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Abstract

We analyze models for semantic role
assignment by defining a meta-model
that abstracts over features and learning
paradigms. This meta-model is based on
the concept of role confusability, is de-
fined in information-theoretic terms, and
predicts that roles realized by less specific
grammatical functions are more difficult
to assign. We find that confusability is
strongly correlated with the performance
of classifiers based on syntactic features,
but not for classifiers including semantic
features. This indicates that syntactic fea-
tures approximate a description of gram-
matical functions, and that semantic fea-
tures provide an independent second view
on the data.

1 Introduction

Semantic roles have become a focus of research in
computational linguistics during the recent years.
The driving force behind this interest is the prospect
that semantic roles, as a shallow meaning represen-
tation, can improve many NLP applications, while
still being amenable to automatic analysis. The
benefit of semantic roles has already been demon-
strated for a number of tasks, among others for ma-
chine translation (Boas, 2002), information extrac-
tion (Surdeanu et al., 2003), and question answer-
ing (Narayanan and Harabagiu, 2004).

Robust and accurate automatic semantic role as-
signment, a prerequisite for the wide-range use of
semantic roles in NLP, has been investigated in a

number of studies and shared tasks. Typically, role
assignment has been modeled as a classification
task, with models being estimated from large cor-
pora (Gildea and Jurafsky, 2002; Moschitti, 2004;
Xue and Palmer, 2004; Surdeanu et al., 2003; Prad-
han et al., 2004; Litkowski, 2004; Carreras and
Màrquez, 2005).

Within this framework, there is a number of archi-
tectural parameters which lend themselves to opti-
mization: the machine learning framework, the fea-
ture set, pre- and postprocessing, each of which has
been investigated in the context of semantic role as-
signment. The current paper concentrates on feature
engineering, since the feature set is a pivotal com-
ponent of any kind of machine learning system, and
allows us to incorporate and test linguistic intuitions
on the role assignment task.

We approach feature engineering not by directly
optimizing system performance. Instead, we pro-
ceed by error analysis, like Pado and Boleda (2004).
Our aim is to form a global hypothesis that explains
the distribution of errors across classes. Insofar as
the model does not contain model-specific infor-
mation, following this methodology can provide a
meta-model of a model family which abstracts over
concrete features and over the learning paradigm.

The concrete global hypothesis we test is: (1) All
features of current models approximate a descrip-
tion of grammatical functions, and the complete sys-
tems approximate an assignment based on grammat-
ical functions. (2) System performance for a given
role depends on how easily it is confused with other
roles. We will give this concept of role confusability
a formal, information-theoretic definition.

The present study specifically analyzes mod-
els for semantic role assignment in the FrameNet
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paradigm (Fillmore et al., 2003). We are going to
show that our hypothesis indeed holds for a variety
of models – but only models that comprise exclu-
sively syntactic features. We conclude that syntactic
features approximate a description of grammatical
functions, but that semantic features model a dif-
ferent aspect of the role assignment mapping. To-
gether with the reasonable performance of a solely
semantics-based system, this leads us to suggest a
closer investigation of semantic features – and in
particular, a co-training approach with syntactic and
semantic features as different views on the role as-
signment data.

Plan of the paper. In Section 2, we give a
brief introduction to FrameNet, the semantic role
paradigm and corpus we are using in this study. Our
first experiment, described in Section 3, establishes
that there is a high variance in performance across
roles, and that this variance is itself stable across
models and learners. In Section 4, we state our hy-
pothesis, namely that this variance can be explained
through role confusability, and formalize the con-
cept . In Section 5, we perform detailed correlation
tests to verify our hypothesis and discuss our find-
ings. Section 6 concludes the paper.

2 FrameNet

This section presents the semantic role paradigm and
the role-annotated corpus on which the present study
is based. FrameNet1 is a lexical resource based on
Fillmore’s Frame Semantics (Fillmore, 1985). It de-
scribes frames, representations of prototypical situa-
tions. Each frame provides its set of semantic roles,
the entities or concepts pertaining to the prototypi-
cal situation. Each frame is further associated with a
set of target predicates (nouns, verbs or adjectives),
occurrences of which can introduce the frame.

FrameNet provides manually annotated examples
for each predicate, sampled from the British Na-
tional Corpus (Burnard, 1995). The size of this cor-
pus exceeds 135,000 sentences. The following sen-
tences are examples for verbs in the IMPACT frame,
which describes a situation in which typically “an
IMPACTOR makes sudden, forcible contact with the
IMPACTEE, or two IMPACTORS both ... [make]
forcible contact”:

1http://www.icsi.berkeley.edu/~framenet/

(1) [Impactee His car] was struck [Impactor by a
third vehicle].

(2) [Impactor The door] slammed [Result shut].

(3) [Impactors Their vehicles] collided [Place at
Pond Hill].

FrameNet manual annotation also comprises a layer
of grammatical functions: For example, the subject
of finite verbs is labeled Ext, and Mod is a label
used for modifiers of heads, e.g. an adjective mod-
ifying a noun. The grammatical functions used in
FrameNet are listed in Fillmore and Petruck (2003).

Note that the frame-specificity of semantic roles
in FrameNet has important consequences for seman-
tic role assignment, since there is no direct way
to generalize role assignments across frames, and
learning has to proceed frame-wise. This com-
pounds the data sparseness problem, and automatic
assignment for frames with no training data is very
difficult (Gildea and Jurafsky, 2002).

3 Experiment 1: Variance in role
assignment

Several studies have established that there is con-
siderable variance in semantic role assignment per-
formance across different semantic roles within sys-
tems (Carreras and Màrquez, 2004; Carreras and
Màrquez, 2005; Pado and Boleda Torrent, 2004).
However, these studies used either the PropBank
semantic role paradigm (Carreras and Màrquez)
or a limited of experimental conditions (Pado and
Boleda). For this reason, we perform a first experi-
ment to replicate this phenomenon in our setting.

Note that the vast majority of participant sys-
tems in recent shared tasks divides semantic role as-
signment into multiple sequential steps. The max-
imal decomposition is as follows: preprocessing,
e.g. removal of unlikely argument candidates; ar-
gument recognition, the distinction between role-
bearing and non-role-bearing instances; argument
labeling, the actual classification of role-bearing in-
stances; and postprocessing, e.g. by inference over
probable role sequences.

Following this distinction, we concentrate in this
study on the argument labeling step, i.e. distinguish-
ing between roles, rather than distinguishing roles
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from non-roles. This is justified by earlier empiri-
cal results, namely that the argument labeling step
requires more training data than argument recogni-
tion (Fleischmann and Hovy, 2003), and that it calls
for more sophisticated feature construction (Xue and
Palmer, 2004). We take this as evidence that the
quality of the argument labeling step is central to a
good semantic role assignment system.

In order to isolate the effects of argument label-
ing, we assume perfect argument recognition by us-
ing gold standard role boundaries; however, we do
not use gold standard parse trees, but rather automat-
ically computed ones, which realistically introduces
some noise (see the following paragraph).

Data and preprocessing. As experimental mate-
rial, we used the same data that was used in the
Senseval-3 semantic role assignment task: 40 frames
from FrameNet version 1.1, comprising 66,777 in-
stances. The number of roles per frame ranged from
2 to 22, and the number of role instances ranged
from 593 to 8,378. The data was randomly split into
training (90%) and test instances (10%).

The data was parsed with the Collins
model 3 (1996) parser; in addition, all tokens
were lemmatized with TreeTagger (Schmid, 1994).

Modeling. We model role assignment as a clas-
sification task, with parse tree constituents as in-
stances to be classified. We repeated the classifica-
tion with two different learners: The first learner,
TiMBL (Daelemans et al., 2003) is an implementa-
tion of nearest-neighbor classification algorithms in
the memory-based learning paradigm2. The second
learner, Malouf’s probabilistic maximum entropy
(Maxent) system (Malouf, 2002), uses the LMVM
algorithm to estimate log-linear models. We did not
perform smoothing.

Table 5 shows the features we use. Here as in the
system setup, we keep close to current existing mod-
els for semantic role assignment in order to make our
results as representative as possible. We investigate
different feature sets in order to verify our results. In
Exp. 1, we limit ourselves to two feature sets, Syn
(syntactic features) and Sem (lexical features) from
the bottom of Table 5. The feature sets were exactly
the same for both learners.

2TiMBL was set to k-NN classification, using the MVDM
distance metric and 5 neighbors.

Syn/Sem Syn
MBL 87.1 ± 12.7 82.2 ± 17.8
Maxent 87.5 ± 13.4 82.4 ± 18. 2

Table 1: Exp. 1: Overall results (F-scores and stan-
dard deviation across roles).

Syn/Sem Syn
Role FMBL FMaxent FMBL FMaxent

Frame: CHANGE_POSITION_ON_A_SCALE
ATTR 79.0 80.7 57.6 66.1
CO_VAR 55.6 64.0 22.2 31.6
DIFF 87.1 84.9 75.0 66.7
ITEM 68.6 70.3 48.0 61.3
VALUE_1 88.0 91.7 78.3 72.7
VALUE_2 93.3 90.9 89.3 85.2
Frame: KINSHIP
ALTER 87.0 89.2 87.8 87.4
EGO 96.7 98.8 96.7 95.5
Frame: PART_ORIENTATIONAL
PART 98.2 96.4 97.6 97.0
WHOLE 100 100 98.2 100
Frame: TRAVEL
AREA 31.6 52.6 25.0 45.5
GOAL 74.4 71.4 68.3 62.2
MODE 46.2 72.7 12.5 15.4
PATH 66.7 53.3 50.0 40.0
SOURCE 66.7 72.7 66.7 66.7
TIME 77.8 66.7 15.4 40.0
TRAVELER 90.9 90.6 90.9 90.6

Table 2: Exp. 1: Role-specific figures of system per-
formance for four example frames.

Results. Table 1 shows the systems’ overall F-
scores and standard deviation across roles. Table 2
illustrates the differences in performance across
roles on four frames: It lists all roles with ≥ 5 oc-
currences for each frame. PART_ORIENTATIONAL

shows very little variance, while the roles of
CHANGE_POSITION_ON_A_SCALE and especially
TRAVEL differ widely. For KINSHIP, the system
shows good performance for both roles, but the F-
scores still differ by around 9 points.

Discussion. Table 1 shows that there is consider-
able variance across roles, with a standard devia-
tion in the range of 18% for the syntax-only model.
We note that the deviation decreases to 13% for the
combined syntax-semantics model. Table 2 con-
firms that this is not purely between-frames, but
also within-frames variance. This confirms the phe-
nomenon described at the beginning of this section.
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fr frame
fe role (frame element)
fes(fr) roles of a frame
gfs(fr) gramm. functions of a frame
gfsfr (fe) gramm. functions realizing a role in

a frame

Table 3: Notation summary

4 A meta-model for role assignment:
Confusability

The experiment of the previous section has shown a
considerable variance in system performance across
roles. The aim of this section is to develop a meta-
model which can explain this variance.

The models we have explored in Exp. 1 rely
mainly on syntactic features: Even in the combined
syntax-semantics model, 24 of the 31 features de-
scribe syntactic structure. This predominance of
syntactic features can be observed in many current
models for semantic role assignment. Accordingly,
our meta-model focuses on the uniformity of the
mapping from syntactic structure to semantic roles.
We formalize the variance in this mapping by the
confusability of a semantic role. It implements the
following hypothesis:

(1) The semantic role assignment systems we study
approximate role assignment through gram-
matical functions.

(2) System performance for a given role depends on
the role’s confusability: A role is highly con-
fusable if the grammatical functions that in-
stantiate it often also instantiate other roles.

By using the ideal, manually assigned grammat-
ical functions that are available from the FrameNet
data – and which are not passed on to the learner –
our meta-model abstracts over concrete feature sets.

Our definition of confusability proceeds in two
steps. First we model the informativity of a gram-
matical function by the entropy of semantic roles
that it maps to. Then we compute the confusabil-
ity of a role as a weighted average of the entropies
of the grammatical functions that realize it.

Grammatical function entropy. Viewing a gram-
matical function as a random variable with semantic

Grammatical function entropy
GF DEG THM DEP LOC H
Mod 69 43 24 0 1.46
Comp 18 491 12 41 0.72
Ext 0 17 0 561 0.16
Head 0 0 0 273 0.0
Obj 0 0 0 3 0.0

Role Confusability
Role Mod Comp Ext Head Obj Conf

DEG 69 18 0 0 0 1.31
THM 43 491 17 0 0 0.76
DEP 24 12 0 0 0 1.22
LOC 0 41 561 273 3 0.16

Table 4: Grammatical function entropy and role con-
fusability for the frame ABUNDANCE

roles as values, we define the entropy of a grammat-
ical function gf within the frame fr as

Hfr (gf ) =
∑

fe∈fes(fr)

−p(fe|gf ) log p(fe|gf )

where p(fe|gf ) = f(gf ,fe)
f(gf ) is the conditional proba-

bility of roles fe given gf (cf. the notation in Table 3).

Role confusability. The confusability of a role
is the sum of its grammatical function entropies,
weighted by the conditional probabilities p(gf |fe) =
f(gf ,fe)

f(fe) of grammatical functions gf given fe.

cfr (fe) =
∑

gf ∈gfs(fr)

p(gf |fe)Hfr (gf )

An example. Table 4 shows the grammatical func-
tion entropies and role confusabilities for the frame
ABUNDANCE, both computed on the training data.
The upper part of Table 4 lists the entropies of
the grammatical functions Mod, Comp, Ext,
Head and Obj3 and the counts f(gf, fe) of occur-
rences of the grammatical functions together with
the roles DEGREE (DEG), THEME (THM), DEPIC-
TIVE (DEP) and LOCATION (LOC). The entropy of
Mod, with similar numbers of occurrences for three
different roles, is relatively high, while Ext occurs
almost exclusively for one role and has a much lower
entropy. The lower part of Table 4 shows the confus-
ability for the same set of roles. The confusability of

3See Fillmore and Petruck (2003) for a glossary of
FrameNet’s grammatical functions.
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DEGREE is relatively high even though it is mostly
realized by Mod because Mod has a high entropy, i.e.
it indicates multiple roles; LOCATION on the other
hand is not very confusable even though it occurs
frequently as both Ext and Head, since both gram-
matical functions indicate this role.

Related work. Our approach is similar to Pado
and Boleda (2004) in that they also use the unifor-
mity of linking as an explanation for performance
variations in semantic role assignment. However,
their analysis is located at the frame level. We ex-
amine individual roles, which allows us to derive a
simpler and more intuitive formalization of linking
uniformity. Also, our model will ultimately lead us
to a different conclusion: the uniformity of linking
is a good predictor of the performance of role as-
signment systems, but only for exclusively syntactic
models (see Section 5).

5 Experiment 2: Relating confusability
and system performance

In this section, we test the validity of our meta-
model. We assess whether confusability, defined in
Section 4, can explain the variance in role assign-
ment that we have found in Section 3, by testing the
correlation between the two variables.

Experimental setup. We use the same data set
(Senseval-3) and the same two classifiers (memory-
based and maximum entropy classification) as in
Exp. 1. To cover a wider range of models and thus
increase the validity of our analysis, we split up the
Syn feature set from Exp. 1 into the four smaller
sets described in the upper part of Table 5. We use
these sets individually, combined, and together with
the lexical features in the Sem set. This results in a
total of 20 different models (10 for each classifier),
for which we computed role-specific F-scores.

In parallel, we estimated the confusability as de-
scribed in Section 4, with FrameNet’s manually as-
signed grammatical functions as a basis, using only
the training portion of our data. We did not smooth,
but omitted roles occurring less than 5 times to
avoid sparse and thus unreliable data points. Re-
call that confusability does not vary with the feature
set, since its central asset is to abstract over concrete
model parameters and feature sets.

Feature set FMBL FMaxent

Path0 70.9 71.3
Path 73.3 72.6
Pt 78.8 79.0
Path/Pt 80.8 79.8
Path/Sibling 76.7 76.6
Pt/Sibling 78.8 79.1
Syn 82.2 82.4
Sem 80.3 80.7
Syn/Sem 87.1 87.5

Table 6: Exp. 2: Results for different feature sets

Results. The F-scores for the subdivided Syn fea-
ture set are shown in the upper part of Table 6, with
the complete Syn and Sem sets and their combina-
tion below. There is a clear relationship between
features and F-score: additional features are consis-
tently rewarded with higher performance. Interest-
ingly, phrase type information appears to be a better
role predictor than path (compare models Path and
Pt). Also, the semantic feature set alone (Sem) per-
forms at over 80% F-Score, slightly better any of the
individual syntactic feature groups.

The high F-score variance between individual
roles which we have shown for the feature sets Syn
and Syn/Sem in Exp. 1 generalizes to the other fea-
ture sets; all individual syntactic feature sets exhibit
a higher variance than Syn, and Sem shows a higher
variance than the Syn/Sem combination. This does
not come as a surprise, since the two models of
Exp. 1 use the two richest feature sets, and we would
expect less robust behavior for weaker models. An-
other point to note is that the performance of the two
learners is remarkably similar.

The high variance in the F-scores is mirrored in
the confusability figures; we obtain an average con-
fusability for our semantic roles of 1.79 with a high
standard deviation of 0.84. A scatter plot of F-scores
against confusability figures (Fig.1) suggests a linear
correlation analysis.

Analysis 1: Correlating confusability and F-
score. Since the data does not appear to be nor-
mally distributed, we apply Kendall’s nonparamet-
ric rank test. The results, which are listed in Table 7,
show an extremely significant negative correlation
between confusability and F-score: higher confus-
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Path0 These are features centered around the path from the target lemma to the constituent: the path
itself, its length, partial path up to the lowest common ancestor, the grammatical rule that
expands the target predicate’s parent, relative position of constituent to target

Path Feature set Path, plus target lemma
Pt These are features related to phrase type and part of speech: the phrase type of the constituent

and its parent, the POS of the constituent first word, last word and head as well as the POS of
an informative content word of the constituent (for PP and SBar constituents only: the head of
the head’s complement), as well as the target lemma

Sibling Phrase type and POS of the head of the left and right sibling constituent, and the Collins parser’s
judgment on the argumenthood of the constituent

Syn This set combines Path, Sibling and Pt. Additional features are: target voice; the constituent’s
preposition; a feature combining path with target voice and target POS; and two rule-based
features judging argumenthood and grammatical function of the constituent

Sem These are lexical features: Head words of the constituent and of its left and right siblings;
leftmost and rightmost word of the constituent; informative content word lemma (see set Pt for
details); and the governing verb of the target predicate

Table 5: Feature groups used in the experiments

Figure 1: Scatter plot: F-score against confusability
(Feature set Syn).

ability appears to be related to lower F-score.
However, note that the correlation is extremely

significant even for the model which only uses se-
mantic features. This is unexpected at best and
makes a strong interpretation of this correlation
doubtful: it is rather likely that there is a third vari-
able with which both F-score and confusability are
correlated. The most obvious candidate for such a
confounding variable is the size of the training set –
clearly, we expect our models to perform better with
larger training sets. In order to get a more realistic

MBL MaxEnt
Feature set z p z p
Path0 -11.72 10−15 -11.76 10−15

Path -12.29 10−15 -11.23 10−15

Pt -10.64 10−15 -11.12 10−15

Path/Pt -11.19 10−15 -10.45 10−15

Path/Sibling -12.65 10−15 -11.76 10−15

Pt/Sibling -10.58 10−15 -9.90 10−15

Syn -9.47 10−15 -9.38 10−15

Sem -6.90 10−11 -8.23 10−15

Syn/Sem -8.30 10−15 -8.29 10−15

Table 7: Exp. 2, Analysis 1: Correlation between F-
Score and confusability. z: Kendall’s tau coefficient,
p: significance level

assessment of the relationship between confusabil-
ity and F-score, we perform an additional analysis
to disconfound confusability and frequency.

Analysis 2: Disconfounding confusability and
frequency. One way of factoring out the influ-
ence of a confounding variable is to perform a par-
tial correlation analysis, which explicitly removes
the effects of a third variable when determining the
strength of a correlation between two variables. Like
a normal correlation analysis, it yields a partial cor-
relation coefficient.
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MBL MaxEnt
Features rc rf rc rf

Path0 -.29∗∗∗ -.03 -.29∗∗∗ -.03
Path -.30∗∗∗ -.02 -.27∗∗∗ -.07∗∗

Pt -.19∗∗∗ -.11∗∗ -.21∗∗∗ -.12∗∗

Path/Pt -.22∗∗∗ -.07∗ -.19∗∗∗ -.16∗∗∗

Path/Sibl -.31∗∗∗ +.01 -.28∗∗∗ -.06∗

Pt/Sibl -.20∗∗∗ -.10∗∗ -.18∗∗∗ -.16∗∗∗

Syn -.10∗ -.17∗∗∗ -.12∗ -.19∗∗∗

Sem +.01 -.27∗∗∗ -.02 -.24∗∗∗

Syn/Sem +.02 -.25∗∗∗ -.01 -.25∗∗∗

Table 8: Exp. 2, Analysis 2: Partial correlation
coefficients. rc: correlation between F-score and
confusability, controlling for training set size. rf :
correlation between F-score and training set size,
controlling for confusability. Significance levels:
∗∗∗: p<0.001; ∗∗: p<0.01; ∗: p<0.05.

We first compute partial correlation coefficients
between F-score and confusability, controlling for
training set size. The results, which indicate the
“true” relationship between performance and con-
fusability, are shown in the rc columns of Table 8.
For both learners, confusability is significantly cor-
related with F-score for all syntactic feature sets, but
not for the semantic feature set and for the combined
set Syn/Sem.

We also compute the partial correlation coeffi-
cients between F-score and training set size, control-
ling for confusability. These figures are reported in
the rf columns of Table 8 and show the “true” rela-
tionship between performance and training set size.
There is no significant correlation between training
set size and performance for simple syntax based-
models, but the correlation is highly significant for
complex syntactic models and all semantic models.

Discussion. The partial correlation analysis con-
firms that confusability is a meta-model that can ex-
plain the performance of a range of different models
for semantic role assignment, namely those models
which rely exclusively on syntactic features. Since
we used the gold standard features provided by
FrameNet and did not introduce implementation- or
feature-specific knowledge, this points to a general
limitation of syntax-based models. In contrast, se-
mantic features behave completely differently; their

contribution is not limited by a role’s confusabil-
ity. At the very least, it cannot be captured by
our current meta-model, but the absolute increase in
performance indicates that integrating semantics is
the way forward, which is surprising given that the
purely lexical features we use the present study are
usually extremely sparse.

The analysis of the partial correlation between F-
score and training set size also allows interesting
conclusions. The correlation is not significant for
small syntactic feature sets like Path, indicating that
models for such features can be learned satisfacto-
rily from relatively small training sets (but which are
also limited in expressivity). This is markedly dif-
ferent for richer feature sets. Arguably, these feature
sets are sparser and can therefore profit more from
an increased amount of training data. Again, the ef-
fect is most pronounced for the semantic feature set.

6 Conclusion

In this paper, we have formulated a meta-model for
semantic role assignment. We have used the confus-
ability of roles to predict classification performance
independently of the classification framework and
feature sets used. We have defined role confusability
in two steps: First, we have formalized the certainty
with which we can predict a semantic role from a
given grammatical function with grammatical func-
tion entropy. Then, we have defined the confusabil-
ity of a role as a weighted sum of grammatical func-
tion entropies.

We have found that role confusability is highly
significantly correlated with system performance for
models based solely on syntactic features. We con-
clude that syntactic features approximate a descrip-
tion of grammatical functions, but that semantic fea-
tures model a different aspect of the world.

Much of current research in semantic role assign-
ment is centered on the refinement of syntactic fea-
tures. Our study suggests that it may be worth-
while to explore the refinement of semantic fea-
tures as well. The most obvious choice is to in-
vestigate features related to selectional preferences.
Possible features include goodness of fit relative to
pre-computed preferences (Baldewein et al., 2004),
named entities (Pradhan et al., 2004), or broad on-
tological classes like “animate” or “artifact”. Fol-
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lowing up on this idea, a natural continuation of the
present study would be to create a meta-model that
subsumes semantic features. Such a model could
use optimal selectional restrictions as a predictor.
The next step would then be to construct a combined
meta-model that describes the behavior of systems
with both syntactic and semantic features.

Another interesting research direction that our
study suggests is the combination of syntactic and
semantic models in co-training. Co-training can
be sensibly applied only when conditional indepen-
dence holds for the two target functions and the dis-
tribution (Blum and Mitchell, 1998), i.e. when it
uses two independent views on the instance set. By
pointing out a highly significant distinction between
syntactic and semantic features with respect to role
confusability, our study provides empirical evidence
that syntactic and semantic features model different
aspects of the role assignment mapping, and that co-
training may be feasible by using syntactic and se-
mantic features as views.
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