Jürgen Kunze
Zentralinstitut für Sprachwissenschaft der Akademie der Wissenschaften der DDR Prenzlauer Promenade 149-152 Berlin, DDR-1100

Abstract

The topic of the paper is the introduction of a formalism that permits a homogeneous representation of definite temporal adverbials, temporal quantifications (as frequency and duration), temporal conjunctions and tenses, and of their combinations with propositions. This unified representation renders it possible to show how these components refer to each other and interact in creating temporal meanings. The formal representation is oased on the notions "phase-set" and "phase-operator", and it involves an interval logic. Furthermore logical connections are used, but the (always troublesome) logical quantifications may be avoided. The expressions are rather near to linguistic structures, which facilitates the link to text analysis. Some emprical confirmations are outlined.

1. THE GENERAL FRAME

This paper presents some results that have been obtained in the field of time and tense-phenomena (Kunze 1987). In connection with this some links to text analysis, knowledge representation and inference mechanisms have been taken into account.

The formalism presented here differs from what is under label of temporal logic on the market (e.g. Prior (1967), Aqvist/Guenthner (1978). Our main intention is to establish a calculus that is rather near to linguistic structures on one side (for text analysis) and to inference mechanisms on the other side.

The whole formalism has integrating features, i. e. the following components are represented by the same formal means in a way, that it becomes easy and effective to refer the different components to each other:

- The propositions and their validity with respect to time;
- Definite temporal adverbials (next week, every Tuesday);
- Definite temporal quantirications as frequency (three times) and duration (three hours), comparision of irequencies, durations etc.;
- Temporal conjunctions;
- Tenses and their different meanings.

The unified representation renders
it possible to observe how the components interact in creating temporal meanings and relations. Some details have to be left out here, e. g. the notion "determined time" and the axiomatic basis of the calculus.

2. PHASE-SETS AND PROPOSITIONS

A phase p is an interval (either unbounded or a span or a moment) which a truth value (denoted by $q(p)$) is assigned to:
$q(p)=T: p$ is considered as an affirmative phase.
$q(p)=F: p$ is considered as a denying phase.
The intervala are subsets of the time axis U (and never empty!).

A phase-set P is a pair [$\left.P^{*}, q\right]$, where P^{*} is a set of intervals, and q (the evaluation function) asgigns a truth value to each $p \in P^{*}$. Phas to fulfil the following consistency demand: (A) For all $p^{\prime}, p^{\prime \prime} \in P^{*}$ holda:

If $p^{\prime} \cap p^{\prime \prime} \neq \varnothing$, then $q\left(p^{\prime}\right)=q\left(p^{\prime \prime}\right)$. A phase-set P is called complete, iff the union of all phases of P covers U.

Propositions R are replaced by complete phase-sets that express the "atructured" validity of R on the time axis U. Such a phase-set, denoted by $\langle R\rangle$, has to be understood as a possible temporal perspective of R. There are propositions that differ from each other in this perspective only: For
(1) John sleeps in the dining room. one has several such perspectives: He is sleeping there, he sleeps there because the bedroom is painted (for some days), he sleeps always there. So the phases of 〈R〉are quite different, even with clear syntactic consequences for the underlying verb: The local adverbial may not be omitted in the second and third caseli

I skip here completely the following problems:

- A more sophiaticated application of nested phase-sets for the representation of discontinuous phases in $\langle R\rangle$;
- the motivation of phases (e. g. accord ing to Vendier (1967)) and their adequacy.

3. PHASE-OPERATORS

A phase-operator is a mapping with phase-sets as arguments and values. There are phase-operators with one and with two argumente. A two-place phaseoperator $P-O\left(P_{1}, P_{2}\right)$ is characterized by the following properties:
(B) If $P=P-O\left(P_{1}, P_{2}\right)$, then $P^{*}=P_{1}^{*}$, i. e. the aet of intervals of the resulting phase-set is the aame as of the firgt argument;
(C) For each phase-operator there is a characteristic condition that aays how $q(p)$ is defined by $q_{1}(p)$ and P_{2} for all $p \in P^{*}$. This condition implies always that $q(p)=F$ follows from $q_{1}(p)=F$.

So the effect of applying $P-0\left(P_{1}, P_{2}\right)$ i that some T-phases of P_{1} change their truth value, new phases are not created

The characteristic conditions are bssed on two-place relations between intervals. Let rel(,) be such a relation. Then we define (by means of rel) $q(p)$ according to the following scheme:

$$
q(p)=\left\{\begin{array}{l}
T, \text { if } q_{1}(p)=T \text { and there } \tag{D}\\
\text { a } p_{2} \in p_{2}^{*} \text { with } q_{2}\left(p_{2}\right)= \\
\text { and rel }\left(p_{2}, p\right) ; \\
\text { F otherwise }
\end{array}\right.
$$

We will use three phase－operators and define their evaluation functions in the following way by（D）：
（E）$P=\operatorname{OCC}\left(P_{1}, P_{2}\right):$
rel $\left(p_{2}, p\right)$ is the relation
$" p_{2}$ and p overlap＂，i．e．$p_{2} \cap p \neq \varnothing$ ．
（F）$P=\operatorname{PER}\left(P_{1}, P_{2}\right):$
rel $\left(p_{2}, p\right)$ is the relation
$" p_{2}$ contains p＂，1．e．p_{2} ㄹ．
（G）$P=\operatorname{NEX}\left(P_{1}, P_{2}\right):$
rel $\left(p_{2}, p\right)$ is the relation $" p_{2}$ and p are not seperated from each other＂，i．e．$p_{2} \cup p$ is an interval．

As an illustration we consider some examples．Needless to say，that their exact represention requires further formal equipment we have not introduced yet．Typical cases for OCC and PER are：
（2）Yesterday was bad weather．
Overlapping of 〈yesterday〉 and a T－ phase of 〈bad weather〉．
（3）John worked the whole evening．
A T－phase of 〈evening〉is contained
in a T－phase of 〈John works〉．
（for 〈evening〉，〈yesterday〉cf．7．） There is only a slight difference be－ tween the characteristic conditions for OCC and NEX：NEX admits additionally only $\operatorname{MEETS}\left(p_{2}, p\right)$ and $\operatorname{MEETS}\left(p, p_{2}\right)$ in the sense of Allen（1984）．Later T will mo－ tivate that NEX is the appropriate phase－operator for the conjunction when． Therefore，sentences of the form
（4）R_{1} ，when R_{2} ．（cf．（ N ），（ 0 ）） will be represented by an expression that contains $\operatorname{NEX}\left(\left\langle R_{2}\right\rangle,\left\langle R_{1}\right\rangle\right)$ as core． The interpretation is that nothing hap－ pens between a certain T－phase of $\left\langle R_{1}\right\rangle$ and a certain T－phase of $\left\langle R_{2}\right\rangle$（if they do not overlap）．

The next operetion we are going to define is a one－place phase－operator with indeterminate character．It may be called＂choice＂or＂singling out＂and will be denoted by xP_{1} ，where $\mathrm{P}_{1}=$ $\left[P_{1}, q_{1}\right]$ is again an arbitrary phase－set：
（H）$x P_{1}=\left[P^{F}, q\right]:$
$P^{\underline{x}}=P_{1}^{\text {F }}$（set of intervals unchanged）
$q(p)=\left\{\begin{array}{l}T \text { for exactly one } p \text { with } \\ q_{1}(p)=T(\text { if there is some } \\ \left.T \text {－phase in } P_{1}\right) ; \\ F \text { otherwise }\end{array}\right.$

If we need different choices，we write $x P_{1}, y P_{1}, z P_{2}, \ldots$, using the first sign as an index in the mathematical sense．

Moreover，we define one－place phase－ operators with parameters：
（I） $\operatorname{KAR}\left(P_{1}, n\right)=\left[P^{7}, q\right]:$
$P^{*}=P_{1}^{*}$（set of intervals unchanged）
$q(p)=\left\{\begin{array}{l}T, \text { if } q_{1}(p)=T \text { and there are } \\ \text { exactly } n T \text {－phases in } P_{1} ; \\ F \text { otherwise（for all } p \in P^{F}, \\ \text { independently of } q_{1}(p) \text { ）}\end{array}\right.$

Similarily one defines $\operatorname{ORD}\left(P_{1}, g\right)$ for integers g： $\operatorname{ORD}\left(P_{1}, g\right)$ assigns the value T exactly to the $\bar{g}-$ th T－phase of P_{1} ，if there is one，with certain arrangements for g（ e ．g．how to express＂the last but second＂etc．）

Finally we define the＂alternation＂ alt $\left(P_{1}\right)$ of an arbitrary phase－set $P_{1}=$ ［ P_{1}^{*}, q_{1} ］．By alternation new phases may be created：alt $\left(P_{\uparrow}\right)$ contains exactly those phases wilch one gets by joining all phases of P_{1} that are not seperated
from each other and have the aame value $q_{1}\left(p_{1}\right)$. So the intervals of alt $\left(p_{1}\right)$ are unions of intervals of P_{1}, the q-values are the common q_{1}-values of their parts (of. (A)). It is always alt (alt $\left(P_{1}\right)$) $=$ alt $\left(P_{1}\right)$, and alt $\left(P_{1}\right)$ is complete, if P_{1} is complete. Going from left to right on the time axis U, one has an alternating succession of phases in alt $\left(P_{1}\right)$ with respect to the q-values. alt $\left(P_{1}\right)$ is the "maximal levelling" of the phase-set P_{1}.

4. LOGICAL COMNECTIONS

The negation of a phase-set P_{1} is defined as follows:
(J) $\sim P_{1}=\left[P^{*}, q\right]:$
$P^{*}=P_{1}^{*}$ (set of intervala unchanged) $q(p)=\operatorname{neg}\left(q_{1}(p)\right)$

Note that $\langle\sim R\rangle$ and $\sim\langle R\rangle$ may be different because of non-equivalent phaseperspectives for $\sim R$ and R !

For each two-place functor "a" (e. g. "a" $=\| v$ ") we aefine $P_{1} \subset P_{2}$, if the sets P_{1} and P_{2} are equal:
(K) $P_{1} \circ P_{2}=\left[P^{*}, q\right]:$
$P^{*}=P_{1}^{*}=P_{2}^{*}$
$q(p)=p^{0}\left(q_{1}(p), q_{2}(p)\right)$, where F^{0} is the corresponding truth function (e.g. vel for " \times ").

Obviously for every phase-operator P-0 the expression $P-O\left(P_{1}, P_{2}\right) \rightarrow P_{1}$ represents both a phase-set and a clear "taum tology" - in other words - a phase-set that is "always true", if P_{1} is complete. Therefore, alt $\left(P-O\left(P_{1}, P_{2}\right) \rightarrow P_{1}\right)=U^{0}$
(where U^{0} is the phase-set that contains the time axis U as the only interval with the q-value T) reflects the double nature of the aforesaid implication.

5. TRUTH CONDITIONS

The last considerations lead immedeately to the following definitions. The whole formalism requires two types of truth conditions, namely
(L) alt $(P)=U^{0}$
(M) alt $(P) \neq \sim U^{\circ}$.

They have different status: (L) is used, if the phase-set P is considered as a temporal representation of something that is valid, independently of time. (M) is applied, if P is considered as something that represents a certain "time" (expressed by the phases of P). Because of the second posaibility, alt appears not only in truth conditions, but it may constitute arguments in phase-operators etc., too. This will be shown in the examples below.

Obviously one has for arbitrary
phase-sets $P=\left[P^{*}, q\right]:$

$$
\begin{aligned}
& \text { alt }(p)=U^{0} \text { iff } \forall t \in U \exists p \in P^{*} \\
& (q(p)=T \& t \in p) \\
& \text { alt }(p) \neq \sim U^{0} \text { iff } \exists t \in U \exists p \in P^{*} \\
& (q(p)=T \& t \in p)
\end{aligned}
$$

6. SOME COMMENT ON THE FORMALISM

By regarding the time axis U as a basic notion one has to take the trouble to consider the topology of U, and gets difficulties with closed and
and open sets，environments etc．．This may be avoided by taking an axiomatic viewpoint：For all operations，relations etc．one formulates the essential prop－ erties needed and uses them without di－ rect connection to the time axis．In this way U becomes a part of a model of the whole formalism．This is inde－ pendent of the fact，that in definitions and explanations U may appear for mak－ ing clear what is meant．

7．TEMPORAL ADVERBIALS

In section 2．we have outlined，how propositions R are substituted by phase－ sets 〈R〉．The same has to be done for temporal adverbials．Pirst we consider definite adverbials：〈tuesday〉is a phase－set P ，where P^{*} is the set of all days（as spans p covering together the whole time axis U ），and exactly the Tuesdays have the value $q(p)=T$ ．For〈day〉 the set $P^{\underline{I}}$ is the same，but it is $q(p)=T$ for all $p \in P^{3}$ ．〈evening〉 has as intervals suitable subintervals of the days with $q(p)=T$ ，whereas the remaining parts of the days form phases with $q(p)=F$ in 〈evening〉．Analo－ gously 〈year〉 contains all years as spans p with $q(p)=T$ ，whereas 〈1986〉 has the same spans，but exactly one with $q(p)=T$ ．

Now we combine temporal adverbials with propositions．An exact representa－ tion would require that we list all possible structures of phrases，clauses etc．that exprese a certain combination． We use instead of this＂standard para－ phrases＂as＂at least on Tuesdays R＂．If R is a certain proposition，e．g ．
$R=$ John works in the library，then
this paraphrase stands（as a remedy）for
（5）John works，worked，．．．in the
library every Tuesday．
On every Tuesday John ．．．
On Tuesday of every week John ．．．
At least on Tuesdays John ．．．
Examples with truth conditions：
（6）〈the days，when R 〉
$=0 \operatorname{CC}(\langle\underline{\text { day }}\rangle,\langle R\rangle)$

$$
\text { alt (...) } \neq \sim U^{0} \quad(c f .(B)-(E))
$$

（7）〈the Tuesdays in 1986，when R 〉
$=\operatorname{OCC}(\operatorname{OCC}(\langle$ tuesday $\rangle,\langle\mathrm{R}\rangle),(1986\rangle)$ alt（．．．）$\ddagger \sim U^{\circ}$
（8）〈at least on Tuesdays $R\rangle$
$=\langle$ tuesday $\rangle \rightarrow \operatorname{OCC}(\langle$ day $\rangle,\langle R\rangle)$ alt（．．．）$=U^{\circ}$（cf．（J））
（9）〈暗 most on Tuesdays R 〉
$=\operatorname{OCC}(\langle$ day $\rangle,\langle R\rangle) \rightarrow\langle$ tuesday \rangle $a l t(\ldots)=U^{0}$
（10）〈in 1986 at least on Tuesdays R 〉
$=\langle 1986\rangle \rightarrow$ PER（〈year〉， alt $(\langle$ tuesd $\rangle \rightarrow \operatorname{OCC}(\langle$ day $\rangle,\langle R\rangle)))$
alt（．．．）$=U^{\circ} \quad(c f .(F))$
（1986 is a year，throughout which
it is always true，that every
Tuesday is a day，when R occurs．）
The second argument of PER is a phase－ set defined by an alt－operation．This phase－set has as T－phases exactly those maximal periods during which（8）holds． PER（〈year〉，．．．）selects the years that are covered by such a period，and the whole expression says that 1986 is such a year（and nothing about other years）．

The time of speech L is formally rep－ resented by a phase－set L° with three phases，namely L itself with $q(L)=T$ ， and the two remaining infinite inter－ vals with the q－value F ．Then one may define 〈today〉 $=00 C\left(\langle\underline{d a y}\rangle, I^{0}\right)$ ．By
using the phase－operator ORD（cf．（I）） one introduces 〈yesterday〉 etc．，and similarily 〈this year〉 etc．．
（11）〈in this year three times R 〉
$=\langle R\rangle \rightarrow \operatorname{KAR}(\operatorname{OCC}(\langle R\rangle,\langle$ this year $\rangle), 3)$ alt（．．．）$=U^{\circ}$
（12）〈the three times R in this year〉
$=\operatorname{KAR}(\operatorname{OCC}(\langle R\rangle,\langle$ this year $\rangle), 3)$ alt（．．．）$\neq \sim \mathrm{U}^{0}$
In（11）a yes－no－decision is expressed （there are three T－phases of $\langle R\rangle$ in this year），but in（12）a＂time＂is defined， namely the three T－phases of $\langle R\rangle$ in this year．Therefore，the truth conditions are different．The expression in（12） may appear as an argument in other ex－ pressions again．

Now we apply the operation＂choice＂： （13）〈at most on Tuesdays three times R 〉
$=\begin{aligned} & V \\ & x\end{aligned} \quad \operatorname{OCC}(x\langle$ day \rangle,
$\operatorname{KAR}(00 C$
$\operatorname{KAR}(O C C(\langle R\rangle, x\langle d a y\rangle), 3))$
\rightarrow 〈tuesday〉

$$
\text { alt }(\ldots)=U^{0}
$$

OCC（〈R〉，$x\langle$ day \rangle ）determines the T－phases of $\langle R\rangle$ on a single day， $\operatorname{KAR}(\ldots .3$ ）keeps them iff there are exactly three（other－ wise they become F－phases，cf．（I））， OCC（x（day），．．．）assigns to the single day the value T iff the T－phases of $\langle R\rangle$ on this day have been preserved．There－ fore，$V_{x} \operatorname{OCC}(\ldots$.$) is a T-F-d i s t r i b u-$ tion over all days if x runs over all days，and the whole expression says that all T－days are Tuesdays．
（14）（exactly on Mondays and Fridays R） $=0 \operatorname{CC}(\langle$ day $\rangle,\langle R\rangle)$
\rightarrow（〈monday $\rangle \vee$（friday \rangle ） alt（．．．）$=U^{0}$（cf．（8），（9））
（15）〈never on Tuesdays R 〉
$=0 \operatorname{CC}(\langle$ day $\rangle,\langle R\rangle) \rightarrow \sim\langle$ tuesday \rangle
$\operatorname{alt}(\ldots)=U^{0} \quad$（cf．（9））

These examples demonstrate the applica－ tion of logical functors．

As one can see，the expressions ren－ der it possible to formulate even rath－ er complex temporal relations in a com－ prehensible manner without much redun－ dancy，the necessary arguments appear only once（or twice for certain quanti－ fications as e．g．〈tuesday〉 and 〈day〉 in（8））．In order to handle durations， one needs another phase－operator EXT that is quite similar to $K A R$ and ORD． The argument R stands either for＂bare＂ propositions（without any temporal com－ ponent）or for propositions with some temporal components．In the latter case the corresponding expression has to be substituted for $\langle R\rangle$ ：
（16）Every Tuesday John watches tele－ vision in the evening． Take $\langle R\rangle=\left\langle\right.$ in the evening $\left.R^{\prime}\right\rangle$ with $R^{\prime}=$ John watches television． Then one can represent $\langle R\rangle$ by
$\langle R\rangle=0 C C\left(\left\langle R^{\prime}\right\rangle\right.$ ，（evening \rangle ） with alt（．．．）$\neq \sim U^{\circ}$（John＇s t．v．－ phases in evenings）and apply（8）：
\langle tuesday $\rangle \rightarrow$
$00 C\left(\langle\right.$ day $\rangle, 000\left(\left\langle R^{1}\right\rangle,\langle\right.$ evening $\left.\left.\rangle\right)\right)$
alt（．．．）$=U^{\circ}$
Similarily one obtains（10）from（8）． The truth condition in（8）causes that alt（．．．）occurs as argument in（10）． The sign＂$=$＂in the examples means that the left side is defined by the right side，the left side is stripped of one （or more）temporal components．In this sense（6），（8）and（9）are rules，（7） and（10）include two rules in each case The full and exact form of such rules requires more than the standard para－ phrases，namely corresponding（syntac－ tic）structures on their left side．

8. TENSES

Till now nothing has been said about tenses. It is indeed possible to represent tenses in the formalism that we have outlined. But it is impossible to introduce "universal" rules for tenses. Even between closely related languages like Bnglish and German there are easential differences. So it does not make sense to explain here the detaila for the German tenses (cf. Kunze 1987).

The main points in deacribing tenses are these: At firgt one needs a distinction between "tense meanings" and "tense formo" (e. g. a Present-Perfectform may be used as Future Perfect). After that one has to introduce special conditions for special tense meanings (e. g. for perfect tenses in German and English, for the aorist in other languages). Purther a characterization of tense meanings by a scheme like Reichenbach's is necessary, including the introduction of the time of speech L°.

On this basis rules for tense-assignment may be formulated expressing which tenses ($=$ meanings) a phase $x P$ or a phase-set P can be asgigned to. From the formal point of view tenses then look like very general adverbials, and it is rather easy to explain how tenses and adverbials fit together. Tenseassignments create new expressions in addition to those used above. It is important that the position of the phases of 〈R〉 does not depend on the tense R is used with: The tense selecta some of these phases by phase-operators. So alt $\left(\operatorname{NEX}\left(x P, L^{0}\right)\right) \neq \sim U^{0}$ is the basic condition for the actual Present (cf. (G)).

9. TEMPORAL CONJUNCTIONS

For some temporal conjunctions there are two basic variants, the "particular" usage and the "iterative" usage. We illustrate this phenomenon for when:
(N) when ${ }_{1}$ (particular usage of when): WHEN $_{1}\left(R_{1}, R_{2}\right)$: (for " R_{1}, when R_{2} ") alt $\left(\operatorname{NEX}\left(\left\langle R_{2}\right\rangle,\left\langle R_{1}\right\rangle\right)\right) \neq \sim V^{0}$.
(17) When John went to the Iibrary, he found 10 \$. (Once, when ...)
In (17) there is a reference to a single T-phase of $\left\langle R_{1}\right\rangle$ and a single T-phase of $\left\langle R_{2}\right\rangle$. One can show that the truth condition for when ${ }_{1}$ is equivalent to $3 x 3 y\left(\operatorname{alt}\left(\operatorname{NEX}\left(x\left\langle R_{2}\right\rangle, y\left\langle R_{1}\right\rangle\right)\right) * \sim U^{0}\right)$, but this form is avoidable (cf. (H) and the end of 5.).
(0) when $_{2}$ (iterative usage of when): WHEN $_{2} R_{1}, R_{2}$): (for " R_{1}, when R_{2} ") alt $\left(\left\langle R_{2}\right\rangle \stackrel{2}{\rightarrow} \operatorname{NEX}\left(\left\langle R_{2}\right\rangle,\left\langle R_{1}\right\rangle\right)\right)=U^{0}$
(18) When John went to the librarys he took the bua. (Whenever ...)
In (18) something is said about all T-phases of $\left\langle R_{2}\right\rangle$, namely
$\forall x \exists y\left(a l t\left(\operatorname{NEX}\left(x\left\langle R_{2}\right\rangle, y\left\langle R_{1}\right\rangle\right) \neq \sim U^{0}\right)\right.$, which is equivalent to the truth condition for when ${ }_{2}$.

Conjunctions like while, as long as etc, are represented in a similar way with the phase-operator PER (cf. (F)). For the confunctions after, before, since and till one needs in addition an ANTE- and a POST-operator, which are tense-dependent (the main difference is caused by imperfective ve. perfective) and modify the arguments of the phase-operators. Some of the conjunctions have both basic variants, whereas gince admits no iterative usage.

The meaning of since is expressed by (P) since: (only particular usage) $\operatorname{SINCE}\left(R_{1}, R_{2}\right)$: (for " R_{1}, since R_{2} ") alt $\left(\operatorname{PER}\left(\operatorname{POST}\left(\left\langle R_{2}\right\rangle\right),\left(R_{1}\right\rangle\right)\right) \neq \sim \mathrm{U}^{\circ}$,
and the truth condition for after 1 is (Q) after, (particular usage of after): $A F T E R_{1}\left(R_{1}, R_{2}\right)$: (for " R_{1}, after R_{2} ") alt $\left(\operatorname{PER}\left(\left\langle R_{1}\right\rangle, \operatorname{POST}\left(\left\langle R_{2}\right\rangle\right)\right)\right) \neq \sim U^{\circ}$

It turns out that an analysis of temporal conjunctions based only on the Reichenbach scheme causes some difficulties. It works very well for when and while (cf. Hornstein 1977) and the German equivalents (als/wenn, während and solange), but for the remaining cases ANTE- and POST-operations seem to be inivitable.

10. AN EMPIRICAL CONFIRMATION

By combining the rules for tense-assignment and the truth conditions for the temporal conjunctions (in German there are seven basic types) and by allowing for some restrictions for their use (e. g. als only for Past, seit not for Future) one gets for each conjunction a prediction about the possible combinations of tenses in the matrix and the temporal clause.

Gelhaus (1974) has published statistical data about the distributions of tenses in the matrix and the temporal clause for German. From the huge LIMAScorpus the took all instances of the use of temporal conjunctions. From my calculus one cannot obtain statistics, of course, it decides only on "correctness". The comparision proved that there is an almost complete coincidence.

The combinations for als/wenn cannot be derived, if one takes OCC instead of NED in (N) and (0). The same seems to be the case for when. The restrictions for the propositions R_{1} and R_{2} (e.g. [+FINIT]), given by Wunderlich (1970), can be deduced from the truth conditions (details about both questions in (Kunze (1987)).

REPERENCES

Allen, James F.. 1984 Towards a General Theory of Action and Time. Artificie Intelligence 23 (1984): 123-154.
Aqvist, Lennart, Guenthner, Franz. 1978 Pundamentala of a Theory of Verb Aspect and Events within the setting c an Improved Tense Logic. In: Studies in Formal Semantice (North-Holland Linguistic Series 35), North-Hollanc 167-199.
Gelhaus, Hermann. 1974 Untersuchungen zu consecutio temporum im Deutachen. Ir Studien zum Tempusgebrauch im Deutschen (Forschungsberichte des Insti. tuts flur deutache Sprache, Nr. 15). Verlag Gunter Narr, TUbingen: 1-12"
Hornstein, Norbert. 1977 Towards a Theory of Tense. Iinguistic Inquiry 8 (3): 521-557.
Kunze, Jurgen. 1987 Phasen, Zeitrelationen und zeitbezogene Inferenzen. In: Kunze,J. Ed., Probleme der Selektio und Semantik (Studia Grammatica 28) Akademie-Verlag, Berlin: 8-154.
Prior, Arthur N. 1967 Past, Present, Future. Clarendon Press, Oxford, U. Vendler, Zeno. 1967 Iinguiatice in PhiIosophy. Cornell University Press, Ithaca, New York.
Wunderlich, Dieter. 1970 Tempus und Zeit referenz im Deutschen. Iinguistisch Reine 5, Munchen.

