How does a System Know When to Stop Inferencing?*

Stan Rosenschein**
The Moore School of Electrical Engineering University of Pennsylvania, Philadelphia 19174

Abstract The problem of constraining the set of inferences added to a set of beliefs is considered. One method, based on finding a minimal unifying structure, is presented and discussed. The method is meant to provide internal criteria for inference cut-off.

I. Introduction

Natural language processing systems that are sensitive to the semantic and logical content of processed sentences and to the pragnatics of their use generally draw inferences. A set of formulas representing the meaning of a sentence and the 'state of belief' of the system is augmented by other related formulas (the inferences) which are retrieved and/or constructed during the processing. The problem to be investigated here is: How can this process be controlled? Can reasonable criteria be found for restraining the addition of inferences?

Top-down inferences following from the meaning of lexical items (often expressed by decomposition into primitives) are clearly bounded, if no interactions are allowed among the generated sub-formulas. This process (which we call EXPANSION) will not be discussed here. Rather, we shall be concerned with SYNTHESIS, i.e., the addition of new formulas based on the

[^0]jresence of already generated lower-level formulas, which we shall call beliefs. In particular, we are concerned with infererces added because a set of beliefs is recognized as fitting a pre-defined pattern.

The question we ask is: Given an initial set of beliefs over a set of \#rimitives, what'criterion can be used to halt the jrocers of pattern matching add associated inference addition? The major structural feature that we use \pm provide such a criterion is a partial order over the set of patterns.

Before pursuing this suggestion any further, let us examne some of The aiternative approaches to inference and inference cut-off.

To logicians, decuctive inference involves rules by which formmas can be added to a set (which initially contains the axioms) in certain ways mpvided other formulas are already in the set. In general, this sort of inference is quite open-ended in that one can keep applying the rules of inference and come up with more and more formulas all of which represent 'provable' statements. The temination criterion for a particular invocation of the mechanism might be the appearance of an 'interesting' formula or the loss of interest of the inferencer, but in general the statement of the rules of inference says nothing about when to cease deriving formulas.

This paradign from logic has been carried over into Arrificial Intelligence systems, where the issue of termination is very real. The usual solution has been to invoke the inferencer under the very strict control of a supervising program which has its own goals progranmed in which makes certain that appropriate criteria are applied to halt the inferencing. This is most apparent in systems written in PLANNER-like languages which has user-programable mechanisms for controlling the progf process.

In the work of Schank and Rieger, (Sch, 75) (Ri, 74) inference has more of the flavor of free association; inferences are conceived of as expanding spheres in'inference space.' Tho termination strategies are employed: (1) the discovery of a chain of inferences leading from one of the initial beliefs to another through a shared formula, or 'contact point' in inference space, and (2) the association of numerical 'strengths' to formules so that a line of inference can be discontinued if the strength falls below a certain threshold.

Strategy (2) is somewhat unsatisifying in view of the potential arbitrariness and attendant difficulties in evaluating the role of particular numerical constants in the total behavior of a complex system. These constants, presumably, have little to do with the theoretical structure of the formal inference scheme, and as such we would call them 'external criteria.' A strategy like (1) above, on the other hand, is more 'internal' and is to be preferred."

A goal of the present work is to formulate a reasonable internal criterion for inference cut-off which can be stated formally as part of the inference rule. To do this, we sherl impose a structure on the set of patterms to be used in inferencing, and the rule for adding inferences will be formulated in terms of this structure.

The operations to be described below are explained more fully in ($\mathrm{R}, 75$), where a description of a computer implementation is also presented.

[^1]
II. A Partial Onder for the Pattern Set

The inference rule we are aiming for is to depend on the set of input beliefs and the set of patterns. The notion we are trying to formalize is "What does this set of beliefs suggest with respect to this set of patterms?" The particular class of inferences we are concerned with are those gotten by matching beliefs in the input set against a pattern and augmenting the beliefs with additional propositions as dictated by the pattern. We want to find the least instarces of patterns which cover (include) the set of input beiiefs. We will take as inferences' all propositions (an arbitrary number) which are entailed by that instance of the pattern.

Put another way, the inference operation is to 'jump to conclusions. However, it is only to jump to those conclusion required to make the resulting set an instance of the least possible pattern in the pattern set.

The key concept here is 'least' in that this is what controls how many inferences are added. What would be a suitable ordering relation for patterns and propositional beliefs? One which naturally suggests itself and which is currently under investigation relies on the relations of instantiation and superset:
(1) $\mathrm{p} \leq \mathrm{q}$ if q is a substitution instance of p ,
and
(2) $S \leq_{1} S^{\prime}$ if $S \subseteq S^{\prime}$.

Combining these two, we say that $\left\{p_{1}, \ldots, p_{n}\right\} \leq\left\{q_{1}, \ldots, q_{m}\right\}$, where the p_{i} 's and q_{j} 's are propositional forms, if there is a substitution, s, for the variables of $\left\{p_{1}, \ldots, p_{n}\right\}$ such that $\left\{s\left(p_{1}\right), \ldots, s\left(p_{n}\right)\right\} \leq\left\{q_{1}, \ldots, q_{n}\right\}$. Example 1.

We adopt the notational convention of prefixing variables with '?'.

Let $\mathrm{P}=\{($ HAPPY ? X$)$, (PARENT ? y ? x$)\}$
and let $Q=\{(H A P P Y$ JOHN), (GIVE MR. JONES JOHN TOY), (PARENT MR. JONES JOHN) \}.

Then $P \leq Q$ under the substitution ?x+JOHN, ? $y+M R$. JONES.
The 'less-than-or-equal' relation is also defined for pairs of patterns:

Example 2.

Let PAT-1 = \{(P ?x ?y), (Q ?y ?z)\}
and let PAT-2 = \{(R ?u ?v ?w), (Q ?w ?v), Prep ?w) \}.

This definition of \leq is quite straightford and cen be made to acconodate expressions with embeddings and predicate variables. (These are included in the implementation.)

Note that the relation ' \leq ' can be thought of an information-content comparison; if $S \leq S$ ' then S ' contains at least as'much 'information' as S (and possibly more) either by virtue of variables having been replaced by particular constants or by additional formulas having been added to the set.

Given \leq for relating pairs of belief sets, pairs of patterns, or belief-set/pattern pairs, we can now formulate the belief-set-extending function, SYNTHESIZE.
III. The Inference Operation: SYNIFESITE

Given a set of P of patterns and an input set Bel of beliefs,
SYNIHESIZE returns a set I of instantiated patterns from P such that the following three conditions all hold:
(1) (Coverage of input beliefs) For each instantiated pattern $p \in I$, Bel $\leq p ;$
(2) (Pairwise incorparability) If p,q εI then $p \notin q$ and.q. $\underline{f} p ;$
(3) (Minimality) There are no other instances r of patterns in P which are not in I and yet which are 's' to some element of I and for which Bel $\leq r$.

The elements of $I=$ SYNIHESIZE(Bel) represent possible minimal extensions of Bel; \cap I represents clear extensions of Bel, namely the superset of Bel contained in all mininal extensions.

Example 3.

$$
\text { Let } \begin{aligned}
P \pm\left\{p_{1}\right. & =\{(A ? x),(B ? x),(C ? x)\} \\
p_{2} & =\{(B ? x),(C ? x),(D ? x)\} \\
p_{3} & =\{(A ? x),(B ? x),(C ? x),(G ? x)\}\}
\end{aligned}
$$

Represented graphically:

If input set $\mathrm{Bel}=\{(\mathrm{A}$ JOHN $),(\mathrm{C}$ JOHN $)\}$ then SYNHHESIKE $(\mathrm{Bel})=\{\{(A \mathrm{JOHN}),(\mathrm{B}$ JOHN $),(C \mathrm{JOHN})\}\}$.

There is only one possible minimal extension; (B JOHN) is inferred.
If input set Bel $=\{(B$ JOHN $),(C$ JOHN $)\}$
then SYNIHESIZE(Bel) $=\{\{(A$ JOHN), (B JOHN), (C JOHN) $\}$ $\{(B$ JOHN $),(C$ JOHN), (D JOHN) $\}\}$.

There are two possible minimal extensions, but the set of clear extensions contains no inferences beyond the input set, Bel. (Had p_{1} and p_{2} shared another clause, however, an inference would have been added.)

$$
\begin{aligned}
& \text { If the input set Bel }=\{(G \mathrm{JOHN}),(\mathrm{B} \text { JOHN })\} \\
& \text { then SYNIHESIZE(Bel) }=\{\{(\mathrm{G} \mathrm{JOHN}),(A \mathrm{JOHN}), \\
& (\mathrm{B} J O H N),(C \mathrm{JOHN})\}\} .
\end{aligned}
$$

Pattern p_{3} is the least pattem which when instantiated covers the inputs, and there are two inferred propositions:
(A JOHN) and (C JOHN).

The description given here has been necessarily brief and incomplete A more formal treatment of SYNIFESIZE in terms of lattice-theoretic operations is given in $(R, 75)$ and is summarized in (JR,75). One additional technical point should be made: It often happens that for a given input set there are no single pattern instances which cover all the inputs, though patterns exist whose instances cover subsets of the inputs. In such a case we use an extended SYNTHESIZE operation which is defined in the same spirit as SYNIHESIZE. (See (R,75).)

Even without the full formal treatment, several things should now be clear. First, the actual number of inferences drawn (propositions added) for a parricular input set may be small or large (depending on the inputs and the pattern set,) but it is bounded in a principled way because of the definition of SYNIHESIZE.

Second, the usual distinction between 'antecedent' and 'consequent' clauses in the pattern is not maintained; a clause in the pattern may serve as an antecedent on one occasion and a consequent on another.

Third, if 'defined' lexical items were to be associated with the patterns, noting which variables are to be bound as arguments upon instantiation, then the SYNIHESIZE function can be used to compute summarizing expressions. Thus SYNIHESIZE represents a possible formalism for lexical insertion.
IV. An Examole of the Operation SXNTHESIZE

For the sake of illustration, let the primitives be:
(BENIGN ?x)
(THREATEN ?x ?y) -- ?x threatens ?y
(GIVE ?x ?ob ?y) -- ?x gives ?ob to ?y
(BELONG ?ob ?x) -- ?ob belongs to ?x
(INTEND ?x ?Q) -- ?x intends to do ?Q
(REIURN ?x ?ob ?y) -- ?x retucrs ?ob to ?y
(FAYS-NHERESM ?x ?y) - ?x pays interest to ?y
(These primitives and the patterns below may appear somewhat artificial, but we have chosen a simple illustration due to the difficulties in following examples with inore than a few clauses.)

Let the pattern set consist of the following four patterns:
PAT-1: ?x borrows ?ob from ?y:
\{(BENIGN ?x), (BELONG ?OB ?y), (GIVE ?y ?Ob ?x),
(INTEND ?x (REIURN ?x ?OD ?y))\}
PAT-2: ?x takes-loan-from ?y:
\{(BENIEN ?x), (BELONG ?OD ?y), (GIVE ?y ?Ob ?x),
(INIEND ?x (REIURN ?x ?ob ?y)), (PAYS-INIEREST ?x ?y)\}
PAT-3: ?x robs ?y:
($(N O T$ (BENIGN ?x)), (BELONG ?Ob ?y), (THREATEN ?x ?y),
(GIVE ?y ?Ob ?x), (NOT (INIEND ?x (REIURN ?x ?ob ?y)))\}
PAT-4: ?x plays-practical joke on ?y:
f(benign ix), (belong ?ob ?y), (ThReaten ?x ?y),
(GIVE ?y ?ob ?x), (INTEND ?x (REIURN ?x ?ob ?y))\}

A rough graphic representation of the set of patterns is shown in Figure 1.

Figure 1

Now consider the following situations:
Situation 1. Input beliefs
Bel $=\{(B E L O N G$ WALLET HARRY), (GIVE HARRY WALLET MOE) $\}$
SYNIHESIZE (Bel) =
\{\{(BELONG WALIET HARRY), (BENIGN MOE), (GIVE HARRY WALJET MOE),
\therefore (INIEND MOE (REIURN MOE WALLET HARRY))\}
\{(NOT BENIGN MOE)), (BELONG WALLET HARRY), (THREATEN MOE HARRY), (GIVE HARRY WALIET MOE),
(NOT (INIEND MOE (REIURN MOE WALLEET HARRY)\}\}
The minimal matched patterns are rob and borrow, adding the (conjectural) information that either Harry was threatened, on Moe intends to return the wallet.

Situation 2. Input beliefs:
Bel $=\{(G I V E$ BAAK 1000-DOLLARS JOHNDOE),$($ PAYS-INTEREST JOHNDOE BANK) $\}$ SYNIHESIZE (Bèl) =
\{\{(BENIGN JOHNDOE), (BELONG 1000-DOLLARS BANK),
(GIVE BANK 1000-DOLARS JOHNDOE),
(INTEND JOHNDOE (REIURN JOHNDOE 1000-DOLLARS BANK)),
(PAYS-TNIEREST JOHNDOE BANK)\}
As a result of matching the loan pattern, we have added three clauses.

Situation 3. Input beliefs

Bel $=\{($ INIEND JOHNDOE (REIURN JOHNDOE 1000-DOLLARS BANK)), (PAYS-INIEREST JOHNDOE BANK) \}

Here SYNIHESIZE(Bel) returns exactly the same set as was returned in Situation 2. Note, however, that the roles of
(I) (GIVE BANK 1000-DOLIARS JOHNDOE)
and (2) (INIEND JOHNDOE (REIURN JOHNDOE 1000-DOLJARS BANK))
have been reversed. In Situation 2, (1) was an input and (2) was inferred, whereas in Situation 3, (2) was input and (1) inferred. The comresponding clauses of the loan pattern were serving as antecedents on one occasion and consequents on the other. This follows naturally from the way SYNIHESIZE was defined.

In this regard the reader may notice that some input belief sets might yield 'unwarranted' or 'spurious' inferences--jumping to too many conclusions. However, the incremental addition of new pattems corrects this anomaly in a natural way: Patterns which formerly were 'least covers' may cease to be so in the extended pattern set.

V. Using Definitions to Set Up the Pattern Space

We have been particularly interested in using definitions of words to set up pattern spaces in which SYNIHESIZE could work as an inferencer and a lexical insention technique. Special attention was payed to the 'speech act' verbs, and a brief sample list is presented below. (The symbol '?Pr' denotes a predicate variable. Also, primitive predicates are capitalized, while defined predicates are underlined.) Again, the definitions are greatly oversimplified for illustrative purposes.
(define tell (?x ?y ?p ?t)
(and (BEFORE ?t0 ?t)
(NOT (KNOW ?y ?p ?t0))
(SAY ?x ?y ?p ?t)
(KNOW ?y ?p ?t)
(CAUSE (SAY ?x ?y ?p ?t)(KNOW ?y ?p ?t))))
(define request (?x ?y ?p ?t)
(tell ?x ?y (WANT ?x ?p ?t) ?t))
(define promise (?x ?y ?Pr ?t)
(and (FEELS-OBLIGATED ?x (?Pr ?x) ?t)
(tell ?x ?y (INIEND ?x (?Pr ?x) ?t) ?t)))
(define cormand (?x ?y ?Pr ?t)
(and (AUIHORITY-OVER 3x ?y)
(request ?x ?y (?Pr ?y) ?t)))
(define implore (?x ?y ?Pr ?t)
(and (WANTS-FAVOR-FROM ?x ?y)
(request ?x ?y (?Pr ?y) ?t)))

The expansion of these items to patterns over the primitives yields a set in which, for example, $\mathrm{KNOW} \leq$ tell \leq request scommand. The input set Bel $=$ ($($ BEFQRE $t 1$ t2), (SAY JAMES MASTER (INTEND JAMES (OPEN JAMES DOOR) t2) t2), (FEELS-OBLIGATED JAMES (OPEN JAMES DOOR) t2)\}
would be synthesized to (promise JAMES MASTER (QPEN + DOOR) t2), with added inferences (KNOW MASTER (DTIHND JAMES (OPFN JNMES DCO:) t2) t2), etc., as dictated by the pattern instance of promise.
VI. Conclusion

A method has been proposed for 'free' inforencing by pattern matchirg in which inference cut-off can be structurally constrained: A pattern is matched if it is one of the minimal pafterns whose instantiation covers the input information-reven if this necessitates adding an arbitrenry amount of additional information. Similarly, on the question of how many inferences to draw: Enough extra inferences are drawn to enable a coherent pattern to be matched.

The method we have proposed is general in that it makes no assumptions about the particular predicates to be used in the patterns and beliefs. (Of course, it does make assumptions about what counts as a pattern or a belief.) The inferencing could be done by a general purpose component which accepts a set of patterns as a parameter. Thús, a progranmer designing a system for inference by pattern match need not" devise external criteria, and certainly not criteria to be associated with every pattern. Rather the criteria are implicit in the system as a whole; any patterns which can be described in a verv general pattern description language will generate its own set of internal criteria for inference cut-off.

We are continuing to investigate formalisms for structuring pattern sets in the hope of gaining further insights into this class of inferences.

References

(C,75) Clark, H.H. "Bridging," in Proceedings of the Workshop on Theoretical Issues in Natural Language Processing. Cambridge, Massachusetts., June 1975.
(JR,75) Joshi, A.K. and Rosenschein, S. "A Formalism for Relating Lexical and Pragmatic Information," in Proceedings of the Workshop on Theoretical Issues in Natural Language Processing. Cambridge, Massachusetts: June 19,75.
(Ri,74) Rieger, C. Conceptual Memory. Ph.D. Thesis Stanford University. Stanford, California. 1974.
(R,75) Rosenschein, S. Structuring a Pattern Space, with Applications to Lexical Information and Event Interpretation. Doctoral

Dissertation. University of Pennsylvania. Philadelphia, Pennsylvania. 1975.
(Sch,75) Schank, R., Goldman, N., Rieger, C., and Riesback, C. "Inference and Paraphrase by Computer " Journal of the A.C.M. Volume 22, No. 3. July, 1975.
(W,75) Wilks, Y. "A Preferential, Pattern-seeking Semantics for Natumal Language Inference." Artificial Intelligence. Volume 6. 1975.

[^0]: * This work was partially suppored by NSF' Grant SCC 72-05465A01.
 ** Author's current address: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012.

[^1]: * See also (C,75), (W,75).

