATRY
	F 117-S'	1		F 50-AN	1	2	F 40-0METRY
	F 10-IFIC	1		E 30-EN	1	2	F 40-METRY
	F 14-IC	1	5	F 70-EON	1		F 44-RY
	F 54-0ID	1		F 47-IFICATION	1	3	F 47-IETY
	E 36-ED	1		F 44-ITION	1		F 43-ABILITY
1	F SO-FOLD	1		F 75-ION	1		F 43-IEILITY
6	P 41-H000	1	5	F 40-00N	,		F 41-ITY
	F 60-ACE	1		F 44-SHIP	1	1	P 47-PLASTY
4	F 160-ICE	1	3	F 50-ULAR	1		F 41-TY
	F 41-ANCE	1		F 50-AR	1	1	F 47-0QUY
	F 45-IENCE	1	4	F 64-EER	1		F 55-Y
7	F 41-ENCE	1	4	F 40-OMETER	1		
2	F 20-ESCE	1	2	F 40-METER	1		
6	F 41-EE	1		E 53-ER	1		
	F 60-AbE	1		E 42-0R	1		
3	F 114-LIKE	1		F 134-'s	1		
	F 13-ABLE	1		F 166-ES	1		
	F 13-IBLE	1		F 141-0.015	1		
5	F 40-PHILE	1	6	F 140-SIS	1		
5	F 160-ILE	1	2	F 141-ITIS	I		
	F 41-ULE	1	5	F 140-IS	1		
3	P 10-50ME	1	4	F 14-LESS	1		
	F 67-URE	1		P 41 -NESS	1		

AUTHOR INDEX - AJCL
AUTHORS OF SIGNED CONTRIBUTIONS
1974-1976 - Microfiches 1-58

Anderson, Barbara B. Grammatical compression in notes and records: Analysis and computation. Mf 36:68-81
Badler, Norman The conceptual description of physical activities. Mf 35:70-83
Bailey, Richard W. Computer-assisted lexicography: A preliminary bibliography. Mf 1:9-15
Baker, Wm. J. A discriminant function analysis of co-variatior. of a number of syntactic devices in five prose genres. Mf 11
Bates, Madeleine Syntax in automatic speech understanding. Mf 45
Beckles, D. Developing a computer system to handle inherently variable linguistic data. Mf 36:40-51
Bennett-Novak., Gordon Semantically analyzing an English subset for the CLOWNS microworld. Mf 18
Benson, David B., reviewer. Mathematical models of language: Soviet papers in formal linguistics. Mf 58:78-93
Bien, Janusz Stanislaw Multiple environments approach to natural. language. Mf 54
Compiler. Artificial intelligence in Poland: Bibliography 1972-1974. Mf 30:30-37
Billings, Floyd H., Jr. Junction grammar as a. base for natural language processing. Mf 26
Bobrow, Daniel G., ed. (Review of) Representation and understanding: Studies in cognitive science. Mf 55:14-25.
Bocsa, Minerva. Letters with variable values and the mechanical inflection of Rumanian words. Mf 9:38-52
Brill, David A natural language processing package. Mf 36:52-66

Bronnenberg; W. J. PHLIQA 1: Multilevel semantics in question answering. Mf 32:72-86
Bross, Irwin D. J. Grammatical compression in notes and records: Analysis and computation. Mf 36:68-81
Bruce, Bertram C., Discourse models and language comprehension. Mf 35.19-35
Bunt, H. © PHEIQA 1: Multileval semantics in question answering. Mf 32:72-86
Burger, John F. Semantic-based parsing and a natural-language interface for interactive data management. Mf 32:58-71
Burrows, Dan, reviewer. Computers in the humanities. Mf 30:3-16
Buttelmann, H. William. Semantic directed translation of context free languages. Mf ${ }^{\prime} 7$
Carbonell, Jaime R. Natural semantics in artificial intelligence. Mf 3
Carrington, L. Developing a ©omputer system to handle inherently variable linguistic data. Mf 36:40-51
Carroli, John B., reviewer. Informal speech: Alphabetic and phonemic texts with statistical analyses and tables. Mf 22: 78-91
Carterette, Edward C. (Review of) Informal speech: Alphabetic and phonemic texts with statistical analyses and tables. Mf. 22:78-91.
Celce-Murcia, Marianne. Verb paradigmis for sentence recognition. Mf 38
Cercone, Nick. The nature and computational use of a meaning representation for wořd concepts. Mf 34:64-81
Chafe, Walleace L. An approach to verbalization and translation by machine. Mf 10
Chauche, J. The ATEF and CETA systems. Mf 17-21-40
Chinchor, Nancy A frame analysis of American Sign Language. Mf 35:84-96
Colby, Kenneth Mark. Pattern-matching rules for the recognition of natural langluage dialogue expressions. Mf 5

Collins, Allan M. Natural semantics in artificial intelligence. Mf 3

Editor. Representation and understanding: Studies in cognitive science (Review) Mf 55:14-25

Cullingford, R. E. An approach to the organization of mundane world knowledge: The generation and management of scripts. Mf 35:50-69
Cutting, James E. The role of speech in language. Mf 55:26-37
Deutsch. Barbara G. Establishing context in task-oriented dialogs. Mf 35:4-18
Diller, Timothy C., editor. Proceedings, 13 th annual meeting, ACL. Mf 32-36.
Dinneen, David A., reviewer. Description grammaticale du parler. de I'Ile-aux-Coudres, Quebec. Mf 58:94-96
Dobree, Nicholas J. S. CLAM. A computer language model. Mf 49:2-52
Dreizin, Felix Formulae in coherent text. Mf 17.70-85
Dunn, James.M., reviewer. Word order and word order change. Mf 22:53-77
Engebretson, A. Maynard. Simple digital speech synthesis. Mf 16

Fabens, William PEDAGLOT and understanding natural language processing. Mf 32:9-20
Faught, Bill Pattern-matching rules for the recognition of natural language dialogue expressions. Mf 5
Findler, Nicholas V. A few steps towards computer lexicometry. Mf 4

Fisher, William M. Simple digital speech synthesis. 湦f 16 Fitzpatrick, Eileen. The lexical subclasses of the linguistic string parser. Mf 2

Florian, Vicki A. A computer simulation of American Sign Language. Mf 37:23-27
Fredericksen, Dick H. An organization for a dictionary of word senses. Mf 50:2-23

Gibb, Daryl Junction grammar as a base for natural language processing. Mf 26
Grishman, Ralph A survey of syncactic analysis procedures for natural language. Mf 47
Gumb, Raymond D. reviewer. Essays on lexical semantics, vol. I. Mf 51:68-76.

Hanon, S. Computational semantics - a report on the ISCS tutorial, Lugano, 19.75. Mf 17:47-69
Hays, David G., ed. FBIS seminar on machine translation. Mf 46
Hendrix, Gary G. Semantic processing for speech understanding. Mf 34:34-48
Hobbs, Jerry R: A general system for semantic analysis of English and its use in drawing maps from directions. Mf 32:21-41
Hoemann, Harry W. A computer simulation of American Sign Language. Mf 37:23-27
Hoemann, Shirley A. A computer simulation of American Sign Language. Mf 37:23-27
Hofmann, Th.R. Interpretation $\&$ integration of sentences into a C-net: Mi 29:46-66

Hols, Edith J., reviewer. Computers in the humanities. Mf 30:3-16
Hunnicutt, Sharon. Phonological rules for a text-to-speech system. Mf 57

Jones, Margaret Hubbard. (Review of) Informal speech: Alphabetic and phonemic texts with statistical analyse's and tables. Mf 22:78-91
Kavanagh, James F., editor. (Review of) The role of speech in language. Mf 55:26-37
Kay, Martin. Experiments with a powerful parser (reprint). Mf 43:22-52
Editor. Abstracts of the. 1976 International Conference on Computational Linguistics--COLING. Mf 48
Kegl, Judy Anne. A frame analysis of American Sign Language. Mf 35:84-96
Kehler, T. P. SNOPAR. A grammar testing system. Mf 55:84-97

Kiefer, Ferenc, editor. (Review of) Mathematical models of language: Soviet papers in formal linguistics. Mf 58:78-93 Klappholz, David. Contextual reference resolution. Mf 36:4-25 Klinger, Allen. Recent computer science research in natural language processing. Mf 21:2-25
Knaus, Rodger. Incremental sentence processing. Mf 33:18-32 Koch, G. Computational semantics-a report on the ISCS tutorial, Lugano, 1975. Mf 17:47-69
Landsbergen, S. P. J. PHLIQA 1: Multilevel semantics in question answering. Mf 32:72-86
Lean, Antonio. Semantic-based parsing and a natural-language interface for interactive data management. Mf 32.58-71
Li, Charles N., editor. (Review of) Word order and word order change. Mf 22:53-77
Linn, William E., Jr. AUTONOTE2: Network mediated natural language communication in a personal information retrieval system. Mf 23
Ljudskanov, A. Summaries of contributions to the First National Conference on the Application of Mathematical Models and Computers in Linguistics, Varna, 1975. I. Roman alphabet contributions; Mf 20. II. Russian language contributions; Mf 28.
Lockman, Abe. Contextual reference resolution. Mf 36.4-25.
Lytel, Eldon G. Junction grammar as a base for natural language processing. Mf 26
Marckworth, Mary Lois. A discriminant function analysis of co-variation of a number of synfactic devices in five prose genres. Mf $11 .$.
Mathias, J., editor. FBIS seminar on machine translation. Mf 46
McDonald, David. A framework for writing generation grammars for interactive computer programs. Mf 33:4-17
Medema, P. PHLIQA 1: Multilevel semantics in question answering. Mf 32:72-86.

Meehan, James R. Using planning.structures to generate stories: Mf 33e78-94.

Melby, Alan K. Junction grammar as a base for natural language processing. Mf 26
Miller, Perry L. An adaptive natural language parser. Mf 32: 42-56

Mitche11, J. L., editor. (Review of) Computers in the humanities. Mf 30:3-16
Moran,. Douglas B. A case history in computer exploration of fast speech rules. Mf 19
Mylopoulos, John, reviewer. Representation and understanding: Studies in cognitive science. Mf 55:14-25
Nagao, Makoto. Analysis of Japanese sentence by using semantic and contextual information. Mf 41 PTATON--A new programming language for natural language analysis. Mf 37:28-53
Nooteboom, Sieb, reviewer. The role of speech in language. Mf 55:26-37
Novak, Gordon S., Jr Computer understanding of physics problems stated in natural language. Mf 53
Oshika, Beatrice T. A natural language processing package. Mf. 36:52-66

Oubine, I: I. Machine translation: Moscow International Seminar. Mf 51:50-67

Packard, Dennis. Junction grammar as a base for natural language processing. Mf 26

Palme, Jacob. The SQAP data base for natural language information. Mf 24
Parkison, Roger C. Pattern-matching rules for the recognition of natural language dialogue expressions. Mf 5
Paxton, William H. System integration and control in a speech understanding system. Mf 34:5-18
Perry, Doyt. SPS: A formalism for semantic interpretation and its. use in processing prepositions that reference space. Mf 34:49-63
Philips, Brian. Judging the coherency of discourse. Mf 35:36-49

Plath, Warren J. String transformations in the REQUEST system Mf 8
Raskin, Victor. A restricted sublanguage approach to high quality translation. Mf 9:28-37
Raze, Carol. A computational treatment of coordinate conjunctions. Mf 52
Reimold, Peter. A formal psycholinguistic model of sentence comprehension. Mf 27
Reitman, Walter AUTONOTE2: Network mediated natural language communication in a personal information retrieval system. Mf 23
Rhyne, James R. A lexical process model of nominal compounding in English. Mf 33:33-44
Rieger, Chuck. Understanding by conceptual inference. Mf 13
Robinson, Ann E. System integration and control in a speech understanding system. Mf 34:5-18
Robinson, Jane •J. A tuneable performance grammar. Mf 34:19-33
Rosenberg, Richard S. A case-driven parser for natural language. Mf 31
Rosenschein, Stan. How does a system know when to-stop inferencing? Mf 36:26-39
Rozencuejg, V. Ju., editor. (Review of) Essays on lexical semantics, vol. I. Mf 51:68-76
Russell, Sylvia Weber. Computer understanding of metaphorically used verbs. Mf 44
Sager, Naomi. Grammatical compression in notes and records: analysis and computation. Mf 36.68-81.
The lexical subclasses of the linguistic string parser. Mf 2
Salton, Gerard. A comparison of term value measurements for automatic indexing. Mf 55:61-83
Sampson, Geoffrey. Natural language as a special case of programming languages. Mf 25
Scha, R. J. H. PHLIQA 1: Multilevel semantics in question answering. Mf 32:72-86.

Schoenmakers, W. J. PHLIQA 1: Maltilevel semantics in question answering. Mf 32:72-86
Self, John. Computer generation of sentences by systemic grammar. Mf 29:25-45
Seutin, Emile. (Review of) Description grammaticale du parler de 1'Ile-aux-Coudres, Quebec. Mf 58:94-96
Shapiro, Stuart C. Generation as parsing from a network into a linear string. Mf 33:45-62
Shoshani, Arie. Semantic-based parsing and a natural-language interfare for interactive data management. Mf 32:58-71
Simmons, Robert F. Semantically analyzing an English subset for the CLOWNS microworld. Mf 18
Slocum, Jonathan. Speech generation from semantic nets. Mf 33:63-77
S申ndergaard, G. Computational semantics--a report on the ISCS tutorial, Lugano, 1975. Mf 17:47-69
Sondheimer, Norman K. SPS: A formalism for semantic interpretation and its use in processing prepositions that reference space. Mf 34:49-63
Stanat, Donald F. Algebraic parsing of context-free languages Mf 55:38-60
Taylor, Brock H. A case-driven parser for natural language. Mf 31
Troike, Rudolph C. The future of MT. Mf 51:47-49
Tsujii, Jun-Ichi. Analysis of Japanese sentences by using semantic and contextual information. Mf 41.
PLATON--A new programming language for natural language analysis. Mf 37:28-53
van Utteren, E. P. C. PHLIQA 1: Multilevel semantics in question answering. Mf 32:72-86
Viil, Heino. A few steps towards computer lexicometry. Mf 4 von Glasersfeld, Ernst. The Yerkish language for non-human primates. Mf 12
AUTHOR INDEX - AJCL - 1974-1976 81
Walker, Donald E. Artificial intelligence and language pro-cessing: A directory of research personnel. Mf 39Warner, G. Developing a computer system to handle inherentlyvariable linguistic data. Mf 36:40-51
Weiss, Stephen F. Algebraic parsing of context-free languagesMf 55:38-60
Wilks, Yorick. Natural language understanding systems withinthe A.I. paradigm: A survey and some comparisons. Mf 40Processing case: Mf 56

