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Automatic Machine Translation (MT) evaluation is an active field of research, with a handful of
new metrics devised every year. Evaluation metrics are generally benchmarked against manual
assessment of translation quality, with performance measured in terms of overall correlation with
human scores. Much work has been dedicated to the improvement of evaluation metrics to achieve
a higher correlation with human judgments. However, little insight has been provided regarding
the weaknesses and strengths of existing approaches and their behavior in different settings. In
this work we conduct a broad meta-evaluation study of the performance of a wide range of eval-
uation metrics focusing on three major aspects. First, we analyze the performance of the metrics
when faced with different levels of translation quality, proposing a local dependency measure as
an alternative to the standard, global correlation coefficient. We show that metric performance
varies significantly across different levels of MT quality: Metrics perform poorly when faced with
low-quality translations and are not able to capture nuanced quality distinctions. Interestingly,
we show that evaluating low-quality translations is also more challenging for humans. Second,
we show that metrics are more reliable when evaluating neural MT than the traditional statistical
MT systems. Finally, we show that the difference in the evaluation accuracy for different metrics
is maintained even if the gold standard scores are based on different criteria.

1. Introduction

The use of automatic evaluation is a common practice in the field of Machine Translation
(MT). It allows for cost-effective quality assessment, making it possible to compare
different approaches to MT, optimize parameters of statistical MT systems, and select
models in neural MT systems. The most common approach to evaluation is based on the
assumption that the closer the MT output is to a human reference translation, the higher
its quality. For example, the well-known metric BLEU (Papineni et al. 2002) follows a
simple strategy of counting the proportion of word n-grams in the MT output that are
also found in one or more references.
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BLEU has been severely criticized for several of its limitations, such as its poor per-
formance at sentence-level and inadequate handling of recall (Callison-Burch, Osborne,
and Koehn 2006). Significant work has been dedicated to developing more advanced
metrics, primarily by integrating different sources of information (synonyms, para-
phrases, and syntactic and semantic analysis) and using learning techniques to appro-
priately combine them into a single score.

The performance of evaluation metrics is typically assessed in terms of system-
and sentence-level correlation with human judgments, mostly for the task of ranking
alternative MT system translations for the same source segment. Existing work on meta-
evaluation has extensively discussed the limitations of n-gram–based metrics (Coughlin
2003; Culy and Riehemann 2003; Koehn and Monz 2006), whereas the studies examining
the contributions of more advanced strategies, for example, the integration of linguistic
information (Amigó et al. 2009), are more rare. Influential evaluation campaigns such
as the WMT Metrics Task receive new metric submissions every year with many recent
metrics reported to outperform standard metrics like BLEU (Machácek and Bojar 2014;
Stanojević et al. 2015; Bojar et al. 2016c; Bojar, Graham, and Kamran 2017). However,
very little insight has been provided regarding where existing metrics succeed and
where they fail, and why.

Furthermore, the performance of evaluation metrics is known to be unstable across
evaluation settings. Metrics can be more or less reliable, depending on the target lan-
guage (and resources available for such a language), text type and genre, type of MT
system under evaluation, properties of human translation, and the quality aspect being
measured (e.g., adequacy vs. fluency). A closer look at the impact of such factors on the
behavior of different metrics will lead to a better understanding of existing approaches
and what still needs to be improved. We conduct a broad meta-evaluation study of a
wide range of metrics in varying evaluation settings focusing on three of such factors:
level of MT quality, type of MT system, and type of human judgment (i.e., the criterion
used to generate gold quality assessments manually).

Our first contribution is to demonstrate the effect of translation quality, as reflected
in human judgments, on the performance of automatic evaluation. It has been generally
assumed that the main reason for low correlation between metric scores and human
judgments is a poor performance of the metrics when evaluating high-quality transla-
tions, since the metrics tend to underestimate acceptable MT outputs that differ from
the available reference(s) but express the same meaning (Amigó et al. 2009; Padó et al.
2009). Via an in-depth analysis of the behavior of state-of-the-art evaluation metrics
on MT outputs with varying levels of quality, we show that this is not the case. On
average, metrics do a better job at evaluating high-quality MT, whereas low-quality
MT evaluation appears to be more challenging. We suggest that the reason for this is
two-fold. On the one hand, in the case of low-quality outputs the lack of information
resulting from the absence of candidate-reference matches is much more severe. On the
other hand, low-quality translation contains a higher number and variety of translation
errors whose impact is difficult to measure. We show that this latter factor also affects
the consistency of manual evaluation. In order to carry out this study, we borrow
methods from finance and econometrics that—to the best of our knowledge—have not
been applied in natural language processing. Specifically, we use a local dependency
measure recently proposed by Tjøstheim and Hufthammer (2013) to describe the re-
lation between metric scores and human judgments at different levels of translation
quality.

Our second contribution is to investigate how the performance of evaluation met-
rics is affected by the type of MT systems. Previous work has shown, for instance,
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that metrics such as BLEU heavily penalize translations from rule-based MT systems
compared with translations from statistical MT systems (Callison-Burch, Osborne, and
Koehn 2006). Given the recent success of neural MT, which has been leading to this
becoming the de facto approach to MT, the question arises of how reliable automatic
evaluation is for such systems. In this work we examine how existing evaluation metrics
perform on the output of neural MT, as compared with the conventional statistical
MT. We show that automatic evaluation results are more accurate for neural MT than
for statistical MT because of the difference in the distribution of different types of
translation errors.

Our third contribution is to show that the relative performance of different evalu-
ation metrics is maintained across varying types of human judgments. That is to say,
for example, that metrics that perform the best for evaluating adequacy also perform
the best for evaluating fluency. Thus, the results from meta-evaluation with a particular
type of manual assessment can be more often than not extrapolated to other quality
aspects.

The rest of this article is organized as follows. Section 2 introduces related work on
analyzing MT metrics from different perspectives. Sections 3 and 4 present the evalua-
tion metrics and the data sets used in our experiments. Section 5 describes the analysis
of automatic and manual evaluation in relation to MT quality levels. Section 6 analyzes
the differences in metric performance for statistical and neural MT. Finally, Section 7
compares the results of meta-evaluation using different types of human judgments.

2. Background and Related Work

Automatic MT evaluation has been at the core of MT development for decades. In
addition to comparing MT systems and measuring progress over time, with the ad-
vent of statistical approaches in the early 1990s it became evident that cost-effective
automatic metrics with reproducible outcomes were also needed for the building of
such systems (i.e., parameter tuning). A number of metrics were proposed to measure
distance or similarity against one or more human (reference) translations. Simplistic
metrics borrowed from speech recognition such as word error rate (WER) and its
position-independent variant (PER) were soon replaced by more elaborate metrics that
reward similarity beyond word-level, notably BLEU (Papineni et al. 2002), or perform
comparisons at stem and synonymy levels, rather than exact match only, namely, Meteor
(Banerjee and Lavie 2005). Nearly three decades on, automatic metrics still play a critical
role in MT research and development and, despite a handful of metrics proposed every
year, the problem is far from solved. Evidence of that is the annual campaign run by
the Conference on Machine Translation (WMT), which—among other tasks—invites
researchers to submit new evaluation metrics that are benchmarked against human
judgments in a Metrics Task (see Bojar, Graham, and Kamran [2017], Bojar et al. [2016c],
Stanojević et al. [2015], and Machácek and Bojar [2014] for the most recent task results).

Starting in 2005, WMT has conducted yearly evaluations of machine translation
quality using human judgments, as well as meta-evaluation of automatic evaluation
metric performance based on such human judgments. The nature of the human judg-
ments varied over the years, from 1- to 5-point scale scores for fluency and adequacy
for entire sentences or sentence constituents, to rankings of up to 5 translations from
different MT systems, to a 1–100 score per sentence according to its fluency or adequacy.
Different types of correlation with human judgments are computed (Pearson r, Kendal
τ, etc.), depending on the time of judgment and evaluation level (corpus or segment).
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For a recent summary over the various years of the meta-evaluation campaigns, we
refer the reader to Bojar et al. (2016b).

Initially, meta-evaluation focused on system-level analysis (Doddington 2002;
Melamed, Green, and Turian 2003; Lin and Och 2004a). In this scenario, a single
measurement is provided for a set of sentences generated by an MT system. For manual
evaluation, this is usually an average of sentence-level scores, whereas for automatic
evaluation system-level score is computed differently by different metrics. The corre-
lation is then computed over such average measurements collected for multiple MT
systems. System-level evaluation is useful for comparing the performance of different
MT systems and is generally an easy task for MT evaluation metrics. In fact, accord-
ing to the meta-evaluation shared tasks, such as the Metrics Task at WMT, the vast
majority of current metrics perform extremely well at ranking systems (system-level
evaluation), with correlations above 0.9 with human rankings. However, MT system
ranking is only one of the applications of such metrics and is not indicative of the
advantages and limitations of different MT systems. It has long been shown that in order
to ensure the reliability of evaluation metrics over different situations, correlation at the
sentence level is necessary (Banerjee and Lavie 2005). For the purposes of assessing
the performance of automatic evaluation metrics in this article, we thus concentrate
on sentence-level evaluation, which allows us to observe significant differences among
metrics.

Despite these major efforts to evaluate new and existing metrics, the results of the
annual Metrics Tasks are limited to the correlation between metric scores and human
judgments, providing no insight regarding the actual advantages and disadvantages
of the participating metrics, nor their performance on different types of translation or
translation systems. In fact, even the papers about the metrics themselves rarely attempt
to provide a more detailed account of their performance.

The first aspect of meta-evaluation discussed in this paper is how the level of
translation quality affects the performance of evaluation metrics. The difficulties faced
by the metrics change, depending on the quality of MT output. High-quality transla-
tion presents the problem of acceptable variation between the MT output and human
reference (Giménez and Màrquez 2010b). Low-quality translation, on the other hand,
requires an ability to assess the impact of different types of MT errors (Liu and Gildea
2005). However, hardly any rigorous meta-evaluation analysis has been performed that
would indicate which problem is more damaging for the overall metrics performance.
Besides very few exceptions, the analysis is limited to computing the correlation with
human judgments.

One notable exception is the work by Amigó et al. (2009). Following substantial
research dedicated to the use of linguistic information in automatic MT evaluation,
Amigó et al. (2009) analyze the benefits of introducing linguistic features into evaluation
metrics. They introduce various meta-evaluation criteria to provide a better under-
standing of the reliability of different evaluation methods, focusing on the comparison
between linguistically informed metrics and the traditional n-gram based approaches.
First, they test the metrics capability to accurately reveal improvements between two
systems. Second, they analyze to what extent a metric can be trusted if it predicts that
the translation is very good or very bad. Finally, they test whether the metrics are able
to identify good MT if it is different from the reference provided.

For the second criterion, Amigó et al. (2009) count the number of cases where
the quality predicted by the metric is very low, while the quality predicted by the
human is very high, and vice versa. This analysis is the closest to ours. However, as
will be shown in what follows, we ask a different, more general question: How well
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can the metrics evaluate low-quality translation and high-quality translation, without
limiting ourselves to the cases where the results are contradictory between the metrics
and human assessments. To answer this question, we propose a principled, formally
grounded analysis of human–metric correlation at different levels of translation quality.

Another direction for meta-evaluation analysis is the consistency of human eval-
uation. Manual assessment is taken to be the gold standard for the performance of
automatic evaluation metrics. However, translation evaluation is a challenging task not
only for automatic metrics, but also for human annotators. The perception of trans-
lation quality is subjective and depends on individual background and expectations
of the participants. No clear guidance is typically provided regarding what should be
considered acceptable, what should not be, and to what extent. The levels of inter- and
intra-annotator agreement for the MT evaluation task has been fairly low (Denkowski
and Lavie 2010; Graham et al. 2017). An alternative view is to accept the possibility of
multiple correct assessments and take their average as the ground truth. This method
has been successfully used in the last two years of the WMT campaign. In this work,
we use the data obtained using this method to determine whether it is more difficult for
human annotators to deal with low-quality translations.

A final aspect of meta-evaluation analysis explored in this work is the relation
between metric performance and MT approaches. It has been previously shown that
the reliability of automatic evaluation varies, depending on the type of MT system being
evaluated. Callison-Burch, Osborne, and Koehn (2006) found that n-gram–based metrics
tend to favor statistical systems over rule-based ones, as they are more likely to match
the sub-language (e.g., lexical choice and order) represented by reference translations.
With the advent of neural MT (Bahdanau, Cho, and Bengio 2014; Sutskever, Vinyals,
and Le 2014), it becomes important to test whether existing metrics perform differently
on the outputs of these systems. Some recent studies have analyzed the differences
between statistical MT and neural MT, concluding that neural MT reduces the num-
ber of word order errors and, in general, improves fluency, sometimes at the cost of
adequacy (Junczys-Dowmunt, Dwojak, and Hoang 2016; Castilho et al. 2017; Toral and
Sanchez-Cartagena 2017). However, no previous work has evaluated the performance
of automatic evaluation metrics on the output of neural versus other MT approaches.

3. MT Evaluation Metrics

In this section we present the metrics used in the experiments. Although many more
metrics exist, we considered those for which either implementation or results for a given
data set are available, and which are less reliant on external resources. For each metric
in the following description we indicate the specific implementation used. To facilitate
reproducibility, we used a set of metrics from the Asiya toolkit (Giménez and Màrquez
2010a), which can be run all at once, and additionally the most recent developments in
the MT evaluation, including the top metrics that participated in the WMT14–WMT17
evaluation campaigns.

Lexical Similarity. Most of the metrics used are based on the lexical similarity between
the MT output and the reference translation. These are:

BLEU. (Bilingual Evaluation Understudy) (Papineni et al. 2002). Measures the similarity
between MT and the reference translation based on the number of matching word
n-grams. Specifically, BLEU score is a product between n-gram precision and a brevity
penalty that down-scales the score for the MT outputs that are shorter in length than the
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reference translation. In all the experiments with this metric, we use a smoothed version
of BLEU as described by Lin and Och (2004b) with N = 4.

Meteor. (Denkowski and Lavie 2014). Meteor aligns MT output to the reference trans-
lation using stems, synonyms, and paraphrases, besides exact word matching, and
computes candidate-reference similarity based on the proportion of aligned words in
the candidate and in the reference. Different weights are assigned to the word matches,
depending on the type of lexical similarity, and to function and content words. Ad-
ditionally, Meteor integrates a fragmentation penalty that penalizes the differences in
word order. It is based on the number of chunks (sequential word matches) in candidate-
reference alignment. The final Meteor score is a parametrized combination of F-measure
and fragmentation penalty.

MPEDA. (Zhang et al. 2016). MPEDA is based on Meteor but uses a domain-specific
paraphrase database instead of a general one to reduce noisy paraphrase matches. To
extract domain-specific paraphrases, Zhang et al. (2016) first filter the large scale general
monolingual corpus into a domain-specific sub-corpus using the M-L approach (Moore
and Lewis 2010), and then exploit the Markov Network model to extract paraphrase
tables from that sub-corpus.

-WER. (Word Error Rate) (Nießen et al. 2000). WER is based on the edit distance defined
as the minimum number of word substitutions, deletions, and insertions that need to be
performed to convert MT output into the reference translation.1

-PER. (Position-independent Word Error Rate) (Tillmann et al. 1997). WER may be
considered excessively strict for automatic MT evaluation as it does not allow any dif-
ferences in word order. PER addressed this limitation by comparing MT and reference
words without taking the word order into account.

-TER. (Translation Edit Rate) (Snover et al. 2006). This metric is also based on edit
distance. However, in contrast to WER and PER, in TER possible edits include shifts
of words and word sequences.

-TERp-A. (Snover et al. 2009). This metric enriches TER with stemming, synonyms,
lookup, and paraphrase support. The metric is optimized for the adequacy criterion.

NIST. (Doddington 2002). NIST differs from BLEU in two aspects. First, to handle
the low co-occurrences for larger values of N, an arithmetic mean is used instead of
a geometric mean when combining the precisions of n-gram matches. Second, the n-
grams are weighted depending on their frequency in a reference corpus, assuming that
high frequency n-grams are less informative. We use the standard cumulative 5-gram
NIST score.

ROUGE. (Recall-Oriented Understudy for Gisting Evaluation) (Lin and Och 2004a).
ROUGE computes lexical recall among n-grams up to length 4. It also allows for

1 For the metrics based on edit distance WER, PER, TER, and TERp-A, we will use -WER, -PER, -TER, and
-TERp-A to make the results more easily comparable with the rest of the metrics.
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considering stemming and discontinuous matchings (skip bigrams). We used five dif-
ferent variants from Lin and Och (2004a) implemented in Asiya toolkit:2

• ROUGE-n: for several N-gram lengths N ∈ [1, 4]

• ROUGE-L: longest common subsequence

• ROUGE-S: skip bigrams with no max-gap-length

• ROUGE-SU: skip bigrams with no max-gap-length, including unigrams

• ROUGE-W: weighted longest common subsequence with weighting factor
w = 1.2

ChrF. ChrFβ (Popovic 2015, 2016) is a recently proposed evaluation metric that calcu-
lates the F-score of character n-grams of maximal length 6. The β parameter gives β
times weight to recall. Using characters instead of words helps ameliorate the sparcity
of word n-gram matches and better handle morphological differences. Throughout this
article we use ChrF3 with β = 3, as suggested by Popovic (2015).

Linguistic Representations. To overcome the limitations of the metrics based on lexical
similarity, another family of evaluation metrics explores the use of different linguistic
representations (morphological, syntactic, semantic, and discourse) for comparing the
MT output against the reference translation. The motivation behind these metrics is, on
the one hand, to abstract away from surface word forms and, on the other hand, to try
to better assess the grammaticality of the MT output.

UPF-Cobalt. UPF-Cobalt (Fomicheva et al. 2015; Fomicheva and Bel 2016) is an
alignment-based metric that incorporates a syntactically informed context penalty to
penalize the matches of lexically similar words that play different roles in the candidate
and reference sentences. The sentence-level score combines the information on lexical
similarity with the average context penalty. Word similarity is detected in various ways,
including cosine similarity over distributed word representations.

SP-∗. SP metrics (Giménez and Màrquez 2010a, 2010b) measure the similarities at the
level of parts of speech, word lemmas, and base phrase chunks. Sentences are automat-
ically annotated using the SVMTool (Giménez and Marquez 2004) linguistic processors.
Specifically, the following metrics are defined:

• SP-Op(*): Average overlap between words belonging to the same part of
speech

• SP-Oc(*): Average overlap between words belonging to chunks of the
same type

• SP-NISTl|p|c|iob: NIST score over sequences of lemmas, parts of speech,
phrase chunks, and chunk IOB labels3

2 For this and the following Asiya metrics with multiple variants, we report only the best-performing
variant in our experiments.

3 IOB labels indicate the position (Inside, Outside, or Beginning) and type of chunk.
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DP-∗. DP metrics (Giménez and Màrquez 2010a, 2010b) capture similarities between
dependency trees associated with MT outputs and reference translations. Dependency
trees are obtained using MINIPAR (Lin 2003). Specifically, the following metrics are
defined:

• DP-HWCM: Head-Word Chain Matching (Liu and Gildea 2005). Only
chains up to length 4 are considered. Three different variants according to
the item type are available:

– DP-HWCM(w) word forms
– DP-HWCM(c) grammatical categories
– DP-HWCM(r) grammatical relations

• DP-Ol(*) Average lexical overlap between items according to their tree
level

• DP-Oc(*) Average lexical overlap between terminal nodes according to
their grammatical category

• DP-Or(*) Average lexical overlap between items according to their
grammatical relationship

CP-∗. CP metrics (Giménez and Màrquez 2010a, 2010b) analyze similarities between
constituent parse trees associated with MT outputs and reference translations. Con-
stituent trees are obtained using the Charniak-Johnson’s Max-Ent reranking parser
(Charniak and Johnson 2005). The following measures are defined:

• CP-Op(*) Average overlap between words belonging to the same part of
speech.

• CP-Oc(*) Average overlap between words belonging to constituents of the
same type

• CP-STMd This measure corresponds to the Syntactic Tree Matching
defined by Liu and Gildea (2005), except that overlap is used instead of
precision. Subtrees up to different d depths (d ∈ 4, 5, 6) are considered.

SR∗. SR metrics (Giménez and Màrquez 2010a, 2010b) analyze similarities between MT
outputs and reference translations by comparing the semantic roles (SRs) (i.e., argu-
ments and adjuncts) that occur in them. Sentences are automatically annotated using
the SwiRL package (Surdeanu and Turmo 2005). The following measures are defined:

• SR-Or(*): Average lexical overlap over semantic roles

• SR-Mr(*): Average lexical matching over semantic roles

• SR-Or: Average role overlap, i.e., overlap between semantic roles
independently of their lexical realization

Feature Combination. The most recent improvements in the performance of evaluation
metrics is related to the use of machine learning techniques in order to combine a wide
variety of features describing different aspects of MT quality. To be able to train on WMT
ranking data and produce absolute scores at test time, most of the metrics described here
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(unless stated otherwise) use the learn-to-rank approach (Burges et al. 2005) for tuning
the feature weights.

BEER. BEER (Stanojević and Sima’an 2014) is a trained evaluation metric with a linear
model that combines lexical similarity features (precision, recall, and F-score over word
and character n-gram matches) and features based on Permutation Trees (Zhang and
Gildea 2007) to account for differences in word order.

DPMFComb. DPMF (Yu et al. 2015) is a syntax-based metric that parses the reference
translation with a standard parser and trains a new parser on the tree of the reference
translation. This new parser is then used for scoring the MT output. DPMF uses an F-
score of unigrams in combination with the syntactic score. DPMF performs quite poorly
as an individual metric. To boost performance DPMFComb (Yu et al. 2015) combines
DPMF and the lexical, syntactic, and semantic metrics from the Asiya evaluation toolkit
(Giménez and Màrquez 2010a) in a learning framework.

Cobalt-F-comp and Metrics-F. Cobalt-F-comb and Metrics-F (Fomicheva et al. 2016)
combine features extracted from UPF-Cobalt with reference-free features that capture
translation fluency. Cobalt-F-comb combines various components of UPF-Cobalt with
a series of fine-grained features intended to capture the number and scale of disfluent
fragments contained in the MT outputs. Metrics-F is a combination of three evaluation
metrics, BLEU, Meteor and UPF-Cobalt, with the fluency-oriented features.

UoW-ReVal. UoW-ReVal (Gupta, Orasan, and van Genabith 2015) uses a dependency-
tree Long Short-Term Memory (LSTM) network to represent both the MT output and
the reference with a dense vector. The segment level scores are obtained from a neural
network that takes into account both the distance and the Hadamard product of the
two representations. Training is performed on WMT ranking judgments converted to
similarity scores.

QualityEstimation. Different from reference-based evaluation metrics, Quality Estima-
tion (QE) metrics (Blatz et al. 2004; Specia et al. 2009) aim to predict the quality of a
machine translated segment solely from information about the segment itself and its
corresponding source segment (and optionally) information about the MT system that
produced the translation. The problem is framed as a supervised machine learning task,
where, given source-MT pairs annotated with a quality label, a number of features can
be extracted and used to train a machine learning algorithm. Sentence-level QE has been
covered as a shared task in the last six editions of the Conference on Machine Translation
(WMT) (see Bojar et al. (2017) for the state-of-the-art approaches and latest results). In
our experiments we use the best performing system from the WMT17 QE estimation
task, the POSTECH system (Kim, Lee, and Na 2017). This is a neural prediction system
that relies on two components (each based on a bidirectional long short-term memory
unit): a predictor, which extracts in unsupervised ways “quality” vector representations
from good examples of translations (i.e., large parallel corpora of human translations)
and an estimator, which use the quality vectors and human quality labels to build
prediction models.
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4. Data Sets

This section presents the various data sets used in our meta-evaluation study. Each of
them contains a number of original and reference sentences, as well MT outputs pro-
vided by one or various MT systems. They also contain manual assessments provided
based on different quality criteria (adequacy, fluency, post-editing effort) collected using
several different methods (interval-level scale, continuous scale, pairwise preference).
These particular data sets were selected with the following criteria in mind: wide use in
the community, availability of automatic evaluation results for the most recent evalua-
tion metrics, availability of neural MT, and variability in the type of human judgments.
With the exception of the MTSummit17 English-Latvian data set (see Section 4.5), all of
the selected data sets contain into-English translations, as many evaluation metrics are
available only for English.

4.1 WMT16 Direct Assessment Data Set

This data set (Bojar et al. 2016c) consists of source sentences, reference translations,
and the outputs of the MT systems that participated in the WMT16 News Transla-
tion Task (Bojar et al. 2016a). Human quality judgments were collected according to
the adequacy criterion following the Direct Assessment (DA) procedure described in
Graham, Mathur, and Baldwin (2015) for all available into-English language pairs. More
specifically, human assessors were asked how much of the meaning of the reference
translation was preserved in the MT output. The evaluation was performed using a 0–
100 rating scale. Raw human scores were converted into z-scores, that is, standardized
according to an individual annotator’s overall mean and standard deviation. Up to 15
assessments were collected for each MT output from different assessors and the results
were averaged to obtain the final score. A total of 560 MT segments sampled randomly
from the data were annotated by humans for each language pair, resulting in a total
of 3,360 segments of into-English translations. The distribution of the normalized and
averaged DA scores is shown in Figure 1.4

4.2 WMT16 Ranking Data Set

This data set (Bojar et al. 2016c) includes source texts, human reference translations,
and the outputs from the MT systems participating in the WMT16 News Translation
Task, for into-English and out-of-English translation for six languages (Czech, German,
Finnish, Romanian, Russian, and Turkish). For manual evaluation, annotators were
presented with the source sentence, its human translation, and the outputs of different
MT systems and asked to rank the MT outputs from best to worst. Annotations were
collected from volunteers from the participating research teams. For efficiency reasons,
annotators were asked to compare the outputs of five MT systems (randomly sampled
from the data set) for each sentence at once and rank them from best to worst. From this
compact annotation, 10 pairwise ranking judgments can be extracted for each sentence
in a straightforward way. For example, if a judge ranked the outputs of the systems A, B,
C, D, E as A> B>C>D> E, then A> B, A>C, A>D, A> E, and so forth. It should be

4 Because automatic evaluation metrics compute the scores based exclusively on the MT output and the
reference translation, for our experiments we combine all available assessments for into-English
translations, ignoring the source language in order to have more data for the analysis.

524



Fomicheva and Specia Taking MT Evaluation Metrics to Extremes

Figure 1
Distribution of adequacy scores in the WMT16 Direct Assessment data set.

Table 1
Number of pairwise preference judgments for the WMT16 data set.

Language pair # judgments

Czech–English 70,000
German–English 15,000
Finnish–English 19,000
Romanian–English 11,000
Russian–English 18,000
Turkish–English 7,000

noted that neither the absolute value of the ranking, nor the degree of the difference, is
taken into consideration. Table 1 shows the number of pairwise judgments per language
pair for the into-English part of this data set that we use in our experiments.

4.3 Multiple-Translation Chinese Data Set

Multiple-Translation Chinese Data set (MTC) is a Chinese–English data set
(LDC2006T04) that contains 919 source sentences from the news domain, 4 reference
translations,5 and MT outputs generated by 10 translation systems. Human judgments
were collected for two criteria, both on a 5-point scale: adequacy and fluency, based on
the following questions:

How much of the meaning expressed in the gold-standard translation is also expressed
in the target translation?

• 5 = All

• 4 = Most

• 3 = Much

5 In our experiments we randomly selected one of the four human references to be used for evaluation, as
many of the evaluation metrics considered are not equipped to be used with multiple references.
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Figure 2
Distribution of adequacy and fluency scores in the MTC data set.

• 2 = Little

• 1 = None

How do you judge the fluency of this translation? It is:

• 5 = Flawless English

• 4 = Good English

• 3 = Non-native English

• 2 = Disfluent English

• 1 = Incomprehensible

In both cases, the assessments were provided by two annotators. We use their
average as the final score. The distribution of adequacy and fluency scores is shown
in Figure 2.

4.4 WMT17 Quality Estimation German–English Data Set

This data set belongs to the pharmaceutical domain and provides translations from
German into English. It was originally used for the WMT17 shared task on QE (Bojar
et al. 2017). Automatic translations were generated with a statistical phrase-based MT
system (corpus-level BLEU score = 0.534) and post-edited by professional translators.
After post-editing each segment, translators rated them using a 1- to 4-point scale,
according to the effort they needed to fix the translation. More specifically, the following
question was asked of the translators: How good was the machine translation?, with the
following possible answers:

• 1 = Perfect or near perfect (typographical errors only)

• 2 = Very good, could be post-edited quickly

• 3 = Poor, required significant post-editing

• 4 = Very poor, required retranslation
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Figure 3
Distribution of post-editing effort scores in the WMT17 Quality Estimation data set.

For our experiments we only used the test partition of the corpus, which has 2,000
sentences, since we needed quality predictions in addition to human labels. Figure 3
shows the distribution of the human scores for the test partition of the data set. As we
can see, most sentences are judged as near-perfect translations, which makes prediction
particularly challenging for quality estimation metrics.

4.5 MTSummit17 English–Latvian Data Set

This data set (Specia et al. 2017) contains segments in the IT domain, from English into
Latvian. Two models trained on exactly the same parallel data were built using statis-
tical (corpus-level BLEU score = 0.465) and neural (corpus-level BLEU score = 0.384)
MT approaches. Translations for the same 20,738 source segments produced by both
neural and statistical MT (in total, 41,476 segments) were post-edited by professional
translators and the quality of the raw MT assessed using the same 4-point scale scheme
as for the WMT17 Quality Estimation German–English data set. The distribution of the
scores for statistical and neural MT systems is shown in Figure 4. The average human
scores are 1.64 for the statistical MT system and 1.84 for the neural MT system.

This data set also has a sample of 2,000 segments for each MT system type annotated
for errors at the word level. More specifically, a subset of sentences scored as 2 (very
good) were annotated such that all issues resolved during the PE phase were classi-
fied using the Multidimensional Quality Metrics (MQM) error annotation framework
(Lommel, Burchardt, and Uszkoreit 2014). The list of errors is divided into the main

Figure 4
Distribution of post-editing effort scores for statistical and neural MT systems, respectively, in
the MTSummit17 data set.
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Table 2
Percentage of translation errors in the output of statistical and neural MT (NMT) systems,
respectively, for the MTSummit17 data set.

SMT NMT
# % # %

Fluency 156 8.7 146 8.1
Grammar 6 0.3 0 0.0

Function words 0 0.0 0 0.0
Extraneous 21 1.2 23 1.3
Incorrect 25 1.4 24 1.3
Missing 31 1.7 12 0.7

Word form 128 7.1 134 7.4
Tense/aspect/mood 21 1.2 23 1.3
Part of speech 16 0.9 14 0.8
Agreement 159 8.8 125 6.9

Word order 180 10.0 73 4.1
Spelling 105 5.8 133 7.4
Typography 343 19.1 179 9.9
Unintelligible 5 0.3 7 0.4

Accuracy 18 1.0 22 1.2
Addition 151 8.4 128 7.1
Mistranslation 150 8.3 382 21.2
Omission 221 12.3 327 18.2
Untranslated 46 2.6 29 1.6

Terminology 17 0.9 19 1.1

Total: Fluency 1,196 66.4 893 49.6
Total: Accuracy 586 32.6 888 49.3

issue categories accuracy, fluency, and terminology, which fold into a selection of more
detailed categories from the MQM hierarchy. The set of all 20 error categories used in
the annotation are shown in Table 2. Annotators were instructed to use the subcategories
whenever possible and to resort to the more general category level only in case of
doubt. We note that very often annotators backed off to the most general category in
this particular data set.

4.6 GALE Arabic–English Data Set

Three Arabic newswire data sets produced as part of the DARPA GALE project are used:
MT08, GALE09, and GALE10, containing 813, 683, and 1,089 sentences, respectively.
Each data set was translated into English by two in-domain phrase-based SMT systems,
system 1 and system 2, and annotated for adequacy in previous work for quality
estimation (Specia et al. 2011).

Translation adequacy annotations were provided by two Arabic–English profes-
sional translators, who judged the translations along with the source sentences. Each
translation was annotated once (for each translation, one translator was randomly
selected). A 4-point scale was used to answer the question To which degree does the
translation convey the meaning of the original text?”:

• 4 = Highly adequate

• 3 = Fairly adequate
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Figure 5
Distribution of adequacy scores in the GALE data set.

• 2 = Poorly adequate

• 1 = Completely inadequate.

For the purposes of this work, we combined the three data sets together and used
the MT outputs from system 1. The distribution of human scores is shown in Figure 5.

4.7 EAMT11 French–English Data Set

The EAMT11 data set (Specia 2011) contains 2,525 French source sentences in the news
domain and their translation into English produced by a phrase-based statistical MT
system (corpus-level BLEU score = 0.25), as well as a human reference translation. The
source segments come from the WMT news-test2009 data set (Callison-Burch et al.
2010). In addition, the EAMT11 data set contains the post-edition of the MT output
generated by professional translators, as well as an absolute score on the post-editing
effort required to fix the translations, as given by the human translator on a 4-point
scale:

• 1 = Requires complete retranslation

• 2 = Requires some retranslation, but post-editing still quicker than
retranslation

• 3 = Very little post-editing needed

• 4 = Fit for purpose

The distribution of the scores for this data set is shown in Figure 6.

5. Metrics across Translation Quality Levels

Correlation with human judgments is by far the most widely used measure for assessing
the accuracy of automatic evaluation. Although it is a good indicator of the overall
performance of evaluation metrics and allows us to compare different approaches,
correlation alone provides no indication regarding the weaknesses of a given evaluation
method. The use of correlation as the only measure for assessing the metrics perfor-
mance has received some criticism, but alternative methods have hardly been discussed
(see Section 2).
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Figure 6
Distribution of post-editing effort scores for the EAMT11 data set.

Automatic evaluation can go wrong in different ways. Given that there are multi-
ple correct translations for the same source sentence, estimating quality based on the
similarity to one reference translation may lead to penalizing perfectly acceptable MT
outputs. Accurately evaluating an imperfect translation is also difficult, since transla-
tions that contain the same number of reference words can be incorrect to a varying
extent (e.g., lack of agreement vs. omitting content-bearing words). In this section we
investigate what is more challenging or causes problems more often: evaluating low-
quality or high-quality translation. We will refer to this intuitively general distinction as
quality levels, whereas more specific definitions can only be provided based on criteria
established in a given evaluation setting.

In what follows we divide our analysis according to the general type of quality label
used: continuous (Section 5.1) versus discrete (Section 5.2). We do so because different
types of labels require different methods to assess the performance of metrics. Most of
the analysis concentrates on continuous human scores, as these seem to be the most
widely accepted nowadays. In addition, we examine human consistency on quality
judgments for different levels of quality, as the lack of consistency can undermine the
results of meta-evaluation (Section 5.3).

5.1 Continuous Human Scores

For continuous scores analysis, we use the WMT16 DA data set. Recall from Section 4.1
that this data set contains human assessments based on the adequacy criterion collected
using a continuous 0–100 scale. The assessments of each annotator were converted to
z-scores in order to avoid individual bias. Each MT output was evaluated by up to 15
annotators and the average of individual scores was used as the final segment-level
score.

We start by examining the scatter plots for various evaluation metrics (Figure 7).
Metric and human scores are plotted on the x-axis and y-axis, respectively. A good
metric would be expected to have the points close to a straight line, indicating a high
correlation with human scores. The plots for the different metrics look fairly similar,
with the exception of BLEU. In contrast to the rest of the metrics, BLEU assigns very
low scores to the majority of translations due to the sparseness of n-gram matches
with the references. The advanced feature-based metrics that incorporate linguistic
information, Metrics-F and DPMFcomb, have the data points closer to the diagonal
and fewer outliers than lexical matching-based approaches. Another difference between
these metrics and the ones based on lexical matching is that the MT outputs exactly
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(a) BLEU (b) -TER

(c) ChrF3 (d) BEER

(e) Metrics-F (f) DPMFcomb

Figure 7
Scatter plots illustrating the correlation (r) between metric and human scores for the WMT16 DA
data set. Metric and human scores are plotted on the x-axis and y-axis, respectively.

matching the reference is less clearly separated from the rest of the data.6 Thus, a simple
visual inspection of the scatter plots already provides some insights into the metrics’
behavior. It does not suffice, however, to describe the performance of evaluation metrics
in relation to MT quality.

If the accuracy of automatic evaluation indeed changes depending on the level of
translation quality, the strength of the relationship between metric and human scores
should be different in the subsets of data corresponding to different (human) quality
levels. Computing the correlation coefficient for two random variables conditioned on

6 The spread of human direct assessment scores for the MT outputs that have maximum automatic
evaluation score (i.e., exactly match the reference) is due to the fact that direct assessment scores were
obtained by averaging z-scores from individual annotators (Section 4.1).
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the realizations of one of them is a well-known problem in the domain of finance, where
it needs to be handled in order to study financial contagion (i.e., to determine whether
financial markets become more interdependent during financial crises [Longin and
Solnik 2001; Hong, Tu, and Zhou 2006]). A naive approach would consist of measuring
the ordinary Pearson correlation coefficient in various sub-samples of data. This method
is referred to as conditional correlation or ”correlation breakdown” (Bertero and Mayer
1990; Baig and Goldfajn 1999). It has been shown, however, that tests for changes in
correlation that do not take into account conditional heteroskedasticity (the fact that
the variability of a random variable can be unequal across the range of values) may be
severely biased (Forbes and Rigobon 2002). Although aware of its limitations, we first
look at this naive approach and then explore a more complex strategy that avoids such
limitations.

Conditional Correlation. Formally, as defined in Tjøstheim and Hufthammer (2013), given
two variables X1 and X2 with observed values (X1i, X2i), i = 1, ..., n the correlation
between X1 and X2 conditional on being in a region of values A is given by:

p̂c(A) =

∑
(X1i,X2i )∈A

(X1i − µ̂X1,c)(X2i − µ̂X2,c)( ∑
(X1i,X2i )∈A

(X1i − µ̂X1,c)2
)1/2( ∑

(X1i,X2i )∈A
(X2i − µ̂X2,c)2

)1/2 (1)

where µ̂X1,c = 1
nA

∑
(X1i,X2i )∈A

X1i and µ̂X2,c = 1
nA

∑
(X1i,X2i )∈A

X2i, with nA being the number of

pairs with (X1i, X2i) ∈ A.
In the context of MT evaluation, the variables X1 and X2 correspond to metric and

human scores, whereas A refers to the regions of values with different levels of trans-
lation quality. The regions of values representing different quality levels can be defined
in various ways. If human scores are provided on a continuous scale one can either use
the absolute value of the scores to split the data, or use quantiles as cutoff points. For
the WMT16 DA data set the first option would imply dividing the data based on the
scores from the 0–100 scale that was used for collecting human judgments. However,
as discussed in Graham, Mathur, and Baldwin (2015), standardized human scores are
more reliable as the gold standard for assessing metric performance, as they neutralize
the bias of individual annotators. Therefore, we use z-scores for the analysis presented
in this section and split the data based on quantiles as cutoff points. In addition, splitting
the data based on quantiles allows us to have the same number of data points in each
quality band and thus facilitates the comparison of the behavior of the metrics. 7

Furthermore, the data can be split with different levels of granularity. For instance,
a two-way split can be done resulting in two levels that would correspond to low- and
high-quality translation. To check how accurately the metrics can assess translations in
the medium quality range in addition to the extremes, the data can be further split into
more levels.

Tables 3 and 4 show the conditional correlation between metric scores and human
judgments for two granularity levels: two quantiles and four quantiles. We start with a
binary split (Table 3) using the median of the human scores as the cutoff point, resulting

7 Note, however, that quality levels defined in this way should be interpreted in relative terms, namely,
lower quality vs. higher quality for this data set.
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Table 3
Conditional Pearson correlation with direct assessment scores for popular and top scoring
metrics from the WMT16 Metrics for high-quality and low-quality data partitions. † indicates
that the correlation for high-quality data samples (Qhigh and Q∗high) is significantly different from
the correlation for the low-quality data sample (Qlow). In each column, results for the metrics that
are not significantly outperformed by any other metric are marked in bold.

Qlow Qhigh Q∗high All

Meteor 0.313 0.514† 0.420† 0.570
-TERp-A 0.265 0.459† 0.394† 0.570
MPEDA 0.313 0.512† 0.417† 0.568
ROUGE-SU* 0.274 0.453† 0.373† 0.551
ChrF3 0.321 0.425† 0.336 0.541
NIST-4 0.258 0.415† 0.327 0.508
BLEU-4 0.159 0.462† 0.360† 0.488
-TER 0.129 0.433† 0.358† 0.462
-WER 0.090 0.458† 0.387† 0.456
-PER 0.175 0.361† 0.281† 0.422

UPF-Cobalt 0.256 0.467† 0.394† 0.566
CP-Oc(*) 0.225 0.453† 0.359† 0.527
SP-lNIST 0.272 0.416† 0.328 0.512
DP-Oc(*) 0.112 0.395† 0.322† 0.424
SR-Or(*) 0.137 0.273† 0.244† 0.371

DPMFcomb 0.314 0.512† 0.438† 0.615
Metrics-F 0.271 0.528† 0.447† 0.612
Cobalt-F-comp 0.231 0.530† 0.463† 0.599
BEER 0.315 0.422† 0.328 0.534
UoW-ReVal 0.217 0.441† 0.375† 0.525

in two samples: top 50% and bottom 50% of the data, each containing 1,680 sentences
and corresponding to “lower” (Qlow) and “higher” (Qhigh) quality translations. In order
to avoid obvious biases, we computed the correlation for the high-quality sample,
eliminating the sentences where MT output exactly matches the reference, that is, the
cases where the metric scores are guaranteed to be correct (column Q∗high in Table 3).
Column All shows the correlation results for the full data set.8

In Table 4 we test how accurately the metrics can assess translations in the middle of
the quality range. We split the WMT16 DA data set using four quantiles based on human
scores as the cut-points. This results in four samples: top 25%, mid-high 25%, mid-low
25%, and bottom 25% of the data (which we call Q1-Q4), each containing 840 sentences.
As before, column Q∗4 shows the correlation for the high-quality sample, eliminating the
sentences where MT output exactly matches the reference, that is, the cases where the
metric scores are guaranteed to be correct.

The metrics in Tables 3 and 4 are divided into three groups, as discussed in Section
3. The first group corresponds to the metrics based on lexical similarity. The second

8 The results presented here differ from the official WMT16 results, as the latter were computed separately
per language pair (see Section 4.1).
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Table 4
Conditional Pearson correlation with direct assessment scores for popular and top scoring
metrics from the WMT16 Metrics Task for a four-way split of the data set resulting in data
samples corresponding to four quality levels (Q1–Q4). † and ‡ indicate, for each column, if the
correlation is significantly different from the correlation in Q1 and Q4, respectively. In each
column, results for the metrics that are not significantly outperformed by any other metric are
marked in bold.

Q1 Q2 Q3 Q4 Q∗4 All

Meteor 0.198‡ 0.151‡ 0.163‡ 0.514† 0.347† 0.570
-TERp-A 0.168‡ 0.113‡ 0.180‡ 0.404† 0.287† 0.570
MPEDA 0.200‡ 0.150‡ 0.166‡ 0.512† 0.343† 0.568
ROUGE-SU* 0.199‡ 0.118‡ 0.193‡ 0.398† 0.252 0.551
ChrF3 0.218‡ 0.119†‡ 0.139‡ 0.375† 0.219 0.541
NIST-4 0.189‡ 0.109‡ 0.137‡ 0.397† 0.246 0.508
BLEU-4 0.051‡ 0.084‡ 0.136‡ 0.453† 0.282† 0.488
-TER 0.051‡ 0.056‡ 0.172†‡ 0.388† 0.254† 0.462
-WER 0.031‡ 0.048‡ 0.189†‡ 0.404† 0.276† 0.456
-PER 0.115‡ 0.072‡ 0.133‡ 0.351† 0.212† 0.422

UPF-Cobalt 0.150‡ 0.122‡ 0.170‡ 0.403† 0.275† 0.566
CP-Oc(*) 0.164‡ 0.078‡ 0.172‡ 0.431† 0.270† 0.527
SP-lNIST 0.198‡ 0.109‡ 0.141‡ 0.392† 0.241 0.512
DP-Oc(*) 0.055‡ 0.072‡ 0.153†‡ 0.349† 0.224† 0.424
SR-Or(*) 0.083‡ 0.085‡ 0.062‡ 0.215† 0.174 0.371

DPMFcomb 0.204‡ 0.146‡ 0.193‡ 0.443† 0.303† 0.615
Metrics-F 0.127‡ 0.172‡ 0.199‡ 0.480† 0.327† 0.612
Cobalt-F-comp 0.092‡ 0.160‡ 0.216†‡ 0.469† 0.344† 0.599
BEER 0.228‡ 0.119†‡ 0.143‡ 0.384† 0.218 0.534
UoW-ReVal 0.096‡ 0.092‡ 0.163‡ 0.376† 0.257† 0.525

group includes the metrics that use different kinds of information about sentence struc-
ture (constituency parsing, dependency parsing, semantic parsing, and named entity
recognition). Finally, the third group contains trained, feature-based metrics. For brevity,
for each type of linguistic metrics from the Asiya toolkit discussed in Section 3 (SP-*,
DP-*, CP-*, and SR*), we only present the metric that obtained the best overall correla-
tion on this data set.

To compute the significance of the difference in correlation for different quality
levels, we used Fisher’s z-transformation. In Table 3, † indicates whether the correlation
for high-quality data (Qhigh and Q∗high) is significantly different from the correlation for
Qlow. In Table 4, † and ‡ indicate, for each column, whether the correlation is significantly
different from the correlation in Q1 and Q4, respectively.9 To compare the results of
different metrics against each other, we used the Hotteling-Williams test for dependent
correlations (Williams 1959). In each column, results for metrics that are not significantly
outperformed by any other metric are marked in bold.

9 The correlation for Q∗4 was compared to Q1 and not to Q4.
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We observe that the correlation of all evaluation metrics is substantially lower for
low-quality MT output. The difference in correlation between the low- and high-quality
samples is preserved even when the sentences where MT output exactly matches
the reference are eliminated (Q∗high and Q∗4 ). One possible explanation for this is that
low-quality translations contain a higher number and variety of translation errors.
Determining consistently to what extent a particular type of error should be reflected in
a translation quality measurement is difficult even for human annotators, and is nearly
impossible for current similarity-based evaluation metrics that do not consider the type
of translation errors explicitly. Consider the following two examples from the WMT16
DA data set.10

Example 1
Src: Ve Washington’a da kızgınlar.
MT: And Washington also angry.
Ref: And they are angry at Washington, too.

Example 2
Src: Bunun için sindirim sisteminizin sağlıklı çalışması gerekir.
MT: Sindirim sisteminizin healthy for it to work.
Ref: To do this, your digestive system should work healthily.

In Example 1 all the content words are translated, but the grammatical link between
them is missing, making it difficult to understand the sentence. In Example 2 several
source words are left untranslated, which makes the sentence completely incomprehen-
sible. Human direct assessment scores for these two MT outputs are −0.35 and −0.78,
respectively, indicating that the MT output from Example 2 is perceived as considerably
lower quality.11 For comparison, the corresponding BLEU scores are 0.07 and 0.05,
failing to indicate any difference in quality, as the percentage of matching n-grams is
similarly low in both examples.

Another reason for lower correlation in the low-quality partition of the data is that
high-quality outputs tend to contain a higher number of matches with the reference, and
thus evaluation metrics naturally have more information to measure translation quality.
By contrast, low-quality MT outputs contain very few matches and thus metric scores
simply indicate that the MT output is different from the available reference. Human
judges, on the other hand, assign different scores to low-quality translations, depending
on how bad they are.

For the high-quality sample, the best results are achieved by the metrics with the
overall highest correlation, namely, the feature-based metrics from the third group. For
the low-quality sample, however, the best metrics are: Meteor (MPEDA is a variant of
Meteor), ChrF, and BEER. For the latter two the correlations for Qlow and Q∗high in Table 3
are not significantly different. All these metrics have in common the fact that they are
less affected by the sparseness of reference matches. Both ChrF and BEER use character
n-grams, which is a more robust representation than word n-grams, whereas Meteor
allows for stem, synonym, and paraphrase matches. Another common feature of these
metrics is that they put a higher weight on content word matches. Meteor explicitly

10 Example 1: language pair – Turkish-English, MT system – online-B, segment – 143. Example 2: language
pair – Turkish-English, MT system – jhu-syntax, segment – 2842.

11 See Section 4.1 for the definition of manual assessment scores in the WMT16 Direct Assessment data set.
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assigns different weights to content vs. function words. In the case of character-based
metrics this distinction stems from the fact that content words tend to be longer, thus
containing a higher number of n-grams and therefore matches between such words
increase the score to a larger extent than matches between stopwords. This feature
may be particularly important for the evaluation of low-quality translation as it allows
us to better discriminate between translation errors. The correlation for intermediate
quality levels follows the pattern we observe for Q1 and Q4: Metrics perform better
when dealing with higher- (Q3) than lower-quality (Q2) translations. On average, the
correlation is higher for Q1 and Q4, showing that more nuanced quality distinctions (Q2
and Q3) are more difficult to capture.

So far we have looked at the conditional correlation approach for describing local
dependency between two random variables. We computed the Pearson correlation
between metric and human scores on various ranges of values defined based on the
human scores. Although straightforward and simple to use, this approach has certain
limitations (Tjøstheim and Hufthammer 2013). First, there is no evident formal way of
defining the ranges of values. Second, the granularity of an analysis based on condi-
tional correlation is limited by the amount of variation in human scores inside each range
of values. If human scores inside each level do not indicate any meaningful differences
in quality, the correlation between metric and human scores would not be informative.
In general, restricting the range of values reduces the variation and, therefore, will
restrict the correlation to less than would be observed in the full range of values. In
this sense, note that the correlation for different quality levels (columns Q1–Q4) in
Table 4 is always lower than the correlation for the full data set (column All). Finally,
the relation between metric and human scores in local regions of values may be nonlinear,
which would make the use of the Pearson correlation coefficient inappropriate.

Local Gaussian Correlation. To address the limitations of the conditional correlation dis-
cussed above, various strategies have been proposed in the literature on statistics
(Doksum et al. 1994; Jones and Koch 2003; Delicado and Smrekar 2009). Here, we ex-
plore the local dependence measure recently designed by Tjøstheim and Hufthammer
(2013) for measuring financial contagion, which they call local Gaussian correlation.
The idea behind this measure is to fit a Gaussian bivariate density in a neighborhood
of each data point using local likelihood. Thus, at each specific neighborhood, the
local dependence properties will be described by the local covariance matrix, fully
characterizing the dependence relationship in that neighborhood.

Formally, for a general bivariate density f for the variables (X1, X2), Tjøstheim and
Hufthammer (2013) define the local Gaussian bivariate density in a neighborhood of
each point x = (x1, x2) as follows:12

ψ(v,θ(x)) = 1
2πσ1σ2

√
1−p2

exp
[
− 1

2(1−p2 )

(
(v1−µ1 )2

σ2
1
− 2p (v1−µ1 )(v2−µ2 )

σ1σ2 + (v2−µ2 )2

σ2
2

)] (2)

where v = (v1, v2) is the running variable of the Gaussian distribution in the neighborhood
of the point x and θ(x) is the 5-dimensional vector [µ1(x),µ2(x),σ2

1(x),σ2
2(x), p(x)] in which

µi(x), i = 1, 2 are the local means, σi(x), i = 1, 2 are the local standard deviations, and

12 In Equation (2) we drop the argument (x) for µi, σi, and p for simplicity.
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p(x) is the local correlation at the point x.13 It is the last parameter, local correlation p(x),
that we ultimately desire to find to discover local dependence properties.

In order to fit ψ(v,θ(x)) locally, the parameters θ(x) need to be such that ψ(v,θ(x))
equals general density f (x) at v = x and is close to f in a neighborhood of x. To estimate
θ(x), Tjøstheim and Hufthammer (2013) follow the local likelihood approach proposed
by Hjort and Jones (1996). Specifically, they define the parameters θ(x) to be the mini-
mizer of the following local penalty function:

q =

∫
Kb(v− x)[ψ(v,θ(x))− logψ(v,θ(x))f (v)]dv (3)

Kb(v− x) =
K( (v1−x1 )

b1
)K( (v2−x2 )

b2
)

b1b2
(4)

where Kb is a product kernel function with bandwidth b = (b1, b2).14 As mentioned in
Tjøstheim and Hufthammer (2013), the penalty function q can be interpreted as a locally
weighted Kullback-Leibler distance from the general density f to its parametric local
approximation ψ(v,θ(x)).

This function is used to fit a Gaussian density in the neighborhood of each point
x. Thus, the general bivariate density f is represented by a family of local densities
and, because ψ is Gaussian by definition, the local dependence relationship in the
neighborhood of each estimation point is fully described by p(x). For more details
regarding the mathematical formulation and the relevant theory, the reader is referred
to Tjøstheim and Hufthammer (2013).

We use an existing R package localgauss (Berentsen et al. 2014) to compute and
visualize the local Gaussian correlation between metric and human scores. Figure 8
displays the local Gaussian correlation plots for various evaluation metrics from the
WMT16 data set. Similar to the scatter plots in Figure 7, metric and human scores
are represented on the x and y axes, respectively. The tiles show the estimated local
Gaussian correlation in the neighborhood of a set of estimation points.15 The color
scale is relative, with darker colors representing higher correlation values and lighter
colors representing lower correlation values for a given plot. For all of the metrics, the
plots clearly show a stronger correlation for higher-quality data. In accordance with the
analysis presented earlier in this section, the difference appears less pronounced for the
character-based metrics, ChrF and BEER.

The ordinary correlation coefficient does not capture the subtleties of the relation
between quality scores predicted by the automatic evaluation metrics and actual trans-
lation quality as reflected in manual quality assessment. We hypothesized that the
strength of this relation in fact changes with the position on the translation quality scale,
as the performance of evaluation metrics is affected by the level of MT quality. We have
looked into various ways to analyze the relation between metric and human scores for

13 Note that the definition in Equation (2) is analogous to the general definition of bivariate Gaussian
density (see, for example, Tong 1990), but the observations are sampled from the neighborhood of a
chosen data point.

14 Following Støve, Tjøstheim, and Hufthammer (2014), for the choice of bandwidth we use a simple rule of
thumb—the global standard deviation times a constant close to one.

15 The localgauss visualization package allows us to select the estimation points manually, or set them
automatically using the method described in Berentsen et al. (2014). We followed the latter option.
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(a) BLEU (b) -TER

(c) ChrF3 (d) BEER

(e) DPMFcomb (f) Metrics-F

Figure 8
Local Gaussian correlation for evaluation metrics in the WMT16 DA data set. x and y axes
correspond to metric and human scores. The tiles show the estimated local Gaussian correlation
in the neighborhood of a set of estimation points.
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the case of continuous variables, including a naive conditional correlation approach
that amounts to computing ordinary Pearson correlation on different ranges of values,
and a more complex method that models local dependence between the variables by
fitting a Gaussian density function at each data point. Both methods reveal the fact that
correlation with human judgments is lower for lower-quality translation. Subsequently,
we investigate the relation between quality levels and the performance of automatic
evaluation metrics for the scenario where human scores are provided on an interval-
level scale.

5.2 Discrete Human Scores

The methods discussed earlier only apply when the manual evaluation data can be split
into various slices of values with some variation within each slice. This was the case
with the direct assessment approach to manual evaluation used at the WMT Conference
in the last few years where manual assessment is collected on a continuous scale,
as was discussed in the previous section. A different but not less common manual
evaluation scenario involves collecting human assessments using discrete quality labels,
for example 1–4 or 1–5 adequacy or fluency scales (see Section 2). In such a setting,
quality levels can be defined in a straightforward way based on the discrete manual
evaluation scores. However, the techniques discussed in the previous section cannot
be applied, as a certain amount of variation inside each level would be required in
order to measure the correlation between metric and human scores. We suggest that
in order to describe the difference in metric performance in relation to MT quality for
data sets with discrete human scores, the distribution of metric scores corresponding
to each quality level can be examined. A good evaluation metric would have non-
overlapping distributions of scores with equally distant means for the outputs assigned
the same quality label in manual evaluation. Conversely, an unsuccessful metric would
have overlapping distributions for the MT outputs assigned different scores by humans.
For illustration, see the plots in Figure 9.

In this section we use the WMT17 Quality Estimation data set, which contains
human assessments in the form of discrete scores in the range [1, 4] (from best to worst),
indicating the effort required for post-editing the MT outputs (see Section 4.4 for a

(a) Metric A (b) Metric B

Figure 9
A hypothetical Metric A discriminates well between translations assigned different labels by
human judges, whereas Metric B generates similar scores for MT outputs belonging to different
quality levels.
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Table 5
Overall absolute Pearson correlation of metrics with human judgments at sentence level in the
WMT17 Quality Estimation data set.

Metric Pearson r

ROUGE-SU* 0.379
TERp-A 0.370
Meteor 0.358
ChrF3 0.351
BLEU-4 0.351
NIST-4 0.335
WER 0.272
TER 0.260
PER 0.226

UPF-Cobalt 0.384
DP-Oc(*) 0.365
CP-Oc(*) 0.362
SP-lNIST 0.334
SR-Or(*) 0.259

BEER 0.330
POSTECH 0.502

HTER 0.638

detailed description of the data set). We define the quality levels accordingly as Q1–
Q4, Q1, indicating the highest translation quality in this case. Table 5 shows the overall
Pearson correlation results for various evaluation metrics.16 As before, the metrics
(described in Section 3) are divided into three groups. The first group corresponds
to the metrics based on lexical similarity, the second group includes the metrics that
use different kinds of information on sentence structure, and the third group contains
feature-based metrics.17

The third group of metrics in Table 5 also includes the results from the POSTECH
system (Kim, Lee, and Na 2017), the best performing QE system that participated in the
WMT17 QE task (see Section 3). As discussed in Section 3, QE (Blatz et al. 2004; Specia
et al. 2009) is a different approach to MT evaluation that aims to predict the quality
of a machine translated segment in the absence of a gold standard human translation.
The task is typically addressed in a supervised machine learning framework, where
given source sentences and the corresponding MT outputs annotated with some quality
labels, a number of features can be extracted and used to train a machine learning

16 Recall that Pearson correlation coefficient values range from −1 to 1. If both variables tend to increase or
decrease together, the coefficient is positive. If one variable tends to increase as the other decreases, the
coefficient is negative. The stronger the association between the two variables, the closer the Pearson
correlation coefficient will be to either −1 or 1. For for WMT17 Quality Estimation data set (Section 4.4)
and for MTSummit17 data set (Section 4.5), manual assessments were collected on a 4-point scale from
best to worst. Thus, lower human scores indicate higher quality, which results in negative correlations
with evaluation metrics. To avoid confusion, for these data sets we report absolute correlation values in
Tables 5, 9, and 10.

17 The metric set is different from the one presented in the previous section, as some of the metrics from
WMT16 Metrics Task are not publicly available.
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Figure 10
Kernel density estimation plots for the scores generated by BLEU, BEER, POSTECH QE system,
and HTER scores in the WMT17 QE data set. For BLEU and BEER the scores are inverted (i.e.,
score = 1− score), so that they are comparable with QE system scores and discrete human scores,
where the lower the score the higher the quality.

algorithm to predict such labels for unseen data. The QE systems participating in the
WMT17 QE task were trained and evaluated using the HTER scores18 as quality labels.
As an upper bound for the performance of the QE systems, the last row in Table 5 shows
the correlation between true HTER scores and human scores. The results in each group
are ordered from best to worst.

Overall, the highest correlation for this data set is obtained by the QE system.
Judging from the correlation alone it is very difficult to know what the advantages are
of QE systems in this particular setting. Figure 10 shows the kernel density estimation
plots for BLEU, BEER, and POSTECH generated using the metric scores for the MT
outputs assigned to each of the four different quality levels (Q1–Q4).19 The plots for
the HTER scores are also provided for comparison. As mentioned before, the quality
levels here correspond directly to the discrete human scores provided on the scale 1–4
from best to worst. As illustrated in Figure 9, the plot for an ideal evaluation metric
would have non-overlapping curves for the distribution of metric scores corresponding
to the different human quality levels. In Figure 10, however, a considerable overlap
can be observed. This points toward the limitations of the metrics and potentially of
manual evaluation. On the one hand, some overlap may be due to the noise in manual

18 HTER (human-targeted edit rate) is a widely used measure of post-editing effort obtained by computing
the TER metric between the MT output and its post-edited version (Snover et al. 2006).

19 For BLEU and BEER scores we use score = 1− score so that they are comparable with QE system scores
and discrete human scores, where the lower the score, the higher the quality.
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Table 6
Average overlap between the estimated distributions of the metric scores for each quality level in
the WMT17 Quality Estimation data set.

Metric Q1 Q2 Q3 Q4

ROUGE-SU* 0.533 0.685 0.686 0.645
-TERp-A 0.526 0.661 0.660 0.575
Meteor 0.561 0.704 0.698 0.605
ChrF3 0.562 0.705 0.705 0.621
BLEU-4 0.580 0.728 0.715 0.670
NIST-4 0.594 0.716 0.696 0.627
-WER 0.561 0.725 0.735 0.689
-TER 0.560 0.723 0.731 0.686
-PER 0.570 0.698 0.713 0.629

UPF-Cobalt 0.533 0.686 0.683 0.595
DP-Oc(*) 0.546 0.719 0.702 0.689
CP-Oc(*) 0.557 0.697 0.684 0.610
SP-lNIST 0.605 0.722 0.702 0.641

BEER 0.582 0.712 0.709 0.636
POSTECH 0.405 0.586 0.586 0.560
HTER 0.251 0.503 0.529 0.490

assessments. General quality is continuous and it is difficult to establish clear-cut limits
when classifying MT outputs into a few quality categories, particularly given that the
definition of such categories is quite vague. On the other hand, the metrics are not able
to reliably discriminate between outputs with different quality.

More specifically, in the case of BLEU there is a substantial overlap between the
scores of the sentences belonging to all the four quality levels. The form of the curve for
the high-quality translations (Q1) resembles a uniform distribution highlighting a well-
known problem of BLEU metric when used for segment-level evaluation, which consists
in harshly penalizing any kind of differences between MT output and the reference.
Translations belonging to different levels are much better separated by BEER, which
shows more robust performance with high-quality outputs and also a better separation
of low-quality translations (Q3 and Q4).

The behavior of the QE system is quite different from that of the metrics. Unlike the
metrics, which use reference translation to generate the scores, QE is based on reference-
independent features. The system was trained using HTER scores and behaves in a
similar way. The plots clearly show that for this data set the QE system outperforms the
other metrics because it is able to better identify high-quality translations. Although the
system does not seem to distinguish among low-quality translations very well, in this
data set the number of translations assigned low scores is very small (see Section 4.4)
and, therefore, this has a small impact on the overall correlation.

A possible way to quantify the discriminative power of the metrics illustrated by
the plots in Figure 10 for different quality levels is to measure the overlap between
the distribution of metric scores for each of them. The overlap between two density
functions can be defined as the integral of min(f (x), g(x)), where f and g are the estimated
density functions. For each quality level, we computed the average overlap with the
other levels for the corresponding distributions of the metric scores. The results are
shown in Table 6. The higher the values, the worse the metrics’ ability to distinguish
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Figure 11
Comparison between the overlap of density functions of the metric scores and the overall
Pearson correlation between the metric and human scores in the WMT17 Quality Estimation
data set.

between translations belonging to different levels. The overlap tends to be higher for
the intermediate levels. Furthermore, the overlap is always higher for Q4 (lowest MT
quality) than for Q1 (highest quality), which agrees with the observations presented in
the previous section. Figure 11 shows the relation between this overlap measure and the
overall correlation of the metric and human scores computed using all available data.
As expected, the lowest overlap corresponds to the highest correlation coefficient.

So far we have looked at the difference in the accuracy of automatic evaluation
for different levels of translation quality using various instruments and observed a
consistent degradation in metric performance for lower-quality translation. We have
suggested that aside from the limitations of the metrics, such degradation could be due
to a possible decrease in the reliability of manual evaluation. We test this hypothesis in
Section 5.3. Finally, we have seen the impact of the distribution of the scores in the data
set on the overall correlation results. We return to this issue in Section 7.

5.3 Quality Levels and Evaluation Consistency

Besides the inherent limitations of the evaluation metrics, a possible reason for lower
correlation for low-quality MT outputs is a lack of consistency in manual evaluation.
Manual evaluation is typically treated as the gold standard for assessing the perfor-
mance of automatic evaluation metrics. However, MT quality assessment is known to be
a complex task with low levels of agreement between annotators (Graham et al. 2013).
One could hypothesize that evaluating poor quality translations is more demanding
and harder for human annotators. They contain a higher number of errors of different
types whose impact on quality can be difficult to determine (Denkowski and Lavie
2010).

We test this hypothesis using the WMT16 DA data set (Section 4.1). The annotations
in this data set were collected using Amazon Mechanical Turk, which often raises
questions about the reliability of the data. However, as described in Graham, Mathur,
and Baldwin (2015), a rigorous quality control was conducted in order to filter out
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Figure 12
Average quality score and standard deviation of the scores assigned to the same sentences by
different annotators.

unreliable workers. For the analysis presented in this section, only the data from the
workers who passed quality control was used. The WMT16 Metrics Tasks followed
different procedures for collecting evaluation data for segment-level and system-level
tasks. For segment-level analysis, up to 15 assessments from different judges were
collected per MT output before combining them into a mean adequacy score in order
to increase the reliability of the evaluation. For system-level analysis, up to two assess-
ments were collected per MT output, but this was done for all the systems participating
in the WMT16 News Translation Task. We take advantage of both types of data in the
following analysis.

We start with a very simple analysis of the segment-level data. First, we included
sentences with the average score lower/higher than 50 in low- and high-quality par-
titions, respectively. Next, we calculated the average standard deviation of the scores
assigned to each sentence in the low- and high-quality partitions.20 The resulting values
are 27.82 and 21.07, respectively. The difference between the variances in the low-
quality sample and in the high-quality sample was found to be significant with p < .05,
according to the Levene test, which tests the null hypothesis that the population vari-
ances are equal (Levene 1961). The variability in sentence scores provided by different
annotators reflects the uncertainty involved in the evaluation process. Higher variability
indicates that the sentence is more difficult to assess. This is the case for lower-quality
translations. As an illustration, consider the plot in Figure 12. The x axis represents the
means of the scores assigned by different annotators to the same sentence, and the y axis
shows the standard deviation for each sentence. At the higher end of the quality scale
the variability between the scores tends to be smaller.

20 For automatic evaluation analysis in Section 5.1 we used standardized segment-level scores, as they
neutralize the differences in scoring strategies of individual annotators and constitute a more reliable
gold standard for assessing metric performance. Here the goal is to assess the consistency of human
assessments themselves and, therefore, raw human scores are used.
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Table 7
Average score difference for the WMT16 Direct Assessment data set for a given judge and across
two different judges.

Inter-AA Intra-AA

Q1 33.721 17.721
Q2 23.541 11.936
Q∗2 23.739 12.087
All 25.279 13.450

We further compare the levels of inter- and intra-annotator agreement for lower
and higher-quality translations. The kappa coefficient commonly used to calculate the
consistency of human judgments in the context of MT evaluation (Callison-Burch et al.
2007) is not suitable for a continuous measurement scale. Instead, we used the method
described in Graham et al. (2013) to compare evaluation consistency.

Specifically, using system-level data from the WMT16 Metrics Task, we computed
the average difference between the scores assigned to the same MT output by different
judges and by the same judge. This was done separately for the segments, with the
average score higher than or equal to 50 and with the average score lower than 50 (thus
corresponding to high- and low-quality partitions, respectively). We also computed the
average difference for the high-quality partition, excluding the cases where MT output
exactly matches the reference translation.

Results are reported in Table 7. Q1 corresponds to the low-quality partition, Q2
corresponds to the high-quality partition, and Q∗2 corresponds to the high-quality data,
excluding the MT outputs exactly matching the reference. “Inter-AA” and “Intra-AA”
refer to inter- and intra-annotator agreement, respectively. For both intra- and inter-
annotator scenarios, the difference between Q1 and Q2/Q∗2 samples was found to be
statistically significant.21 Thus, we can see that the annotators are indeed less consistent
when they assign lower scores. As mentioned before, a probable reason for that is the
fact that low-quality MT outputs contain a higher number of errors, and the perceived
impact of different translation errors on the overall translation quality can vary greatly,
depending on individual annotators’ ideas about the purpose of translation, translation
priorities, and so on.

In this section, we have seen that meta-evaluation based on Pearson correlation
alone can hide very different behaviors of evaluation metrics. The main outcome of
the analysis presented here is that discriminating between lower-quality translations
appears to be more challenging in both automatic and manual evaluation scenar-
ios. Finding meaningful distinctions between low-quality MT outputs is difficult for
reference-based metrics, as there is less information available in terms of the relation
with the reference translation. Furthermore, low-quality translations contain a higher
number of difficult-to-compare errors, which makes evaluation difficult even for human
annotators. In the face of such an outcome, we suggest that a possible way for further
development of evaluation metrics is to resume the work on error-based MT evaluation
(Popović and Ney 2011; Toral et al. 2012), searching for a better way of automatically

21 Following Graham et al. (2013) we use the non-parametric Mann-Whitney test to test the null hypothesis
that the differences between the scores assigned to the same MT output by different annotators in the
low-quality sample is the same as in the high-quality sample.
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detecting MT errors of different types and predicting their impact on the overall MT
quality. For manual evaluation, error-based methods have already been proposed and
successfully used, such as the MQM error annotation framework (Lommel, Burchardt,
and Uszkoreit 2014).

6. Metrics across MT Approaches

In this section we analyze another meta-evaluation aspect: the impact of the type of MT
system under evaluation on the performance of evaluation metrics. As mentioned in
Section 2, some work has been done comparing MT evaluation metrics for statistical
systems versus rule-based systems. However, the behavior of metrics when it comes
to neural MT (NMT), the new paradigm in MT research and development, has not yet
been inspected. In this section we compare how well the metrics correlate with human
assessments when evaluating neural vs. statistical MT and provide an explanation for
the results obtained. The analysis is performed using two data sets: the WMT16 DA
data set (Section 4.1) and the MTSummit17 English–Latvian data set (Section 4.5). As
in the previous sections, the results are reported for three groups of evaluation metrics:
metrics based on lexical similarity, metrics that use different kinds of information on
sentence structure, and feature-based metrics. As Latvian is a low-resourced language,
only the metrics based on simple text similarity are available for the MTSummit17
English–Latvian data set.

WMT16 Direct Assessment Data Set. In the first experiment, we use the data from the
WMT16 Direct Assessment Data Set (see Section 4.1) to compare the overall correlation
between metric scores and human judgments for different MT paradigms. We selected
all available data for three MT systems, corresponding to three different approaches: a
phrase-based statistical MT system (PBMT), a syntax-based statistical MT (SYNTAX),
and a neural MT system (NMT)—all these are University of Edinburgh’s systems,
as described in Williams et al. (2016) and Sennrich, Haddow, and Birch (2016). The
number of sentences with available direct assessment judgments for these systems is
as follows, respectively: 231, 238, and 342 sentences. As shown in Table 8, all the metrics
achieve consistently higher correlation on NMT outputs, although the difference is not
significant for all the metrics due to the small size of the data set.22

According to the results from the previous section, our initial hypothesis was that
the difference in correlation can be attributed to the fact that the quality of translations
produced by NMT is generally higher (this system topped the shared task [Bojar et al.
2016a]). However, further investigation with a larger data set that we present subse-
quently disproves this finding, suggesting that the difference in the performance of the
evaluation metrics is due to inherent properties of the outputs generated by statistical
versus neural MT systems.

MTSummit17 English–Latvian Data Set. In Table 9 we show results for a subset of metrics
that could be computed for the MTSummit17 English–Latvian data set (Section 4.5).
Overall results are similar to those in the WMT16 DA data set. As before, the correlation
between metric scores and human judgments is significantly higher in the case of the
NMT system. The error-based metrics (TER, PER, and WER) seem to be an exception

22 As in the previous section, we use Fisher’s z-transformation to compute the significance of the difference
between independent correlations.
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Table 8
Pearson correlation with human judgments from WMT16 Metrics Task on the outputs of
different MT systems in the WMT16 Direct Assessment data set. † indicates that the correlations
for the neural MT system (NMT) is significantly different from the correlation for the statistical
system (PBMT).

PBMT SYNTAX NMT

-TERp-A 0.535 0.538 0.627†

Meteor 0.519 0.530 0.568†

MPEDA 0.515 0.527 0.563†
ROUGE-SU* 0.518 0.486 0.597
ChrF3 0.509 0.442 0.579
NIST-4 0.477 0.455 0.557
BLEU-4 0.430 0.415 0.507
-WER 0.406 0.388 0.525†

-TER 0.368 0.388 0.525†

-PER 0.372 0.367 0.507†

UPF-Cobalt 0.532 0.540 0.557
CP-Oc(*) 0.452 0.480 0.584†
SP-lNIST 0.490 0.465 0.559
DP-Oc(*) 0.443 0.374 0.417
SR-Or(*) 0.333 0.434 0.340

DPMFcomb 0.574 0.590 0.628
Metrics-F 0.564 0.582 0.622
Cobalt-F-comp 0.544 0.595 0.606
UoW-ReVal 0.534 0.552 0.556
BEER 0.510 0.438 0.599

and also have much smaller correlation values. A manual inspection of the data shows
that this is due to the presence of outliers, namely, segments with an extremely high
error rate. If the data points with metric scores lying more than four standard deviations
away from the mean (less than 1% of the data) are removed, the correlation values
(shown as TER*, PER*, and WER* in Table 9) are in line with other evaluation metrics.23

Unlike in the previous section, the quality of the translations produced by the neural
MT system here is not higher—the average human scores being 1.64 for the statistical
MT system and 1.84 for the neural MT system (lower scores indicate better quality
for this data set). To further investigate what could be the reason why the metrics
consistently show a higher correlation when evaluating the output of the neural MT
system, we computed the percentage of different types of errors annotated following
the MQM guidelines on a 2,000-sentence data set for both MT system type outputs
(see Section 4.5). Table 2 shows the relative frequencies of each error category for
statistical MT and neural MT systems. NMT contains a lower number of fluency errors
(e.g. word order errors) and a much higher number of adequacy errors (in particular,
mistranslation errors), as was also observed in Toral and Sanchez-Cartagena (2017).
This is a plausible explanation of the difference in evaluation accuracy. Reference-based

23 Compare also the results reported for this data set in Appendix A in terms of Spearman correlation
coefficient, which is less sensitive to strong outliers.
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Table 9
Absolute Pearson correlation between automatic evaluation scores and human judgments in the
MTSummit17 data set. † indicates that the correlations for the neural MT system is significantly
different from the correlation for the statistical system. WER*, TER*, and PER* show correlations
for the corresponding metrics when eliminating the outliers.

PBMT NMT

ROUGE-SU* 0.411 0.506†

ChrF3 0.400 0.478†

BLEU-4 0.403 0.461†

NIST-4 0.379 0.464†
WER 0.285 0.267
TER 0.270 0.260
PER 0.226 0.236
WER* 0.405 0.461†

TER* 0.400 0.463†

PER* 0.369 0.451†

BEER 0.416 0.511†

metrics are much better suited for detecting mistranslation errors than fluency errors,
as they compute the similarity to a human translation (adequacy) and do not explicitly
consider the appropriateness of MT output in the target language (fluency).

In this section we have compared the segment-level correlation between metric
and human scores for the outputs of statistical and neural MT systems, showing that
evaluation metrics consistently achieve better performance for neural MT. We suggest
that this is an encouraging outcome for further work on leveraging reference-based
metrics for the optimization of NMT model hyperparameters (i.e., model selection).

7. Metrics across Human Judgments

As a final part of our analysis, we compare the performance of a wide variety of
metrics discussed in this article across different types of human judgments in order
to investigate whether the conclusions drawn based on one evaluation setting can be
extrapolated to other types of evaluation. As discussed in the previous sections, besides
the type of human judgments, metric performance can be affected by various factors,
such as domain, language pair, type of MT system, level of MT quality, and so forth.
In order to isolate the impact of the type of human judgments on the meta-evaluation
results, in the following analysis we use the data sets that belong to the news domain
(with the exception of the WMT17 Quality Estimation data set), have English as the
target language, and have the outputs of MT systems based on statistical approach
(with the exception of the WMT16 data sets that contain different types of MT systems).
However, other factors, such as the average level of MT quality or the reliability of
manual evaluation scores, are more difficult to control.

Table 10 shows the correlation results for various evaluation metrics24 discussed
in previous sections for the data sets presented in Section 4. WMT16-DA refers to

24 Only the metrics available for all the data sets are included here.
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Table 10
Correlation with human judgments at sentence level across various data sets with different types
of human judgments. Kendall tau is reported for WMT16 Relative Ranking data set, and
absolute Pearson correlation coefficient is reported for the rest of the data sets.

WMT16 WMT16 WMT17 MTC MTC GALE EAMT EAMT
-DA -RA -A -F -PE

Meteor .570 .362 .358 .450 .262 .442 .280 .742
TERp-A .570 .356 .370 .435 .268 .468 .266 .716
ROUGE-SU* .551 .335 .379 .398 .249 .400 .254 .717
ChrF3 .541 .366 .351 .429 .222 .392 .253 .722
NIST-4 .508 .301 .335 .391 .212 .396 .224 .709
BLEU-4 .488 .289 .351 .298 .201 .353 .260 .733
TER .462 .293 .260 .275 .195 .360 .214 .728
WER .456 .290 .272 .246 .192 .353 .218 .737
PER .422 .266 .226 .307 .180 .305 .167 .664

UPF-Cobalt .566 .375 .384 .460 .281 .467 .320 .717
CP-Oc(*) .527 .323 .362 .365 .229 .409 .263 .723
SP-lNIST .512 .315 .334 .409 .221 .391 .226 .708
DP-Oc(*) .424 .235 .365 .223 .164 .323 .232 .559
SR-Or(*) .371 .208 .259 .278 .211 .295 .149 .408

BEER .534 .366 .330 .415 .225 .386 .210 .737

the WMT16 Direct Assessment data set (Section 4.1), where human assessments were
collected on a continuous adequacy scale. WMT16-RA refers to the WMT16 Ranking
data set, with manual assessments having the form of preference judgments (see Section
4.2). WMT17 refers to the WMT17 Quality Estimation data set (Section 4.4), with human
judgments collected using a discrete scale following the post-editing effort criterion.
GALE is the GALE Arabic–English data set presented in Section 4.6, where manual
evaluation was conducted following the adequacy criterion on a discrete scale from 1 to
5. MTC-A and MTC-F refer to the sets of adequacy and fluency judgments, respectively,
collected using an interval scale for the Chinese–English MTC data set (see Section
4.3). EAMT11 stands for the EAMT11 French–English data set, presented in Section 4.7.
The judgments were collected based on the post-editing effort. Finally, the last column
in Table 10 (EAMT11-PE) shows the correlation obtained when instead of using the
independently collected reference for evaluation, the MT is compared against its post-
edited version. This scenario is equivalent to HTER, which has been shown to correlate
very well with human judgments (Snover et al. 2006), but here we also report the perfor-
mance of other metrics using this type of reference. The Pearson correlation coefficient
is used for all the data sets except WMT16-RA, where the Kendall tau coefficient for
pairwise ranking is reported.

In absolute terms, the correlation is different between different data sets. This is not
surprising because, as mentioned before, multiple confounding factors are involved,
including the difficulty of predicting a particular type of judgment, the overall level of
MT quality, the reliability of manual assessments, and so on. Thus, the results in Table 10
should not be compared directly but rather in relative terms, that is, by seeing whether
the ordering of the metrics based on the correlation with human assessments is similar
for different data sets, annotated with different labels. Figure 13 shows a scatterplot
matrix where metric correlation coefficients for each data set are plotted against the
other data sets.
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Figure 13
Scatterplot matrix for the correlation coefficients obtained by the metrics for the different data
sets presented Table 10.

Although different criteria are used in manual evaluation, the results for different
data sets are very closely related. In particular, WMT16, GALE, and MTC-A—where
human evaluation is based on adequacy—behave very similarly. The results for MTC-F,
with human scores based on the fluency criterion, are also very closely related to those
for MTC-A. This is to be expected, since it has been often reported that it is difficult
for human evaluators to completely isolate fluency from adequacy (Callison-Burch
et al. 2007). WMT16 and EAMT11 also correlate well, although manual evaluation in
EAMT11 is based on the post-editing effort criterion. Thus, the metrics that best predict
adequacy seem to be the ones that also best predict fluency and post-editing effort. The
explanation for such an outcome can be two-fold. On the one hand, even though the
gold-standard scores are based on different criteria, the main challenges affecting metric
performance are the same. On the other hand, even if the task is formulated differently,
human annotators may focus on some general idea of quality, resulting in a substantial
overlap between criteria for manual evaluation.

The exceptions are the EAMT11-PE and WMT17 data sets. EAMT11-PE is very
different from other data sets, because it was generated using the post-edited version
of the MT as reference, rather than independently created references. Unlike with a
reference translation, the differences between MT output and its post-edited version are
guaranteed to be related to translation errors and the challenge consists in estimating to
what extent the errors affect translation quality. On average, the correlation is therefore
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considerably higher for EAMT11-PE than for the other data sets. In the case of WMT17,
the reason for the difference may consist of the difference in the distribution of manual
evaluation scores with a very high number of near-perfect translations and a small
number of low-quality outputs.

In this section we have examined how stable the meta-evaluation results are across
different types of human judgments. We have seen that even though metric scores
may vary considerably depending on the domain, type of human reference translation,
language pair, and so forth, the relative difference in evaluation accuracy is maintained
across different data sets and types of manual assessments. Thus, meta-evaluation
results obtained using a particular type of assessment can generally be extrapolated
to other evaluation scenarios.

8. Conclusions

Automatic MT evaluation remains a prominent field of research, with various eval-
uation methods proposed every year. However, studies describing the weaknesses
and strengths of the existing approaches are very rare. The performance of evaluation
metrics is typically assessed by computing correlation between metric scores and man-
ual quality assessments. However, this approach has limitations. First, a correlation
coefficient by itself is hardly interpretable, as metrics with very different behaviors
and limitations can have the same correlation coefficients. Second, the behavior of
the metrics and their correlation with human judgments may be affected by a variety
of factors (language pair, domain, type of MT system, MT quality, type of manual
evaluation and its reliability, etc.). We conducted a large-scale meta-evaluation study
involving a set of state-of-the-art evaluation methods covering the most influential
approaches to automatic MT evaluation developed in recent years. We proposed novel
meta-evaluation techniques beyond overall correlation with human judgments and
analyzed the influence of some of the above-mentioned factors on the performance of
the evaluation metrics: MT quality, MT system types, and manual evaluation type.

First, we examined the behavior of a variety of reference-based MT evaluation
metrics on MT outputs with different levels of translation quality as reflected in human
judgments. We analyzed the local dependence between metric scores and human judg-
ments. We showed that the accuracy of automatic evaluation varies depending on the
overall MT quality. All the metrics examined obtain higher correlation for good quality
MT. Reference-based metrics are not reliable for discriminating between low-quality
translations, because with very few candidate-reference matches they lack information
to draw any meaningful conclusions regarding how bad the MT output is. The metrics
that use a less sparse representation for candidate-reference comparison (e.g., character
n-grams) achieve the best correlation on low-quality data, suggesting that this may
be a good back-off strategy for more complex evaluation systems. Besides the actual
effectiveness of evaluation metrics, the correlation is also affected by the amount of
noise in the results of manual evaluation used as the gold standard. We compared
the consistency of manual evaluation on low-quality and high-quality translation and
showed that evaluating low-quality translations is also more challenging for humans.
Thus, the results indicate that both evaluation metrics and human annotators are less
reliable when working with low-quality translation. In light of these findings we sug-
gest that the focus of future research on MT evaluation should move from handling
acceptable variation between MT output and reference translations to estimating the
impact of translation errors on MT quality.
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Second, we examined the influence of the type of MT system on automatic evalua-
tion. We compared the performance of a wide variety of evaluation metrics for the state-
of-the-art statistical MT and the recent neural MT approach on two different data sets.
The metrics tested in this work achieve a higher correlation with human assessments
(and therefore, are more reliable) when evaluating the outputs of neural MT systems.
In order to understand the reasons for that, we compared the number of different
types of errors in the translations generated by statistical MT as opposed to the ones
produced by neural MT. Neural MT contains more adequacy errors, which are more
easily detected by evaluation metrics than the ones affecting translation fluency. This
outcome encourages further work on using evaluation metrics for direct optimization
of NMT model hyperparameters (Shen et al. 2016).

Finally, we investigated to what extent the results obtained using different data sets
vary in terms of how well metrics do. The performance of evaluation methods was
tested on six data sets with different types of manual quality assessments. The rankings
of the metrics in terms of their correlation with human judgments for the different data
sets were compared. Testing the metrics using adequacy judgments generated using
either discrete or continuous scale, as well as fluency judgments, produced very similar
results, whereas using the judgments based on a post-editing effort criterion generated
different metric orderings. This can be because some of the errors that strongly affect
translation adequacy can be easy to correct—negation being a well known example of
this. Overall, we have seen that the results from meta-evaluation with a particular type
of manual assessment can be more often than not extrapolated to other quality aspects.

Appendix A. Spearman Correlation

For completeness, we provide the Spearman correlation coefficient values for Tables 3,
4, 8, 9, and 10.

Table A1
Conditional Spearman correlation with direct assessment scores for popular and top scoring
metrics from the WMT16 Metrics for high-quality and low-quality data partitions. This table
corresponds to Table 3 in the main body of the article.

Qlow Qhigh Q∗
high All

Meteor 0.297 0.448 0.403 0.565
-TERp-A 0.255 0.436 0.391 0.554
MPEDA 0.295 0.444 0.399 0.563
ROUGE-SU* 0.262 0.407 0.363 0.521
ChrF3 0.311 0.388 0.339 0.515
NIST-4 0.242 0.373 0.322 0.478
BLEU-4 0.173 0.381 0.332 0.456
-TER 0.133 0.413 0.366 0.455
-WER 0.095 0.437 0.391 0.443
-PER 0.177 0.351 0.299 0.429

UPF-Cobalt 0.245 0.437 0.392 0.544
CP-Oc(*) 0.212 0.391 0.343 0.491
SP-lNIST 0.258 0.375 0.325 0.483
DP-Oc(*) 0.108 0.346 0.304 0.385
SR-Or(*) 0.148 0.196 0.198 0.307

DPMFcomb 0.298 0.471 0.428 0.589
Metrics-F 0.267 0.477 0.435 0.590
Cobalt-F-comp 0.234 0.493 0.452 0.586
BEER 0.302 0.377 0.328 0.505
UoW-ReVal 0.224 0.423 0.377 0.507
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Table A2
Conditional Spearman correlation with direct assessment scores for popular and top scoring
metrics from the WMT16 Metrics Task for a four-way split of the data set resulting in data
samples corresponding to four quality levels (Q1–Q4). This table corresponds to Table 4 in the
main body of the article.

Q1 Q2 Q3 Q4 Q∗4 All

Meteor 0.176 0.154 0.142 0.399 0.303 0.565
-TERp-A 0.157 0.107 0.180 0.384 0.286 0.554
MPEDA 0.177 0.153 0.146 0.393 0.297 0.563
ROUGE-SU* 0.178 0.109 0.186 0.354 0.258 0.521
ChrF3 0.185 0.128 0.139 0.345 0.243 0.515
NIST-4 0.158 0.105 0.141 0.361 0.263 0.478
BLEU-4 0.051 0.065 0.133 0.364 0.264 0.456
-TER 0.044 0.062 0.183 0.371 0.273 0.455
-WER 0.016 0.056 0.194 0.389 0.293 0.443
-PER 0.110 0.091 0.140 0.350 0.248 0.429

UPF-Cobalt 0.139 0.118 0.161 0.388 0.293 0.544
CP-Oc(*) 0.147 0.071 0.171 0.358 0.258 0.491
SP-lNIST 0.166 0.105 0.142 0.359 0.260 0.483
DP-Oc(*) 0.036 0.044 0.144 0.302 0.213 0.385
SR-Or(*) 0.098 0.081 0.042 0.171 0.173 0.307

DPMFcomb 0.178 0.139 0.186 0.405 0.312 0.589
Metrics-F 0.124 0.164 0.192 0.413 0.321 0.590
Cobalt-F-comp 0.098 0.150 0.203 0.423 0.332 0.586
BEER 0.194 0.123 0.147 0.340 0.238 0.505
UoW-ReVal 0.111 0.097 0.165 0.380 0.282 0.507

Table A3
Spearman correlation with human judgments from WMT16 Metrics Task on the outputs of
different MT systems in the WMT16 Direct Assessment data set. This table corresponds to
Table 8 in the main body of the article.

PBMT SYNTAX NMT

-TERp-A 0.504 0.509 0.623
Meteor 0.486 0.500 0.613
MPEDA 0.478 0.493 0.608
ROUGE-SU* 0.494 0.458 0.579
ChrF3 0.478 0.405 0.568
NIST-4 0.431 0.413 0.548
BLEU-4 0.388 0.392 0.497
-WER 0.403 0.379 0.547
-TER 0.378 0.382 0.549
-PER 0.382 0.396 0.523

UPF-Cobalt 0.500 0.511 0.551
CP-Oc(*) 0.407 0.450 0.572
SP-lNIST 0.453 0.423 0.546
DP-Oc(*) 0.414 0.363 0.404
SR-Or(*) 0.316 0.366 0.292

DPMFcomb 0.521 0.555 0.624
Metrics-F 0.526 0.550 0.620
Cobalt-F-comp 0.531 0.580 0.592
UoW-ReVal 0.521 0.535 0.542
BEER 0.465 0.400 0.579
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Table A4
Absolute Spearman correlation between automatic evaluation scores and human judgments in
the MTSummit17 data set. This table corresponds to Table 9 in the main body of the article.

PBMT NMT

ROUGE-SU* 0.411 0.506
ChrF3 0.400 0.478
BLEU-4 0.403 0.461
NIST-4 0.379 0.464
WER 0.428 0.487
TER 0.424 0.492
PER 0.402 0.487

BEER 0.417 0.511

Table A5
Correlation with human judgments at sentence level across various data sets with different types
of human judgments. Kendall tau is reported for WMT16 Relative Ranking data set, and
absolute Spearman correlation coefficient is reported for the rest of the data sets. This table
corresponds to Table 10 in the main body of the article.

WMT16 WMT16 WMT17 MTC MTC GALE EAMT EAMT
-DA -RA -A -F -PE

Meteor .565 .362 .380 .431 .237 .461 .261 .719
TERp-A .554 .356 .392 .421 .243 .441 .259 .717
ROUGE-SU* .521 .335 .391 .390 .229 .379 .223 .712
ChrF3 .515 .366 .362 .414 .209 .376 .213 .698
NIST-4 .478 .301 .350 .380 .192 .372 .201 .696
BLEU-4 .456 .289 .357 .308 .185 .346 .228 .707
TER .455 .293 .373 .301 .207 .367 .220 .737
WER .443 .290 .377 .245 .184 .360 .223 .748
PER .429 .266 .356 .336 .192 .325 .185 .693

UPF-Cobalt .544 .375 .411 .436 .251 .458 .311 .710
CP-Oc(*) .491 .323 .370 .360 .206 .383 .230 .704
SP-lNIST .483 .315 .348 .396 .205 .368 .201 .697
DP-Oc(*) .385 .235 .378 .214 .139 .307 .213 .611
SR-Or(*) .307 .208 .202 .256 .165 .276 .083 .380

BEER .505 .366 .358 .405 .215 .369 .194 .719
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Fomicheva, Marina, Núria Bel, Iria da
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Treebanks. Springer, pages 317–329.

Liu, Ding and Daniel Gildea. 2005. Syntactic
features for evaluation of machine
translation. In Proceedings of the ACL
Workshop on Intrinsic and Extrinsic
Evaluation Measures for Machine Translation
and/or Summarization, pages 25–32, Ann
Arbor, MI.

Lommel, Arle Richard, Aljoscha Burchardt,
and Hans Uszkoreit. 2014. Multidimensional
quality metrics (MQM): A framework for
declaring and describing translation
quality metrics. Tradumàtica: tecnologies de
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