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ABSTRACT 

This paper introduces a special 
programming environment for the definition 
of grammars and for the implementation of 
corresponding parsers. In natural 
language processing systems it is 
advantageous to have linguistic knowledge 
and processing mechanisms separated. Our 
environment accepts grammars consisting of 
binary dependency relations and 
grammatical functions. Well-formed 
expressions of functions and relations 
provide constituent surroundings for 
syntactic categories in the form of 
two-way automata. These relations, 
functions, and automata are described in a 
special definition language. 

In focusing on high level descriptions a 
linguist may ignore computational details 
of the parsing process. He writes the 
grammar into a DPL-description and a 
compiler translates it into efficient 
LISP-code. The environment has also a 
tracing facility for the parsing process, 
grammar-sensitive lexical maintenance 
programs, and routines for the interactive 
graphic display of parse trees and grammar 
definitions. Translator routines are also 
available for the transport of compiled 
code between various LISP-dialects. The 
environment itself exists currently in 
INTERLISP and FRANZLISP. This paper 
focuses on knowledge engineering issues 
and does not enter linguistic 
argumentation. 

INTRODUCTION 

Our objective has been to build a parser 
for Finnish to work as a practical tool in 
real production applications. In the 
beginning of our work we were faced with 
two major problems. First, so far there 
was no formal description of the Finnish 
grammar. Second difficulty was that 
Finnish differs by its structure greatly 
from the Indoeuropean languages. Finnish 
has relatively free word order and 
syntactico-semantic knowledge in a 
sentence is often expressed in the 

inflections of the words. Therefore 
existing parsing methods for Indoeuropean 
languages (eg. ATN, DCG, LFG etc.) did 
not seem to grasp the idiosyncracies of 
Finnish. 

The parser system we have developed is 
based on functional dependency. Grammar 
is specified by a family of two-way finite 
automata and by dependency function and 
relation definitions. Each automaton 
expresses the valid dependency context of 
one constituent type. In abstract sense 
the working storage of the parser consists 
of two constituent stacks and of a 
register which holds the current 
constituent (Figure I). 

The register of 
the current 
constituent 
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Figure I. The working storage 
of DPL-parsers 
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Figure 2. A two-way automaton for Finnish verbs 

The two stacks hold the right and left 
contexts of the current constituent. The 
parsing process is always directed by the 
expectations of the current constituent. 
Dynamic local control is realized by 
permitting the automata to activate one 
another. The basic decision for the 
automaton associated with the current 
constituent is to accept or reject a 
neighbor via a valid syntactico-semantic 
subordinate relation. Acceptance 
subordinates the neighbor, and it 
disappears from the stack. The structure 
an input sentence receives is an annotated 
tree of such binary relations. 

An automaton for verbs is described in 
Figure 2. When a verb becomes the current 
constituent for the first time it will 
enter the automaton through the START 
node. The automaton expects to find a 
dependent from the left (?V). If the left 
neighbor has the constituent feature 
+Phrase, it will be tested first for 

Subject and then for Object. When a 
function test succeeds, the neighbor will 
be subordinated and the verb advances to 
the state indicated by arcs. The double 
circle states denote entry and exit points 
of the automaton. 

~f completed constituents do not exist as 
neighbors, an automaton may defer 
decision. In the Figure 2 states labelled 
"BUILD PHRASE ON RIGHT" and "FIND REGENT 
ON RIGHT" push the verb to the left stack 
and pop the right stack for the current 
constituent. When the verb is activated 
later on, the control flow will continue 
from the state expressed in the 
deactivation command. 

There are two distinct search strategies 
involved. If a single parse is 
sufficient, the graphs (i.e. the 
automata) are searched depth first 
following the priority numbering. A full 
search is also possible. 
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The functions, relations and automata are 
expressed in a special conditional 
expression formalism DPL (for Dependency 
Parser Language). We believe that DPL 
might find applications in other 
inflectional languages as well. 

DPL-DESCRIPTIONS 

The main object in DPL is a constituent. 
A grammar specification opens with the 
structural descriptions of constituents 
and the allowed property names and 
property values. User may specify simple 
properties, features or categories. The 
structures of the lexical entries are also 
defined at the beginning. The syntax of 
these declarations can be seen in Figure 
3. 

All properties of constituents may be 
referred in a uniform manner using their 
values straight. The system automatically 
takes into account the computational 
details associated to property types. For 
example, the system is automatically tuned 
to notice the inheritance of properties in 
their hierarchies. Extensive support to 
multidimensional analysis has been one of 
the central objectives in the design of 
the DPL-formalism. Patterning can be done 
in multiple dimensions and the property 
set associated to constituents can easily 
be extended. 

An example of a constituent structure and 
its property definitions is given in 
Figure 4. The description states first 
that each constituent contains Function, 
Role, ConstFeat, PropOfLexeme and 
MorphChar. The next two following 
definitions further specify ConstFeat and 
PropOfLexeme. In the last part the 
definition of a category tree SemCat is 
given. This tree has sets of property 
values associated with nodes. The 
DPL-system automatically takes care of 
their inheritances. Thus for a 
constituent that belongs to the semantic 
category Human the system automatically 
associates feature values +Hum, +Anim, 
+Countable, and +Concr. 

The binary grammatical functions and 
relations are defined using the syntax in 
Figure 5. A DPL-function returns as its 
value the binary construct built from the 
~urrent constituent (C) and its dependent 
candidate (D), or it returns NIL. 
DPL-relations return as their values the 
pairs of C and D constituents that have 
passed the associated predicate filter. 

By choosing operators a user may vary a 
predication between simple equality (=) 
and equality with ambiguity elimination 
(=:=). Operators := and :- denote 
replacement and insertion, respectively. 
In predicate expressions angle brackets 
signal the scope of an implicit 
OR-operator and parentheses that of an 

< c o n s t i t u e n t  s t r u c t u r e >  : : =  ( CONSTITUENT: 
<sub t ree  o~ c o n s t i t u e n t > : : =  ( SUBTREE: 

< l i s t  o f  p r o p e r t i e s >  

< p r o p e r t y  name> 
<type name> 
<glue node name> 
<g lue node> 

< l i s t  o f  p r o p e r t i e s > . .  ) 
<g lue  node> 
< l i s t  o f  p r o p e r t i e s >  ) : 

( LEXICON-ENTRY: <g lue node> 
< l i s t  o f  p r o p e r t i e s >  ) 

: : =  ( < l i s t  of  p r o p e r t i e s > . .  ) 
( < p r o p e r t y  name>.. ) 

: : =  < type name> : <g lue  node name> 
: : =  <unique l i s p  atom> 
: : =  <unique l i s p  atom> 
: : =  <g lue  node name i n  upper level -> 

< p r o p e r t y  d e c l a r a t i o n >  

< p o s s i b l e  va lues>  
< d e f a u l t  v a l u e  > 
<node d e f i n i t i o n >  
<node name> 
< f e a t u r e  se t>  
< f a t h e r  node> 
<empty> 

: : =  ( PROPERTY: < type  name> < p o s s i b l e  va lues>  ) : 
( FEATURE: < type  name> < p o s s i b l e  va lues>  ) 
( CATEGORY: < type  name> < <node d e f i n i t i o n > . .  > ) 

: : =  < < d e f a u l t  va lue>  <unique l i s p  atom>..  > 
: : =  NoDefau l t  : <unique l i s p  atom> 
: : =  ( <node name> < f e a t u r e  se t>  < f a t h e r  node> ) 
: : =  <unique l i s p  atom> 
: : =  ( < f e a t u r e  va lue>  ) : <empty> 
: : =  / <name of  an a l r e a d y  d e f i n e d  node> : <empty> 
: : =  

Figure 3. The syntax of constituent structure 
and property definitions 
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(CONSTITUENT: 

(LEXICON-ENTRY: 

(SUBTREE: 

(CATEGORY: 

( F u n c t i o n  Ro le  Cons tFea t  PropOgLexeme Morphcha r ) )  

PropOfLexeme 
( (Syn tCa t  S y n t F e a t )  

(SemCat SemFeat) 
(FrameCat LexFrame) 
AKO ))  

MorphChar 
( P o l a r  V o i c e  Modal Tense Compar ison 

Number Case PersonN PersonP C l i t l  C l i t 2 ) )  

SemCat 
< ( E n t i t y  ) 

( C o n c r e t e  ( +Concr ) / E n t i t y  ) 
( An imate  ( +Anim + C o u n t a b l e  ) / C o n c r e t e  ) 

( Human ( +Hum ) / An imate  ) 
( An ima ls  / An imate  ) 

( NonAnim / C o n c r e t e  ) 
( M a t t e r  ( - C o u n t a b l e  ) / NonAnim ) 
( Th ing  ( + C o u n t a b l e  ) / NonAnim ) > 

Figure 4. An example of a constituent structure specification 
and the definition of an category tree 

implicit AND-operator. An arrow triggers 
defaults on: the elements of expressions 
to the right of an arrow are in the 
OR-relation and those to the left of it 
are in the AND-relation. Two kinds of 
arrows are in use. A simple arrow (->) 
performs all operations on the right and a 
double arrow (=>) terminates the execution 
at the first successful operation. 

In Figure 6 is an example of how one may 
define Subject. If the relation RecSubj 
holds between the regent and the dependent 
candidate the latter will be labelled 

Subject and subordinated to the former. 
The relational expression RecSubj defines 
the property patterns the constituents 
should match. 

A grammar definition ends with the context 
specifications of constituents expressed 
as two-way automata. The automata are 
described using the notation shown in 
somewhat simplified form in Figure 7. An 
automaton can refer up to three 
constituents to the right or left using 
indexed names: LI, L2, L3, RI, R2 or R3. 

<~unc t i on>  : : =  ( FUNCTION: < ~ u n c t i o n  name> < o p e r a t i o n  e x p r >  ) 
< r e l a t i o n >  : : =  ( RELATION: < r e l a t i o n  name> < o p e r a t i o n  e x p r >  ) 
< o p e r a t i o n  e x p r >  : : =  ( < p r e d i c a t e  e ~ p r > . .  < i m p l y  < o p e r a t i o n  e × p r > . .  ) 

< p r e d i c a t e  e x p r >  
< r e l a t i o n  name> : 
( DEL < c o n s t i t u e n t  l a b e l >  ) 

< p r e d i c a t e  e x p r >  : : =  < < p r e d i c a t e  e x p r >  > I 
( < p r e d i c a t e  e x p r >  ) 
( < c o n s t i t u e n t  p o i n t e r >  < o p e r a t o r >  < v a l u e  exp r> )  

< imp l>  : : =  ->  I => 
< c o n s t i t u e n t  l a b e l > : : =  C I D 
<operator> ::= = I := I :-- I =:= 
<value expr> ::= < <value expr>.. > : 

( <value expr>.. ) : 
<value o~ some property> I 
'<lexeme> I 
( <property name> <constituent label> ) 

Figure 5. The syntax of DPL-functions and DPL-relations 
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(FUNCTION: 

) 

(RELATION: 

S u b j e c t  
( RecSubj - >  (D :=  S u b j e c t ) )  

RecSubj 
((C = Ac t  < Ind  Cond Pot  Imper  >) (D = - S e n t e n c e  +Nominal )  

- >  ((D = Nom) 
- >  (D = PersPron  (PersonP C) (PersonN C)) 

((D = Noun) (C = 3P) ->  ((C = S) (D = SG)) 
( ( C  = P )  ( D  = P L ) ) ) )  

( ( D  = P a r t )  ( C  = S 3 P )  
- >  ( ( C  = " O L L A )  

=> (C : -  + E x i s t e n c e ) )  
((C = - T r a n s i t i v e  + E x i s t e n c e ) ) ) )  

Figure 6. A realisation of Subject 

< s t a t e  i n  a u t o m . > : : =  ( STATE: < s t a t e  name> < d i r e c t i o n >  < s t a t e  e x p r > . .  ) 
< d i r e c t i o n >  : : =  LEFT | RIGHT 
< s t a t e  exp r>  : : =  ( < l h s  o f  s .  exp r>  < imp l>  < s t a t e  e x p r > . .  ) 

( < l h s  o f  s .  exp r>  < imp l>  < s t a t e  change> ) 
< l h s  o f  s .  exp r>  : : =  < f u n c t i o n  name> ~ < p r e d i c a t e  e x p r > . .  
< s t a t e  change> : : =  ( C :=  <name o f  n e x t  s t a t e >  ) : 

( FIND-REG-ON < d i r e c t i o n >  < s s t a t e  o h . >  ) 
( BUILD-PHRASE-ON < d i r e c t i o n >  < s s t a t e  o h . >  ) 
( PARSED ) 

< s t a t e  change> : : =  <work sp.  manip°> < s t a t e  change> 
< s s t a t e  c h . >  : : =  ( C :=  <name o f  r e t u r n  s t a t e >  ) 
<work sp.  m a n i p ° > : : =  ( DEL < c o n s t i t u e n t  l a b e l >  ) 

( TRANSPOSE < c o n s t i t u e n t  l a b e l >  
< c o n s t i t u e n t  l a b e l >  ) 

Figure 7. Simplified syntax of state specifications 

( STATE: V? RIGHT 
((D = +Phrase)  - >  ( S u b j e c t  - >  (C :=  VS?)) 

( O b j e c t  ->  (C :=  VO?)) 
( A d v e r b i a l  ->  (C :=  V?) )  
(T => (C :=  ? V F i n a l ) ) )  

((D = - P h r a s e )  ->  (BUILD-PHRASE-ON RIGHT (C : =  V ? ) ) )  

Figure 8. The expression of V? in Figure 2. 
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The direction of a state (see Figure 2.) 
selects the dependent candidate normally 
as L1 or R1. A switch of state takes 
place by an assignment in the same way as 
linguistic properties are assigned. As an 
example the node V? of Figure 2 is 
defined formally in Figure 8. 

More linguistically oriented 
argumentation of the DPL-formalism appears 
elsewhere (Nelimarkka, 1984a, and 
Nelimarkka, 1984b). 

THE ARCHITECTURE OF THE DPL-ENVIRONMENT 

The architecture of the DPL-environment is 
described schematically in Figure 9. The 
main parts are highlighted by heavy lines. 
Single arrows represent data transfer; 
double arrows indicate the production of 
data structures. All modules have been 
implemented in LISP. The realisations do 
not rely on specifics of underlying 
LISP-environments. 

The DPL-compiler 

A compilation results in executable code 
of a parser. The compiler produces highly 

optimized code (Lehtola, 1984). 
Internally data structures are only partly 
dynamic for the reason of fast information 
fetch. Ambiguities are expressed locally 
to minimize redundant search. The 
principle of structure sharing is followed 
whenever new data structures are built. 
In the manipulation of constituent 
structures there exists a special service 
routine for each combination of property 
and predication types. These routines 
take special care of time and memory 
consumption. For instance with regard 
replacements and insertions the copying 
includes physically only the path from the 
root of the list structure to the changed 
sublist. The logically shared parts will 

• be shared also physically. This 
stipulation minimizes memory usage. 

In the state transition network level the 
search is done depth first. To handle 
ambiquities DPL-functions and -relations 
process all alternative interpretations in 
parallel. In fact the alternatives are 
stored in the stacks and in the C-register 
as trees of alternants. 

In the first version of the DPL-compiler 
the generation rules were intermixed with 
the compiler code. The maintenance of the 
compiler grew harder when we experimented 
with new computational features. We 

p a r s e r  facility 

lexicon 
maintenance 

information 
extraction system 

with 
graphic output 

Figure 9. The architecture of the DPL-environment 
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therefore started to develop a 
metacompiler in which compilation is 
defined by rules. At moment we are 
testing it and soon it will be in everyday 
use. The amount of LISP-code has greatly 
reduced with the rule based approach, and 
we are now planning to install the 
DPL-environment into IBM PC. 

Our parsers were aimed to be practical 
tools in real production applications. It 
was hence important to make the produced 
programs transferable. As of now we have 
a rule-based translator which converts 
parsers between LISP dialects. The 

translator accepts currently INTERLISP, 
FranzLISP and Common Lisp. 

Lexicon and its Maintenance 

The environment has a special maintenance 
program for lexicons. The program uses 
video graphics to ease updating and it 
performs various checks to guarantee the 
consistency of the lexical entries. It 
also co-operates with the information 
extraction system to help the user in the 
selection of properties. 

The Tracing Facility 

The tracing facility is a convenient tool 
for grammar debugging. For example, in 
Figure I0 appears the trace of the parsing 
of the sentence "Poikani tuli illalla 
kent~it~ heitt~m~st~ kiekkoa." (= "My son 

( T  POIKANI TULI ILLALLA KENT~LT~ HEITT~M~ST~ KIEKKOA .)  

~ 8 ~  ¢ c ~ s e s  
• 03 seconds 
0 . 0  seconds, garbage c o l l e c t i o n  t ime 
PARSED 
_ P R T H  ( ) 

=> (POIKA)  (TULJ.A) ( I L T A )  (KENTT~) ( H E I T T ~ )  (KIE]<KO) ?N 
(POIKA)  <= (TULLA)  ( I L T A )  (KENTT~) ( H E I T T ~ )  (K IEKKO)  N? 
=> (POIKA)  (TULLA)  ( I L T A )  (KENTT~) ( H E I T T ~ )  (K IEKKO)  ? N F i n a l  
( # # )  (POIKA)  (TULLA)  ( I L T A )  (KENTT~) ( H E I T T ~ )  (K IEKKO)  NIL 
(POIKA)  => (TULLA)  (ILTA) (KENTT~) ( H E I T T ~ )  (K IEKKO)  ?V. 

,=> ( ( P O I K A )  TULLA) (ILTA) (KENTT~) (HEITT~) (KIEKKO) ?VS 
((POIKA) TULLA) <= (~LTA)  (KENTT~) (HEITT~&) (KIEKKO) VS? 
((POIKA) TULLA) => (ILTA) (KENTT~) (HEITT~&~) (KIEKKO) ?N 
( ( P O I K A )  TULLA) ( I L T A )  <= (KENTT~)  ( H E I T T ~ )  (K IEKKO)  N? 
((POIKA) TULLA) => "(ILTA) (KENTT~) (HEITT~) (KIEKKO) ?NFinal 
((POIKA) TULLA) <= (ILTA) (KENTT~) (HEITT~) (KIEKKO) VS? 
((POIKA) TULLA (ILTA)) <= (KENTT~) (HEITTYdl) (KIEKKO) VS? 
((POIKA) TULLA (ILTA)) => (KENTT&) (HEITT~) (KIEKKO) ?N 
((POIKA) TULLA (ILTA)) (KENTT~) <= (HEITT~) (KIEKKO) N? 
((POIKA) TULLA (ILTA)) => (KENTT~) (HEITT~) (KIEKKO) ?NFinal 
((POIKA) TULLA (ILTA)) <= (KENTT&) (HEITT~) (KIEKKO) VS? 
( (POLKA)  TULLA ( I L T A )  (KENTT~) )  <=  ( H E I T T ~ )  (K IEKKO)  VS? 
((POIKA) TULLA (ILTA) (KENTT~)) => (HEITT~i) (KIEKKO) .9%/ 
((POIKA) TULLA (ILTA) (KENTT~)) (HEITT~) <= (KIEKKO) V? 
((POIKA) TULLA (ILTA) (KENTT~)) (HEITT~dl) => (KIEKKO) ?N 
((POIKA) TULLA (ILTA) (KENTT~)) (HEITT~) (KIEKKO) <= N? 
((POIKA) TULLA (ILTA) (KENTT~)) (HEITT&~) => (KIEKKO) ?NFinal 
((POIKA) TULLA (ILTA) (KENTT~)) (HEITT~) <= (KIEKKO) V? 
((POIKA) TULLA (ILTA) (KENTT&)) (HEITT~ (KIEKKO)) <= VO? 
((POIKA) TULLA (ILTA) (KENTT~)) => (HEITT~ (KIEKKO)) ?VFinal 
((POIKA) TULLA (ILTA) (KENTT~)) <= (HEITT&~ (KIEKKO)) VS? 
((POIKA) TULLA (ILTA) (KENTT~) (HEITT~ (KIEKKO))) <= VS? 
=> ((POIKA) TULLA (ILTA) (KENTT~) (HEITT~ (KIEKKO))) ?VFinal 
((POIKA) TULLA (ILTA) (KENTT~) (HEITT~ (KIEKKO))) <= MainSent? 
((POIKA) TULLA (ILTA) (KENTT~) (HEITT&& (KIEKKO))) <= MainSent? OK 
DONE 

Figure I0. A trace of parsing process 
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came back in the evening from the stadium 
where he had been throwing the discus."). 
Each row represents a state of the parser 
before the control enters the state 
mentioned on the right-hand column. The 
thus-far found constituents are shown by 
the parenthesis. An arrow head points 
from a dependent candidate (one which is 
subjected to dependency tests) towards the 
current constituent. 

The tracing facility gives also the 
consumed CPU-time and two quality 
indicators: search efficiency and 
connection efficiency. Search efficiency 
is 100%, if no useless state transitions 
took place in the search. This figure is 
meaningless when the system is 
parameterized to full search because then 
all transitions are tried. 

Connection efficiency is the ratio of the 
number of connections remaining in a 
result to the total number of connections 
attempted for it during the search. We 
are currently developing other measuring 
tools to extract statistical information, 
eg. about the frequency distribution of 

different constructs. Under development 
is also automatic book-keeping of all 
sentence~ input to the system. These will 
be divided into two groups: parsed and 
not parsed. The first group constitutes 
growing test material to ensure monotonic 
improvement of grammars: after a non 
trivial change is done in the grammar, a 
new compiled parser runs all test 
sentences and the results are compared to 
the previous ones. 

Information Extraction System 

In an actual working situation there may 
be thousands of linguistic symbols in the 
work space. To make such a complex 
manageable, we have implemented an 
information system that for a given symbol 
pretty-prints all information associated 
with it. 

The environment has routines for the 
graphic display of parsing results. A 
user can select information by pointing 
with the cursor. The example in Figure Ii 
demonstrates the use of this facility. 
The command SHOW() inquires the results of 

_SHOW ( ) 

( P O I K A N I )  ( T U L I )  ( I LJ .RLLR)  ( K I ~ & I . T & )  ( HE I T T 3 1 I ' I ~ X  ) ( K I E K ~ )  STRRT 

( ( P I ] I K A )  TULLA ( I L T A ] ~ K E N T T ~ )  ( H E I T T  x x  ( K I E K K O ) ) )  ! 

TULLA 
I 
I 
! 
i 

SubJect 
' o a t i v e  N e u t r a l )  

, i 
! ! 

ILTA KENTTX 
A d v e r b i a l  A d v e r b i a l  
TiaeIPred A b l a t i v e  

Func t i on  S u b J e c t  
Role ( E r g a t i v e  Neu t ra l  ) 

F r a m e F e a t  ( N I L )  
P o l a r  ( P o s )  
I V o i c e  ( N I L )  
!Modal  ( N I L )  
Tense ( N I L )  
Comparison ( N i l C o l p a r )  
Number  (SG) 
C a s e  (Nee)  
P e r s o n N  (S) 
P ~ s o n P  ( I P )  
C l i t l  ( N I L )  
C l i t 2  ( N I L )  

, e 

HEITT~U~ 
Adverbial 

S 

! 
KIEKKO 

O b j e c t  
Neu t ra l  

ConstFeat i s  a l i n g u i s t i c  f e a t u r e  type. 

D e f a u l t  valuen -Phrase 
Associated v a l u e s :  ( + D e c l a r a t i v e  - D e c l a r a t i v e  +Main -Main +Nominal 
-Nominal +Phrase -Phrase + P r e d i c a t i v e  - P r e d i c a t i v e  + R e l a t i v e  - R e l a t i v e  
+Sentence - S e n t e n c e )  

Associated ~unc t i  onsl  
(C~ns tFea t / IN IT  ConstFeat/FN Cens tFea t l=  Cons tFea t /= :=  C o n s t F e a t / : -  
C o n s t F e a t / , - / C  Cans tFea t / : =  ConstFeat / := /C)  

Figure ii. An example of information extraction utilities 
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the parsing process described in Figure i0. 
The system replies by first printing the 
start state and then the found result(s) 
in compressed Eorm. The cursor has been 
moved on top of this parse and CTRL-G has 
been typed. The system now draws the 
picture of the tree structure. 
Subsequently one of the nodes has been 
opened. The properties of the node POIKA 
appear pretty-printed. The user has 
furthermore asked information about the 
property type ConstFeat. All these 
operations are general; they do not use 
the special features of any particular 
terminal. 

CONCLUSION 

The parsing strategy applied for the 
DPL-formalism was originally viewed as a 
cognitive model. It has proved to result 
practical and efficient parsers as well. 
Experiments with a non-trivial set of 
Finnish sentence structures have been 
performed both on DEC-2060 and on 
VAX-II/780 systems. The analysis of an 
eight word sentence, for instance, takes 
between 20 and 600 ms of DEC CPU-time in 
the INTERLISP-version depending on whether 
one wants only the first or, through 
complete search, all parses for 
structurally ambiguous sentences. The 
MacLISP-version of the parser runs about 
20 % faster on the same computer. The 
NIL-version (Common Lisp compatible) is 
about 5 times slower on VAX. The whole 
environment has been transferred also to 
FranzLISP on VAX. We have not yet focused 
on optimality issues in grammar 
descriptions. We believe that by 
rearranging the orderings of expectations 
in the automata improvement in efficiency 
ensues. 
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