
David D. McDonald

This is a description of Mumble's approach to natural language generation, excerpted from
a technical survey of generation entitled "Natural Language Generation: complezities and
techniques." which v i i i appear in Nirenburg (ed.) T h e o r e t i c a l a n d M e t h o d o l o l i c a l
l i n e s i n M a c h i n e T r a n s l a t i o n , Cambridge University Press, to appear 1986.

8. MULTI-LEVEL. DESCltiPTIOII DIRECTED GEllERATIOII

The principal deficit of the direct replacement approach is its difficulties with
8ramatar, i.e. the awkwardness of maintaining an adequate representation of the
grnmm~tical context, or of carrying out grammatically mediated text-level actions such as
producing the correct syntactic form for an embedded clause. In other respects, however.
the message-directed control flow that drives direct replacement has a great deal to
recommend it. Compared with grammar-directed control schemes, message-directed
control is more efficient, since every action will contribute to the eventual production of
the text. Message-directed control also gives a pt*nner a very clear semantic basis for its
communication to the resfization component, since the message can be viewed simply as a
set of instructions to accomplish specific goals. The question then becomes: is there a way
off elaborating the basic, message-directed framework so as to overcome the deficits that
plague direct replacement approaches while still keeping the computational properties
that have made it attractive?

A number of generation researchers have independently choosen the same solution:
to interpose a level of expficitly linguistic representation between the message and the
words off the text (McDonald 1973. 1984; Kempen and Hoenkamp 1982; Jacobs 1985; Svartout
1984). They befieve that employing a synt~tctic description of the text under construction
is the most effective means of introducing grammatical information and constraints into
the realization process, in particular, that it is a better locus for grammatical processing
than a separately stated, active grammar.

The specifics of their individual treatments differ, but a common thread is clearly
identifiable: Realization is organized as choices made by specialists, where the form of the
choice--the output of the specialist--is a linguistic representation of what is to be said. i.e. a
structural annotation of the syntactic relations that govern the words (and embedded
conceptual elements) to be said, rather than just a fist of words. These representations are
phrase structures of one or another sort--hierarchies of nodes and constituents--of
essentially the same kind that a theoretical linguist would use. They employ functional
terms like "subject" and "focus'. and are most aptly characterized as a kind of "surface
structure" in the generative Unf~uist's sense, e.g. they undergo no derivation, and are a
proper and complete description of the syntactic properties of the text that is produced.

It will be convenient to restrict the present discussion to only one exemplar" of this
approach: taking advantage of an author's prerogative, I will describe my own (c.f.
McDonald 1984: McDonald & Pustejovsky 1985: McDonald, Pustejovsky & Vaughan 1985). As
it is the historical outgrowth of s direct replacement system. I it will be useful to organize
the discussion in terms of how it extends that approach and addresses its deficits. This will

I This author's interest in natural l a f lguqe Beneration began in 1971 while he was
working on extentions to the 8rsmmar and parser in Vinograd's SHItDLU program. As
already discussed. SHN)LU employed a classic direct replacement technique for its
generation. It was observations of the shortcomings of that design that were the original
motivation for the research. The influences of systemic gr~mat*e sad data-directed
progrRmmi, g style also stem from that time.

137

be folded into the standard description of how it deals with the three general concerns one
should have in examining 4t generation system: how it organizes its knowledge of
gfqtmmne; what its control structure is; and what its appreach to realization is.

Referring to our appreach as "multi-level, description-directed generation"
emphasizes specific features of its architecture and control protocols that v e consider
important: i t is. however, too large a phrase to use conveniently. The name of the
computer program that implements the design. MUMBLE (McDonald 1977, 1983), will serve
as a compact, agentive reference. Characterizing MUMBLE as multi-level draws attention to
the fact that it carries out operations over three explicitly represented levels of
representation simultaneously: message, surface structure, and word stream. Description-
directed is the name we have given to its control protocol, which is a specialization of the
common programming technique known as data-directed control. Under this protocol, the
data in the representations at the three levels is interpreted directly as instructions to the
virtual machine that constitutes the generator proper. Since each of these
representational structures is also a wtlid description of the text at its own level of
abstraction sad theoretical vocabulary, this characterization of the protocol emphasizes
the fact that the particulars of how the person developing messages or syntactic structures
chooses to design them has immediate consequences for the generator's performance
(McDonald 1984). The feedback that this gives a developer has proven to be invaluable in
ref in ing the notations and their computational interpretations in all parts of the system.

MUMBL£'s virtual machine is the embedyment of our computational theory of
generation. It consists of three interleaved processes that manage and carry out the
transitions between the representational layers. (1) Phrase structure execution interprets
the surface structure, maintaining an environment that defines the grammatical
constr~iflts active at any moment, and producing the word stream as its incremental
output. (2) Attachment interprets the message, transferring its component units to
positions within the surface structure according to the functional relationships between
them and their role in the message. (3) Ren!iT.ation takes the individual elements of the
message into surface structure phrases by selecting from linguistically motivated classes
of parameterized alternative forms. A minor fourth process, operating over the word
stream, morphologically specalizes individual words to suit their syntactic and
orthographic contexts (e.g. the article"a" going to "an" before vowels); later versions of
MUMBLE that produce speech should be much more active at this level.

Thus, as seen by the developer of a text planner that would pass messages to MUMBLE
for it to produce texts from, the virtual machine appears as a very h igh level, task-specific
language, with its OWn operators and intermediate representations. To a lesser extent this
is true also for the linguist writing generation-oriented grJtmmJteS for MUMBLE to execute,
since the virtual machine includes no presumptions as to what specific syntactic
categories, functional relations, or syntactic constructions the natural language includes.
Instead it supplies a notation for deVming them in terms of primitive notions including the
dominates and proceeds relations of phrase structure, bound thematic relations, configural
regularities such as head or complement from X-bar theory; and the tree combination rules
of Tree Adjoining Grammars (Yrech & Joshi, 1985).

As a message-directed design, MUMBLE is best discussed by reference to a concrete
example message, situation, and resulting output text. To miminize the distraction thst
introducing an actual underlying program from one of our generation projects would
entail, a relatively obvious excerpt from a message will have to suffice. The figure shows a
generstod output peragraph describing a legal case from the UMass Counselor Project
(McDonald & Pustejovsky 1986). The structure below it is the message responsible for its
second sentence, which details the events that were relevant to the court's decision. Using
this example, we will look st MUMBLE's knowledge of grammar: how it is numifest, and how
it has its effects, interleaving discussion of realization and control at convenient places.

138

"In the Telex case, Telex was sued by IBM for misappropriating trade secrets
about its product M~rlin. One of the mnnagers of the Merlin development
project, Clemens, left IBM to work for Telex, where he helped to develop
Telex's competing product, the 6830. The key fact in the case was that Clemens
brought a copy of the source code with him when he switched jobs. The court
held for IBM."

(temporal-sequence
(left=to-work-for (#<role #<project-nmnager Merlin>> #<Clemens>)

(named=company #<IBM>)
(named=company W<Telex>))

(helped-to-develop (nAmed-porsen Z<Clements>)
(# <kind product> # <competition-by # <Telex>>

#<name "6530">)))

As previously discussed, one of the concomitant features of a message-directed

approach is that items 2 directly from the underlying program are part of the messages.
(These are indicated here by enclosing angle brackets, #<...>.) Once in a message, such
items become instructions to the generator, sad as such need interpretations, i.e. ssseciated
functions from the item, and the linguistic and pragmatic environment, to the surface
specification of some text or text fragment. However. considered in terms of the space of
texts that might reA.Te them. real program objects are large and vague as present day
progrnmmers tend to use them: they stand in many different relationships to other objects
and to the underlying program's state, and consequently can have many different
interpretations depending on the context and the speaker's intent.

We take it to be pert of the job of a text planner to choose among these relationships
and to indicate in the message the perspective from which an object is to be viewed. (The
perspective on the first occuranco of Clemens, for example, is indicated to be his role as
(former) manager of the Merlin project.) Adopting a specific perspective often amounts
to selecting a specific wording (often just of the lexical head, e.g. "manager"; but also
entire conventional phrases such as "leave <employerl> to work for <employer2>"). These
examples indicate that runny of the terms in a message are surface lexical relations (e.g.
"helped to develop") rather than a more abstract conceptual vocabulary; this has the
deliberate corolhu'y that syntsctic realization will usually occur after key words have been
chosen. The text planner must therefore understand a good deal about how alternative
word choices cover the semantic fields of the situation it is trying to communicate, sad
what emphasis and what presupposed inferencing by the audience a given choice of
wording will convey. This appears to us to be a choice that is best made at a conceptual
level (i.e. during message construction), since it does not depend in any crutial way on the
details of the grammatical environment, the arguments of Dsnlos (1984) notwithstanding
(cf. McDonald et al. 1986).

Even though the key lexical choices for an item will have occurred before it has been
syntactically realized, these massage-level lexical decisions can drew on the grammatical
context in which the text for it is going to occur. In particular, grammatical constraints
imposed by the syntactic relations in which the text will stand will filter out grammatically

2 The word "item". and at other times the word "object", is intended as a general term that
denotes representational data structures in an underlying program without regard to the
kind of real world entity that they model: individuals, kinds, relations, constraints,
attributes, states, actions, events, etc.

139

inconsistent possibilities from the planner 's choice set.3 This is possible because the
realization of messe4es is hierarchical, following the message's compositional structure top
down. i.e. the .message is interl~reted much as a conventional9roaram would be. The
surface syntactic reafizafion of the higher, dominating conceptual elements of the message
is thus available to define and constrain the interpretations (i.e. linguistic reafizatioas) of
the lower, more embedded elements. This protocol for "evaluation" of arguments is known
as normal order, and is in direct contrast with the previously discussed applicative order
protocol used in most direct rephtcement designs.

The perspective that the text p lanner chooses to impose on an item from the
underlying program is represented st the messsge-level by designating the ~sfization
class to be used for it. Realization classes are MUMBLE's equivalent of the "speciafist
programs" in direct replacement. They are linguistic entities rather than conceptual, and
are developed by the designer of the grammar using control end dats structures defined in
the virtual m~chine. New underlying programs are interfaced to MUMBLE by developing s
(possibly very minimal) text planner eJ1d assi~nin~ program items (or item types) to ore-
defined reaiizstion classes. A relatively seE-contained example of s class, "locative-
relation", developed originally for use with Jeff Conklin's program for describing pictures
of house scenes (see Conklin, 1984) is shown below:

(defiae=retlizatioa=chtss LOCATIVE-RElATION
: p a r a m e t e r s (r e l a t i o n a r l l l arlg2)
:choices

((At g l - i s -Relat ion-Ars2)
"The driveway is next to the house"
c lause focus (arg l))
(A r g 2 - h a s - - A r g l - R e l s t i o n - A r g 2)
"The house has a driveway in front of it"
c lause focus (i tS2))
(T h e r e - i s - a - A r g l - R e l a t i o a - A r g 2)
"There is s driveway next to the house"
roo t - c l ause sh i f t s - focus- to(grg l))

((R e l a t i o n - A r l l 2 - i s - A r g l)
"Next to the house is s driveway"
root-clause sh i f t s - focus - to (srg l)
f i n a l - p o s i t i o a (a t g l))

((wi th-Ar 'g l -Rela t ion-At-g2)
"...with a driveway next to it"
p r e p p m o d i f i e r - t o (a r g l)))

3 This fil tering is automatic ff the relevant parts of the text planner are implemented
using the same abstract control device as MUMBLE uses for its own decisions, i.e.
parameterized, pre-computed annotated choice sets of the sort employed for realization
classes (see text). The descriptions of the fingustic character and potential of the choices
that the annotation provides are the basis for fil tering out incompatible choices on
grammatical grounds, just as occurs at the syntactic level in selections within a realization
class.

This technique is proving convenient in our own work with some simple text
planners; however we can see a point where the requirement that the full set of
alternatives be pre-computed may be unnecessarily limiting or possibly psychologically
unreafistic, in which case an alternative design, presumably involving dynamic
construction of the choices, will be needed and an alternative means of imposing the
grammatical constraints will have to be found. For a discussion of another planning-level
control paradigm that has been used with Mumble. see Conklin (1984) or McDonald &
Conklin (1983).

140

The choices grouped together in a realization class will all be effective in
communicating the conceptual item assigned to the class, but each v i i i be appropriate for a
different context. This context-sensitivity is indicated in the annotation accompanying the
choice, for example "focus', which vi i i dictate the grammatical cases and surface order
given to the arguments, or the functional role "modifier-to'. which will lead to realization
as a post.nominal prepositional phrase. These annotating characteristif~ indicate the
contexts in which a choice can be used. They act both as passive descriptions of the choice
that are enmined by other routines, and as active test predicates that sample and define
the pragmatic situation in the text planner or underlying program. Such terms are the
basis of MUMBLE's model of language use--the effects that can be achieved by using a
particular linguistic form; as such they play the same kind of role as the "choosers" or the
controlling functional features in a systemic grammar like l~lA.n's NIGEI...

The surface structure level, the source of grammatical constraints on realization, is
assembled top down as the consequence of the interpretation and realization of the items in
the message. In the example message (repeated below), the topmost item is a "sequence" of
two steps, each of which is a lexicalized relation over several program objects on which a
particular perspective has been imposed.

(temporel-soquence
(left-to-work-for (# <role # <project-ramMer Merlin,> # <name "Clemens" >)

(named-company # <IBM,)
(named-company # <Telex>))

(helped-to-develop (named-person ~ ~lements>)
(#<kind product> #<competition-by #<Telex>>

ms,he "6830">)))

One of the goals of a multi-level approach is to distribute the text construction effort
and knowledge throughout the system so that no level is forced to do more of the work than
it has the natural capacity for. Thus for example in the interpretation of the first item the
message, temporal sequence. MUMBLE is careful to avoid taking steps that would exceed the
intent of the planner 's instruction by being overly specific linguistically: As a messene-
level instruction, temporal-sequence says nothing about whether the items it dominates
should appear as two sentences or one: it says simply that they occured after one another
in time and that their realizations should indicate this. Since there is no special emphasis
marked, this can be done by having them appear in the text in the order that they have in
the message. The decision about their seateatial texture is postponed until a linguistic
context is available and the decision can be made on an informed basis.

This delay is achieved by having the Attachment process, which moves item from the
messMe to the surface structure according to their functional roles, wait to position the
second item of the sequence until the first has been realized. Only the first item will be
moved into the surface structure initially, and it will appear as the contents of the second
sentence as shown below. Note that a message item is not realized until it has a position.
and then not until all of the items above it and to its left have been realized and the item
has been reached by the Phrase Structure Execution process that is traversing the surface
structure tree and coordinating all of these activities. By enforcing this discipline one is
sere that all the grammatical constraints that could affect an item's realization will have
been determined before the realization occurs, and consequently the virtual machine does
not need to make provisions for changing an item's realization after it is finished (see
figure one).

Considered as a function, a realization class such as "Left-to-work-for" specifies the
surface form of a grammatically coherent text fragment, which is instsntiated when the

• class is executed and a specific version of that phrase selected. Given its lexical specificity.
such a class is obviously not primitive. It is derived by sucessive specializations of two.
linguistically primitive subcstegorization frames: one built around the verb class that

141

includes "leave" (shown below) and the other around the class containing "work for". The
specialization is done by a definition-time currying operation wherein arguments to the
subcategorization frames are bound to constants (e.g. the verb "leave"), producing new
realization classes of reduced arity. On its face, a class built sreund variants on the phrase
"<employee> leaves <companyl, to work for <company2>" is more appropriate to s semantic
grammar (cf. Burton & Brown 1977) than to a conventional syntactic phrase structure
grammar. This choice of linguistic modularity does however reflect the actual conceptual
modularity of the underlying program that drives the example. 4 and we believe this is an
important benefit methodologically.

(define-phrase subject-verb-locative (subj vb loc)
:specification (clause

subject subj
predicate (vp

verb vb
locative-complement loc)))

Comparing MUMBLE's organization of grammatical knowledge with that of the two
grammtr-directed approaches that have been discussed, we see that it resembles an ATN
somewhat and a NIGEL-style systemic grammar hardly at all. ATN designs are based on
procedurally encoded surface structures, which are executed directly; MUMBLE represents
surface structure explicitly and has it interpreted. ATNs select the surface form to be used
via a recursive, phrase by phrase, topdown and left to r ight consideration of the total set of
forms the grammar makes available (i.e. alternative arc sequences), and queries the state
of the underlying program to see which form is most appropriate. MUMBLE also preceeds
recursively, topdown and left to right, but the recursion is on the structure of an explicitly
represented message. Conceptual items or item Wpes. through the the realization classes
that the planner associates with them. control the selection and instantiation of the
appropriate surface forms directly.

MUMBLE "packages" linguistic relations into constituent phrases: it does not provide an
unbundled, feature-based representation of them as a systemic grammar does. It cannot.
for example, reason about tense or thematic focus apart from a surface structure
configuration that exhibits them. This design choice is deliberate, and reflects what we
take to be a strong hypothesis about the character of linguistic knowledge. This
hypothesis is roughly that the space of vafid feature configurations (to use systemic terms)
is smaller, less arbitrary, and more structured than a feature-heap notation can express
(see McDonald et al. 1986 for details). Sitxce our notation for surface structure incorporates
functional annotations as well as categorical, and especially since it is only one of three
representational levels operated over in coordination, we believe that organizing
linguistic reasoning in terms of packaged, natural sets of relations will provide a great deal
of leverage in research on text planning sad computational theories of language use and
communicative intention.

Nowhere in MUMBLE is there a distinct grammar in the sense of a set of rules for
deriving linguistic forms from primitive features. Rather it manipulates a collection of

4 As it hippens, Leave-to-work-at is a primitive conceptual relation in the legal reasoning
system that serves here as the underlying program (Rissland & Ashley, submitted). The
causal model that the phrase evokes in a person, i.e. that working for the new company is
the reason why the employee is leaving (cf. "John washed his car to impress his
girlfriend") is encapsulated in this relation, and suppresses the causal model from
consideration by the legal reasoner's rules. This encapsulation is defiberate. Reasoning
systems should function at the conceptual level best suited to the task. This does however
imply that some component of the natural language interface must now bridge the
conceptual ground between the internal model and the lexical options of the language; see
Pustejovsky (this volume) for a discussion of how this may be done.

142

predefined linguistic objects-the minimal surfsce phrases of the language and the
composite phrases derived from them. The phrases are grouped into the reatization classes.
the projected linguistic images of different conceptual typos and perspectives. When
selected and instsatiated to form the surface structure they take on an active role (through
interpretation by the three processes), defining the order of fur ther actions by the
generator, defining the contraints on the realization of the embedded items from the
message now at some of its leaf positions, and defining the points whore it m y be extended
through fur ther attachments from the message level. The figure below shows a snapshot
of the surface structure for the first part of the text in the example, and can illustrate these
points. At the moment of this snapshot, the Phrase Structure Execution process has
traversed the structure up to the item #<telex> and produced the text shown; its next action
will be to have that item realized, whereupon the realizing phrase (an NP like the one for
#<IBM>) will replace #~telex> in the surface structure and the process will traverse it and
move on (see figure two).

The first thing to consider is the differences in the details of this surface structure
representation compared with the more conventional trees used by generative
grammarians. Two of these are significant in this discussion. The first is the presence of
functional annotations over each of the constituents (indicated by labels inside square
brackets). Terms like "subject" or "prep-complement" are used principally to summarize
the grammatical relations that the constituents are in by warrant of their configurational
positions, which makes these labels the source of most of the grammatical constraints on
message item realizations. The functional annotations also play a role in the dynamic
production of the word stream: Here this includes providing access to the subject when the
morphological process needs to determine the person/number agreement for tensed verbs.
and supplying grammatical function words like "of" or the infinit ive marker "to" directly
into the word stream.5

Formally the representation is not a tree but a sequential stream (as indicated by the
arrows): a stream of annotated positions that are interpreted, in order, as instructions to
the P h r a ~ Structure Execution process. The grammar writer defines the interpretation an
annotating label is to have. e.g. specifying control of morphological effects or function
words, constraints to be imposed on realizations, or establishing salient reference positions
(like the subject). Various useful technical details are expedited by defining the surface
structure as a stream rather than s tree (see McDonald & Pustejovsky 1985b). The stream
design provides s clean technical basis for the work of the Attachment process, which
extends the surface structure through the addition of successive items from the message.
The extensions are integrated into the active grammatical environment by breaking inter-
position links in the stream and knit ing in the new items along with any additional
covering syntactic nodes or functional constituent positions needed to correctly
characterize the linguistic relationship of the new material to the old.

In the present example, the second item of the message's temporal sequence item. the
lexicalized relation "helpedoto-develop ". remains unattached-qts position in the surface

5 Introducing the closed class words that indicate syntactic function into the text as an
active consequence of traversing the corresponding part of the surface structure tree.
rather than having them first appear in constituent positions at the tree's leaves, is an
experimentally motivated design decision. It is intended to explore the consequences of
employing computational grammars that distinquish the sources of closed and open class
words: positing that the open class words have a conceptual source and the closed class
"function" words a purely syntactic source. The two word classes are distinguished
psycholinguistically, e.g. they have very different behaviors in exchange errors (see
Garrett 1975); i f this empirical difference can be given a successful computational
account, then that account can serve to anchor other aspects of the grammar's design and
eventually lead to psycholinguistic predictions derived from the consequences of the
computational design (McDonald 1984).

143

structure unestablished--until enough linguistic context has been established that a
reasonable decision can be made about stylistic matters, e.g. whether the item should
appear ss an extension of the first item's sentence or start its own. Since the functional
constraints on a temporal sequence's realization prohibit embedding the second item
anywhere within the first, the only legal "attachment points" for it (i.e. links it could be
knit in st) are on the trailing edge of the first item's sentence or as a following sentence.
In terms of our theory of generation, attachment points are grAMmAtical properties of
phrasaJ configurations: places where the existing surface structure m y be extended by
splicing in "auxiliary" phrases (i.e. realizations of message items), for exsJnple adding an
initial adjunct phrase to s clause or embedding the NP headed by "mana41er" inside the
selector "one of". Every phrasal pattern (as indicated by the annotating Isbeis) hss
specific places where it can be extended and still be a grammatically valid surface
structure; the gr~unmstical theory of such extensions is developed in studies of Tree
Adjoining Grammars (Kroch & Joshi 1985).

What attachment points exist is a matter determined by the grammatical facts of the
languege; which points are actually used in s given situation is s matter of stylistic
convention (see McDonald & Pustejovsky 1985a). In this case there is a very natural.
compactly realized relationship between the first and second events: the final item in the
realization of the first event, the Telex company, happens to be where the second event
occurred. As neither clause is particularly complex syntactically, the attachment point
that extends the final NP of the first event with a relative clause is taken and the second
event knit into the surface structure there, to be realized when that position is reached in
the stream.

144

." ! s e n t e n c e] ~--

(l e f t - t o - w o r k - f o r . . .)

The first item of the message in a top level position of the
surface structure annotated as a "sentence"

FIGURE ONE

> [sentence 1 ~
j clause ~-

[subject]

[head])[partitive]
one ./NP <spe .)

\
[head]-----Y[partitive]
manaqer ~,~NP (indiv.)

[classif ying-name]
Merlin

~- [apposative]

[propername-head]
Clemens

[classifier] [head]
development project

~- [ins/modal] ;[predicate]

[verb] [location] [reason-inf]
l e ~ NP~,,..,. g/PP

[propername-head] [prep H p - o b j]
IBM for #< te lex ,

S a i d =o fax- :
"... One of the managers of the Merlin development project, Clemens left IBM for 11"

FIGURE TWO

145

