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ABSTRACT 

The SAUMER system uses specifications of natural  
language grammars, which consist of rules and metarules. 
to provide a semantic interpretation of an input sentence. 
The SAUMER ' Specification Language (SSL) is a 
programming language which combin~  some of the 
features of generalised phrase structure grammars (Gazdar. 
1981 ). like the correspondence between syntactic and 

semantic rules, with definite clause grammars (DCC-s) 
(Pereira and Warren. 1980) to create an executable 

grammar specification. SSL rules are similar to DCG rules 

except that they contain a semantic component and may 

also be left recursive. Metarules are used to generate new 

rules t rom existing rules before any parsing is attempted. 
A.n implementation is tested which can provide semantic 
interpretations for sentences containing tepicalisation, 
relative clauses, passivisation, and questions. 

1. INTRODUCTION 

The SAUMER system al lows the user to specify a 
grammar for a natural language using rules and metarules 
rhts grammar can then be u¢,ed ~ obtain a semantic 
interpretation of an input sentence. The SAUMER 
Specification language (SSL). which L~ a variation of 
definite clause g r ~ s  (DCGs) (Pereira and Warren. 
1980). captures some ,ff the festures of generaI£.ted phrase 
structure grammar5 (GPSGs) (Gazdax, 1981) (GaTrl~r and 
Pullum. 1982). like rule schemata, rule transformations.  
s tructured categories, slash categories, and the 
correspondence between syntactic and semantic rules. The 
semantics currently used in the system are based on 
Schubert and Pellet iers  description in (Schubert and 
Pelletier. 1982). - which adapts the intetmional logic 
intervretation associated with GPSGs. into a more 
conventional logical no ta t ion  

2. THE SEMANTIC LOGICAL NOTATION 

The logical notation associated with  the gr~mm~r 
differs  f rom.  the usual notation of intensional logic_since it 
captures some intmtive aspects  of natural  language, l 

Thus. individuals and objects are treated as entities. 
instead of collections of prope'rties, and actions are n-ary  
relations between these entities. Many of the problems 
that  the intensional notation would  solve are handled by 
allowing ambiguity to be represented in the logical 
notation. Consequently.  as is common in other approaches. 
(e.g.. Gawron. 1982). much of the processing is deferred to 
the pragmatic stage. The s tructure of the lexicon, and the 
appearance of post processing markers (sharp angle 
brackets) are designed to reflect this ambiguity.  The 
lexicon is organised into two levels. For the semantic 
interpretation, the first  level gives each word a tentat ive 
interpretation. During the pragmatic analysis, more 
complete processing information wil l  result  in the final 
interpretation being obtained f rom the second level of the 
lexicon. For e ~ m p l e ,  the sentence John misses John could 
be given an initial interpretation of: 

(2.1) [ Johnl misa2 John3 ] 

wi th  Johnl, miss2 and John3 obtained from the f irs t  level 
of the two level lexicon. T h e  pragmatic stage wil l  
determine if Joha l  and John3 both refer to the same 
entry,  say JOHN SMITH1. of the second level of the 
lexicon, or  if they correspond to different  entries, say 
JOHN_JONES1 and JOHN_EVANS1.  During the 
pragmatic stage, the ent ry  of MISS which is referred to 
by miss2 will  be determined (if possible). For example, 
does John miss John because he has been away for a long 
time, or is it because he is a poor shot with a rifle? 

Any  interpretation contained in sharp angle brackets. 
< . . . > .  may require post processing. This is apparent in 
interpretations containing determiners and co-ordinators. 
The proverb: 

(2.2) every  man loves some woman 

could be given the interpretation: 

(2.3) [ < e v e r y l  man2>  love3 <some4 w o m a n S > ]  

wi thout  explicitly stating whmh of the two readings is 
intended. During pragmatic analysis, the scope of every 
and some would  presumably be determined. 

111 should also be noted that. due Io the separabili'~y of the semantic 
component from ",he grammar rule, • different semantic notation could 
easily be introduced at long as ~u~ app~priate ~.mantic proce~in8 

rou~dne$ were replaced. The use of SAUMER with "an "Al-adap'md" 
version of M o n ~ u e ' s  Intensional Logic" is being examined by Fawc©It 

(1984), 

48 



The syn tax  of this  logical nota t ion can be b-~mmav~sed 
as fol lows.  Sentences and compound predicate fo rmu la s  
are contained wi th in  square  brackets.  So. (2.4) s ta tes  t ha t  
3oim wants  to kiss  Mary: 

(2.4) [ Johnl  wan t2  [John1 kiss3 Mary4]]  

These fo rmulas  can also be expressed equiva len t ly  in a 
more funct ional  form according to the  equivalence 

(2.5) [ t n P t I . . . t ad  ] 

---  ( • . . ( ( P  t l )  t 2) . . . t n ) 

- -  ( P t t . t .  ) 

Consequently. (2.4) could also be represented as: 

(2.6) ( ( w a n t 2  ( (k iss3  Mary4)  J o h n l ) }  J o h n l )  

However.  th is  notat ion is usual ly  used for  incomplete 
phrases, w i t h  the  square  brackets  used to obta in  a 
cortvent/ona/ f inal  reading Modified predicate fo rmulas  
are contained in braces. Thus.  a litt le dog likes Fido could 
be expressed as: 

(2.7) [ < a l  {little2 dog3}> likes4 FidoS] 

The lambda calculus operat ions of lambda abs t rac t ion  and  
el iminat ion are also allowed. When  a var iable  is 
abstracted f rom an expression as in: 

(2.8) kx [ • wan t2  [ • love3 Mary4  ] ] 

application of this  new expression to an a rgument ,  say 
dohnl:  

(2.9) ( kx [ • wan t2  [ • love3 l~u~J'4 ] ] J o h n l  ) 

wil l  resul t  in an int~,v,©tation of John wants  to love Mary: 

(2.10) [ J o h n l  wan t2  [ John l  love3 Mary4  ] ] 

Fu r the r  detai ls  on this  nota t ion  are avai lable  in (Schuber t  
and Pelletier. 1982). 

3.  T H E  S A U M E R  S P E C I F I C A T I O N  L A N G U A G E  

The SAUMER Specification Language (SSL) is a 
programming l a n g u a g e  tha t  a l lows the  user to def ine a 

g rammar  of a na tura l  language "in ~ of rules, and 
metarules.  Metarules  operate on rules to produce new 
rules. The language is basical ly a GPSG realised in a 
DCG setting. Unl ike GPSGs. the  g rammars  defined by  
this  sys tem are not required to be context-f ree  since 
procedure calls are al lowed wi th in  the rules, and since 
logic var iables  are al lowed in the  grammar symbols .  

The basic objects of the language are atoms,  variables.  
terms,  and lists. Any word  s ta r t ing  w i th  a lower case 
letter,  or  enclosed in single quotes  is an atom. Variables 
s ta r t  w i th  a capital  let ter  or an underscore. A t e rm is an 
atom. opt ional ly  followed by a series of objects 
(arguments) ,  which are enclosed in parentheses and 
separated by commas. Las t ly .  a l ist  is a series of  one or  
more objects, separated by  commas, that  are enclosed in 
square brackets  

3.1 R u l e s  

The rules  are presented in a var ia t ion  of the  DCG 
notat ion,  augmented  w i th  a semant ic  ru le  corresponding to 
each syntact ic  rule.  Each ru le  is of the  form 
"A - - >  B : ~," where  A is a t e rm which denotes a 
non te rmina l  symbol .  B is e i ther  an a tom list represent ing 
a te rmina l  symbol  or a conjunct ion of t e rms  (separated by 
commas)  corresponding to non te rmina l  symbols ,  and y is a 
semant ic  ru le  which  may  reference the  in terpre ta t ion  of 
the  components  of ~ in de te rmining  the semantics  of A. 
The ru le  a r row.  - - > .  separates the  two sides of the rule.  
w i th  the  colon. :. separating the  syntact ic  component  f rom 
the  semant ic  component.  If  the  ru le  is preceded by  the  
word  add,  it can be subjected to the  t r ans fo rma t ions  
described in section 3.2. The non te rmina l  symbols  can 
possess a rguments ,  which  m a y  be used to capture  the  
f l avour  of the  s t ruaurad  categor/~s of GPSGs. ~ may  also 
possess a rb i t r a ry  procedural  restr ic t ions contained in braces. 

T consists of expressions in the  semantic  notat ion.  
The d i f fe ren t  t e rms  of th is  semant ic  expression are joined 
b y  the  semant ic  connector,  the  ampersand "&'. The 
ampersand  d i f f e r ,  f rom the  syntact ic  connector,  the  
comma,  sinc~ the  fo rmer  associates to the  r ight  whi le  the  
la t ter  associates to the left.  The /og/col and  symbol .  
which  t rad i t iona l ly  may  also be denoted by  the  
ampersand,  m u s t  be entered as "&&'.  Due to cons t ra in ts  
imposed by  the cu r ren t  implementa t ion ,  "( exFr )" m u s t  
be entered as " < [  expr ]'. "<  expr >" as "<  <[  expr ]'. 

and "k x expr" as "x lmda expr." An expression may  
contain  references to the  in terpre ta t ions  of the  e lements  of 
18 by  s ta t ing the  appropriate  non te rmina l  fol lowed by the  
left  quote,  ". To prevent  ambigui ty  in "these references 
t ha t  m a y  arise when  two identical symbols  appear  in B. a 
non te rmina l  may  be appended wi th  a minus  sign fol lowed 
by a unique  integer. 

Unl ike  s tandard  Prolog implementa t ions  of DCGs. left  
recursion is al lowed in rules, t hus  permi t t ing  more na tu ra l  
descript ions of certain phenomena (l ike co-ordinat ion) .  
Since the  left  recursive rules are interpreted,  r a the r  than  
conver ted into rules tha t  are not  left  recursive,  the  
n u m b e r  of rules in the database wil l  not  be affected.  
However.  the  efficiency of the sentence analys is  may  be 
affected due to the extra  processing required. Rules of 
the  fo rm "A - - >  A. A" are not accepted. 

An  example of a product ion tha t  derives John f rom a 
proper  noun.  npr .  is shown in (3.1): 

(3.1) np r  - - >  [ ' John ' ]  : "John'# 

The semantic  in terpre ta t ion  of th is  np r  will  be John# .  
wi th  "#"  replaced by  a unique integer dur ing  evaluat ion.  
(3.2) i l lus t ra tes  a ve rb  phrase ru le  t ha t  could be used in 
sentences like John wants  to wa/k: 

(3.2) v p ( N u m )  - - >  
v(Num.Root)  w i th  Root in [want. l ike].  v p ( i n f )  

x # #  lmda [ x # #  & v" & [ x # #  & vp']) ] 
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First  nottce tha t  a restr ict ion on the  ve rb  appears w i th in  
the  w/th s ta tement .  In the  GPSG formal i sm,  th is  type  of 
res t r ic t ion would  be obtained by  naming the  rules  and  
associating a list of val id  ru le  names  w i t h  each lexical 
en t ry .  Al though  the  w/~h rest r ic t ion m a y  contain any  
val id in-ocedure, typ ica l ly  the in operat ion ( for  de te rmin ing  
list membersh ip )  is used. The double  pound.  # # .  is 
replaced by  the  same unique integer in the  ent i re  
expression when  the  expression is evaluated.  I f  "#"  were  
used instead, each instance of x #  would  be di f ferent .  For 
the  above example,  if  v' is want2 and  vp' is runJ. then 
the  semant ic  expression could evalua te  to: 

(3.3) x4 lmda  [x4 & wan t2  & [x4 & run3]]  

Fur thermore .  if np" is Johrtl. then: 

(3.4) [np" & vp ' ]  

could resul t  in: 

(3.5) [Johnl & want2  & [Johnl & run3]] 

3.2 The Metarules 

Tradi t ional  t r ans fo rmat iona l  g rammars  provide  
t r ans fo rma t ions  t ha t  operate on parse trees, or s imi lar  
s t ruc tures ,  and often require the  t r ans fo rma t ions  to be 
used in sentence recognition ra the r  t han  in generation 
(Radford.  1981). However.  the  approach suggested by  
(GaT~2r. 1981) uses the  t r ans fo rma t ions  generat ively  and  
applies them to the grammar .  Thus.  the  g rammar  can 
remain contex:-free by  compil ing this  t r ans fo rma t iona l  
knowledge into the  grammar .  T rans fo rma t ions  and ru le  

schemata  fo rm the  maazu/~s  of SSI-  2 

Rule schemata  a l low the  user  to specify ent i re  classes 
of rules  by  permi t t ing  var iables  which  range over  a 
selection of categories to appear  in the  rule.  To control  
the  values  of the  variables,  the  fora/ /  control  s t ruc tu re  can 
be used in the schema declaration.  The schema 
fora/ /  X ~n List ,  Body wil l  execute Body for  each e lement  
of L i ~ .  w i th  X ins tant ia ted  to the  cu r ren t  element.  The 
use of this statement is illustrated in the following 
metaru le  t ha t  generates the  te rminal  product ions  for  proper  
nouns." 

(3.6) foral l  Terminal  in [ 'Bob ' . 'Carol ' . ' red ' . 'Al ice ' ] ,  
(np r  - - >  [Terminal]  : T e r m i n a l # )  . 

T rans fo rma t ions  match  w i th  g rammar  rules  in the  
database,  using a rule  pa t t e rn  t ha t  m ay  be augmented  
w i t h  a r b i t r a r y  procedures,  and  produce new rules  f rom 
the  old rules. A t r ans fo rma t ion  is of the  form:  

(3.7) a - - >  /i : y - - - >  a' - - >  B" : 7" 

The me ta ru le  ar row.  - -  > ,  separates the  pa t te rn ,  
a - - >  ~ : T. f rom the template ,  a" - - >  /i" : T'- 

2Oflen .  metarule~ are considered 1o consisl of  t r ans fo rma t ions  on ly ,  
whi le  schemata  are pu l  inlo a ca tegory  of their  own .  However .  sinoe 
they  can both be considered i~ pa r t  of  • me tag ramma~,  they  are called 

me~trule~ in th l ,  distna~inn. 

The ~ n ~ a ~  pat tern ,  Q - - >  /i. conta ins  non te rmina l s .  
which  correspond to symbols  tha t  m u s t  appear  in the  
matched rule,  and  free variables,  which  represent  don't 
~ r ~ r e g i o n s  of  zero or more  nontermina ls .  The pa t t e rn  

n o n t e r m m a l s  may also possess arguments .  For each rule  
symbol ,  a matching  pa t te rn  symbol  describes propert ies  
t ha t  must exist,  bu t  not  all the propert ies  t ha t  may exist. 
Thus .  if vp appeared in the pa t te rn ,  it would  match  any  
of vp. vp(Num), or vp(Nura2"ype) with Type in /transl. 
However .  pp(to) would  not  ma tch  pp or pp(frora), bu t  it 
wou ld  ma tch  plMto,_). The matching  condi t ions  are 
summar i sed  in Figures 3-1 and 3-2. In Figure 3-1. A and 
B are non te rmina l s .  X is a free variable,  and a and /i are 
conjunct ions  of  one or  more  symbols ,  y and 8 of  Figure 
3-2 are also conjunct ions  of one or more symbols .  "=" is 
def ined as uni f ica t ion (Clocksin and  Mellish,  1981).  Par ts  
of the ru le  contained in braces are ignored by  the  pa t t e rn  
matcher .  The syntact ic  pa t t e rn  may  also contain  a rb i t r a ry  

restr ict ions.  3 enclosed in braces, t ha t  are eva lua ted  dur ing  
the  pa t te rn  match.  The semant/c  pat tern,  y,  is ve ry  
pr imit ive,  h may  contain a free variable,  which  wi l l  
b ind to the ent i re  semant ics  field of the matched  rule ,  or 
it may  contain  the  s t ruc tu r e  < [?  ~]. which  wi l l  b ind  to 
the ent i re  s t r uc tu r e  containing the  symbol  x. If < [ ?  y] 
then appears  in y ' ,  the  resu l t  wil l  be the  semant ic  
component  of the  matched  ru le  w i th  x replaced by  y. 

Pa t te rn  

Rule 
(B. /3) B 

(A. a)  

(X. a )  

A 

X 

A matches  B A matches  B and  
and  a matches  ~ a is a free var iab le  

(X. a )  matches  /i a matches  B 
or a matches (B. ~)  

No A matches  B 

y e s  Yes 

F i g u r e  3-1: Pa t t e rn  Matching  for  Conjunc t ions  

Pa t te rn  

Rule 
b(/i[ .... /I n) b(,/i I .... /in ) with 8 

a(a I . . . .  a m ) 

a ( a  I . . . .  a = )  
wi th  

a=b. m ~ < n .  

ati=/i i, 1~<i~<m 

No 

a - - b .  m ~ n .  

a i = / i  i, l ~ i ~ m  

a = b .  m ~ n .  

a i = / i  i. l ~ < i ~ < m .  " 

matches  8 

F i g u r e  3-2: Pat tern  Matching for  Non te rmina l s  

3Apparently no1 present in the Hewle1"t Packard system (Gawron, 
1982) or the ProGram system (Evans and Ga~l~r, 1984) 
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The behaviour of patterns can be seen in the fol lowing 
examples. Consider the sentence rule: 

(3.8) s(decl) --> np(nom.Numb). 

v p ( _ J q u m b )  wi th  agreement(Numb) 
: [ rip" & vp" ] 

The patterns shown in (3.9a) wi l l  match (3.8). while 
those of (3.9b) will  not match it. 

(3.9) (a) s(A) - - >  {not element(A,[foo])L X. vp : Sere 
s - - >  np(nom), X. vp(pass). Y : Sere 

(b) s(inter) - - >  np. vp : Seam 
s - - >  vp : Sere 

For the verb phrase rule shown in (3.10): 

(3.10) vp(active.[MIN]) - - >  
v([MIN],Root,Type,_) wi th  (intrans in Type) 
: v" 

the patterns of (3.11a) will  result  in a successful match. 
will  those of (3.11b) wil l  not: 

With external modification, any nonterminal ,  or 
variable instantiated to a nonterminal,  may be fol lowed 
by the sequence @rood. This wi l l  result  in rood being 
inserted i n to  the argument  list fol lowing the specified 
arguments. Thus, mf N@junk appeared in a rule when N 
was instantiated to np(more), it would  be expanded as 
rip(more,junk }. Similarly,  if the pattern symbol  vp 
matched v,v{NumS) in a rule, then the appearance of 
vp@foo in the template would  result  in vp(foo~Vumb) 
appearing in the new rule. This extra argument.  
introduced by the modifier,  can be useful when dealing 
with  the missing components of slash or derived categories 
(Gazdar, 1981). 

Internal modification al lows the modif ier  to be put  
directly into the argument list. If an argument  is 
fol lowed by @rood. it wil l  be replaced by rood. In the 
case where @rood appears as an argument by itself, rood is 
added as a new argument. For example, if 
v(Numb@pastpart) were contained in a template, it would  
IT-match v(Numb) in the pattern, and would  result  in the 
appearance of v(pastpart) in the new rule. 

(3.11) (a) v p - >  v : <[?v] 
vp - - >  v( . . . .  Type ._ )  

with (X, intrans in Type. Y). 
Z : S e m  

(b) vp - - >  v ( . . . _ . T y p e . _ )  
wi th  (X. trans in Type) 
: S e m  

vp -> v(_~oot .... ) 
wi th  (Root in [fool. X) 
:Sem 

For every rule that matches the pattern, the template 
of the transformation is executed, resulting the creation of 
a new rule. Any nonterminal.  N, that matches a symbol 
8 i on the left  side of the transformation,  will  appear in 

the new rule if there is a symbol ~i" in 8" that  

irura-transformation (IT) matches with ~i" If there are 

several symbols in 8" that  IT-match ~i" the leftmost 

symbol wi l l  be selected. No symbol on one side of the 
transformation may IT-match with more than one symbol 
on the other side. Two symbols will  IT-match only if 
they have the same number of arguments, and those 
arguments are identical. Any w/th expressions and 
modifiers associated with  symbols are ignored during IT- 
matching. 8" may also contain extra symbols  that  do not 
correspond to anything in 8. In this case. they are 
inserted directly into the new rule. Once again, if the 
transformation is preceded by the command add. then the 
resulting r u l ~  can be subjected to subsequent 
transformations. 

3.3 Modif iers  

Both rules and metarules may conta ins  modifiers that  
al ter  the ~tructure of the nonterminal symbols. There are 
two types of modification, which have been dubbed 
external and /nzerrud modification. 

4. IMPLEMENTATION 

The SAUMER system is currently implemented in 
highly portable C-Prolog (Pereira. 1984). and runs on a 

Motorola 68000 based SUN Workstation supporting UNIX 4. 
Calls to Prolog are allowed by the system, thus providing 
useful tools for debugging grsmmars,  and tracing 
derivations. However.  due to the highly declarative 
nature of SSL, it is not restricted to a Prolog 

....... implementation. Implementations in other languages would 
dif fer  external ly only in the syntax of the procedure calls 
that may  appear in each rule. Use of the system is 
described in detail in (Popowich, 1985). 

The current  implementation converts the grammar as 
specified by the rules and metarules into Prolog clauses. 
This conversion can be examined in terms of how rules 
are processecl, and how the schemata and transformations 
are processed. 

4.1 Rule Processing 

The syntactic component of the rule processor is based 
on Clocksin and Mellish's definite clause grammar 
processor (Clocksin and Mellish. 1981) which has been 
implemented in C-Prolog. For a DCG rule. each 
nonterminal is converted into a Prolog predicate, with two 
additional arguments, that can be processed by a top-down 
parser. These ~tn arguments correspond to the list to be 
parsed, and the remainder of the list after the predicate 
has parsed the desired category. With the addition of 
semantics to each rule, another argument is required to 
represent the semantic interpretation of the current  
symbol.  Thus. whenever  a left  quoted category name. x ' .  

4UNIX is • Inulemark of Bell Laboralories 

51 



appears in the semantics of the rule. it'is'repla~gl by a 
variable bound to the semantic argument of the 
corresponding symbol,  x. in the rule. The semantic 
expression is then evaluated by the eva/ routine wi th  the 
result  bound to the semantic argument of the nonterminal  
on the left  hand side of the production. For ~ffiample. the 
sentence /ule:  

(4.1) add s(decl) - >  

np(nom.Numb).  
vp (_2qumb)  with  agreement(Numb) 
: [ np" & vp" ] 

will  result  in a Prolog expression of the form: 

(4.2) s(SemS.decl ._l .  3) :- 
nlKSemNP.nom2qumb. 1 . 2 ) .  
vp(SemVP, 2qumb. 2. 3). 
agreement(Numb).  
eval([SemNP & SemVP],SemS). 

Consequently. to process the sentence John runs. one 
would try to satisfy: 

(4.3) :- s(Sem, Type. [ 'John'.runs]. []). 

The f irs t  argument returns the interpretation, the second 
argument  returns the type of sentence, the third is the 
initial input list. and the final  argument corresponds to 
the list rPmaining after finding a sentence. Any  rule R, 
that  is preceded by add wil l  have the axiom r'ul~(R) 
inserted into the database. These axioms are used by the 
t ransformations during pattern matching. 

The eva/ routine processes the suff ix symbols,  # and 
# #  along wlth  the lambda .expressions, and may perform 
some- reorganisation of the given expression-- before 
returning a new semantic form. For each expression of 
the form name#,  a unique integer N is ca-eared and 
nan~-N is returned. With "## ' .  the procedure is the 
same except that  the f irs t  occurrence of  "##" wil l  generate 
a unique integer that  wi l l  be saved for all subsequent 
occurrences. To evaluate an expression of  the form: 

(4.4) ( expr i Lmda e ~ F j  & X ) 

every subexpression of exprj is recursively searched for an 

occurrence of expr i. which is then replaced by X. 

Left  recursion is removed with  the aid of a gap 
predicate identical to the one defined to process gapping 
g r - a m m a r S  (Dahl and Abramson. 1984) and unre~Lricte~ 
gapping grammars (Popowich. forthcoming). For any rule 
of the form: 

(4.5) A - - >  A. B. a 

where A does not equal B. the result  of the translation is: 

(4.6) A f _ I . N  n) :- gap(G._l .  2). B ( 2 . N o ) .  A(G,[]). 

<Xl (No,N 1 ) . . . . .  tXn(Na_l.Nn), 

According to (4.6). a phrase is processed by skipping over 
a region to find a B - -  the first  non-terminal  that  does 
not equal A. The skipped region is then examined to 

ensure that  it corresponds to an A before the rest of the 
phrase is processed. 

4.2 Schema Processing 

To process the metarule control s tructures used by 
schemata, a fm l  predicate is inserted to force Prolog to t ry  
all possible alternatives. T h e  simple recursive definition 
of /ore/ /  X / ~  / . /rt :  

(4.7) foral l (X in [], Body). 
foral l (X in [YIRest]~xty)  :- 

(X=Y. cal l l (Body) ,  fail)  : 
foral l(X. Rest. Body). 

uses fa / /  to undo the binding of Y, the f irs t  element of 
the list. to X before calling fore//  wi th  the remainder of 
the list. The predicate ¢.<d/l is used to evaluate Body 
since it wi l l  prevent the fa/ /  predicate f rom causing 
backtracking into Body. 

4.3 Transformation Processing 

Execution of t ransformations requires the most 
complex processing of all of the metagrammatical  
operations. This processing can be divided into the three 
stages of transformation crY. pattern matching, and rule 
crem,/on. 5 

During the rrar~fornuU/~n trot/on phase, the predicate 
rrarts(M,X,Y) is created for the metarule. M. This 
predicate will transform a list of elements. X: into 
another ILSL Y, according to the syntax specification of the 
metarule. Elements that IT-match will be represented by 
the same free variable in both lists. This binding will be 
one to one. since an element cannot match with more than 
one element on the other side. Symbols that appear on 
only one side will not have their free variable appearing 

on the opposite side. Expressions in braces are ignored 
during this stage. If a transformation like: 

(4 .8)  a - - >  b, c. X - - >  a@foo - - >  b. X. c(foo) 

appears, then a predicate of the form: 

(4.9) t r ~ s ( M .  L 1 . _ 2 . _ 3 . X ] .  L 1 . _ 2 . X . _ 4 ] )  

will  be created. Notice that  the appearance of a modifier  
does not cause a@/oo to be distinguished from a. since all 
modifiers are removed before the pat tern- template  match is 
attempted. However.  c and c(foo) are considered to be 
different  symbols. M is a unique integer associated with 
the transformation.  

The pattern match phase determines if a rule matches 
the pattern, and produces a list for each successful match 
which wil l  be transformed by the trans predicate. Each 
element of the list is either one of the matched symbols  
f rom the rule. or a list of symbols  corresponding to the 
don't care region of the pattern. Any predicates that  

5(Popowich, forthcoming) examines a method of t ransformalion 
~ i n g  tha t  uses the t ransformations during ~3~e par~e, instead of Using 
them m L~me~te new ~.fle~. 
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appear in braces in the pattern a r e  evaluated during t h e  
pattern match. Consider the operation of an active-passive 
verb phrase transformation: 

(4.10) vp(active~Numb) - - >  
v(Numb.R.Type.SType) 
with (X.trans in Type.Y). 
np. Z 

<[? np'] 

v~pass .Numb)  - - >  
v(Numb.be.T.S)-I  wi th  auz in T. 
v(Numb@pastpart .R.Type.SType) 
with (X.trans in Type.Y). 
z. pp(by._) 
: x # #  Imda [pp(by)" & <[7 x##] ]  

on the following verb phrase: 

(4.11) vp(act ive.Numb) - - >  
v(Numb~R.Type._) wi th  trans in Type. 
n~[x.A.x] . . . .  ) 
: < [  v" & np" ] . 

The list produced by the pattern match would resemble: 

'.12) [ vp(active.Numb).  
v(Numb.R.Type._)  wi th  [[].trans in Type~]]. 
nr([x.A.~] .... ). 
[] ] 

Notice that there was nothing in the rule to bind with X. 

Y or Z. Consequently. these variables were assigned the 

null list. []. The pattern match of the semantics of the 

rule will  result  in an expression which lambda abswacts 
np" out the of semantics: 

(4.13) <[  np" lmda <[  v" & np" ] ] 

Finally.  the ru/~ crea¢/on phase applies the 
transformation to the list produced by the pattern match. 
and then uses the new list and the template to obtain a 
new rule. This phase includes conversion of the new list 
back into rule form. the application of modifiers, and the 
addition of any extra symbols that  appear on the right 
hand side only. To continue with  our *Tample. the trans 
predicate a.~ociated with  (4.10) would be: 

(4.14) trans(N. [_1._2._3.Z] .  [ _ . 3 . 4 . _ 2 1 . . 5 ] )  

Notice that the two vp 's  on opposite sides of the metarule 
do not match. So the transformed list would resemble: 

(4.15) [ _3 .  
4 ,  
v(Numb.R.Type._)  wi th  [[].trans in Type,[]]. 

[3. 
_ 5 1  

The rule generated by the rule creation phase would  be: 

(4.16) vp(pass~lumb) - - >  
v(Numb.be .T~)- I  with aux in T. 
v(pastpart .R,Type._)  wi th  t n n s  in Type. 
pp(by._)  
: x # #  lmda [ pp(by)" & <[  v" & x # #  ] ] 

• Notice that  the expression "< [  v" & x # #  ]'. which is 
• contained in the semantics of (4.16) was obtained by the 

application of (4.13) to x # # .  

5. APPLICATIONS 

To examine the usefulness of this type of grammar 
specification, as wel l  as the adequacy of the 
implementation, a grammar was developed that  uses the 

domain of the Automated Academic Advisor (AAA)  
(Cercone et.al.. 1984). The AAA is an interactive 
information system under development at Simon Fraser 
Universi ty.  It is intended to act as an aid in "curriculum 
planning and management ' ,  that  accepts natural  language 
queries and generates the appropriate responses. Routines 
for performing some morphological analysis, and for 
retrieving lexical information were also provided. 

The SSL grammar allows questions to be posed. 
permits some possessive forms, and al lows auxiliaries to 
appear in the sentences. From the base of twenty  six 
rules, eighty additional rules were produced by three 
metarules in about eighty-f ive seconds. Ten more rules 
were needed to link the lexicon and the grammar. A 
selection of the rules and metarules appears in Figure 5-1. 
The complete grammar and lexicon is provided in 
(Popowich. 1985). 

In the interpretations of some ~ m p l e  sentences, which 
can be found in Figure 5-2, some liberties are taken with  
the semantic notation. Variables of the form wN. where 
N is any integer, represent entities that are to be 
instantiated f rom some database. Thus. any interpretation 
containing wN wil l  be a question. Possessives. like John's 
tab/e are represented as: 

(5.1) < tab le  & [John poss table]> 

Although mul t ip le  possessives which associate from left  to 
right are allowed, group possessives as seen in: 

(5.2) the man who passed the course's book 

and in phrases like: 

(5.3) John's driver's lice.ace 

can not be interpreted correctly by the grammar. 
Inverted sentences are preceded by the word Q u e r y  in the 
output.  Also. proper nouns are assumed to unambiguously 
refer to some object, and thus are no longer fol lowed by 
a unique integer. Analysis t imes for obtaining an 
interpretation are give 9 in CPU seconds. The total t ime 
includes the t ime spent looking for all other possible 
parses. 

Results obtained with  SAUMER compare favourably  to 
those obtained from the ProGram system (Evans and 
Gazdar. 1984). ProGram operates on grammars defined 

according to the current GPSG formalism (Ga2dar and 
Pullum. 1982). but  was not developed with efficiency as a 
major consideration. The grammar used with ProGram. 
which is given in (Popowich. 1985). is similar to the AAA 
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/ -  Case ,s descr ibed by a mask. [N.A,G], wi th  f ree  va r i ab les  for  Ham., Ace. and Gen. * /  

add vp(oct ive.Numb) ~ >  v(Numb. Root. T, _) wi th  (Root in [ p a s s . g i v e , t e a c h , o f f e r ] ,  indabj in T. t rees in T) ,  
np([x .D.x]  . . . .  ) .  n p ( [ x . * . x ]  . . . .  )-1 : <[ v' a np' a np- t '  ] 

Je WH--<lueetions in inver ted  sentences * /  evc l (y~ ,  Var) ,  NP - np(Case.Numb,Feat) 

• ( NPONP ~ >  [ ] .  |agreement(Case)|  : Var ) 
, ( e ( i n v )  ~ >  np( [x ,A,x ] ,Nomb,Feat )  w i th  Clword in Feat, e ( inv)Onp( [x ,A ,x ] ,Numb,Feat )  

: <[ (Vat lads s ' )  • np' ] ) .  

/* passive t rene fa rnmt ion  e /  

add vp(oct ive.Numb) - - >  v(Numb.R.Type.Subtype) w i th  (X. t rees  in Type0 Y).  npo Z : <[? np °] 
mE> vp(poss,Humb) ~ >  v(Numb,be,T,S)--I w i th  aux in T, 

v(Numi:gpaetpart, R. Type, Subtype) w i th  (X, t rees  in Type, Y), 
Z. o p t i a n a l ( p p ( b y . _ ) )  : x ~  Imda [ opt ional"  k <[ ? x ~  ] ] . 

/ *  sentence invers ion  */ 

add vp(T . [MiN] )  ~ >  v([MJN],R,Type,S) w i th  (X, aux in Type, Y ) ,  Z : $em 
m >  s ( i n v )  - - >  v( [UIN] ,R,Type,S)  w i th  (X.aux in Type,Y), n p ( [ N l , x , x ] , [ M l N ] , _ ) ,  Z : [np '  a Semi. 

/ ,  metaru le f o r  the propagat ion of "ho les"  in the "s losh"  ca tegor ies  e/  

f a r a i l  Hole in [pp(Prep,Feat) ,np(Case,Nomb,Foot) ]  
. ( f o r a l l  Cat1 in [ s ( T y p e ) , v p . p p ( P r e p , F e a t ) , o p t i o n a l ]  

• ( f o r a l l  Cat2 in [vp ,pp(Prep ,Feat ) ,np(Caae,Numb,Foat ) ,op t iona l ]  
, ( Cat1 m >  X. Cot2, Y : Sem m >  Ce t l IHo ie  m >  X, Cat2OHalo, Y : Sen ) ) ) . 

Figure 5-1: Excerpt from Grammar 

Sentence 
Query: 
Ana l yo ,e : .  

d id Fred take ompt le l .  
[Fred takes cmpt le l ]  
2.25 eec. To ta l :  4. 28334 sea. 

Sentence: who wonts to teach Fred 's  p r o f e s s o r ' s  course. 
Semantics: [ <wl • [wl onlmgte]> 

wont4 
[ <wl • [wl animate]> 

teach13 
<course14 k [ <pro fessar IS  • [Fred pace p ro fosea r lS ]>  poes course14]> 

] 
] 

Ana lys is :  6.58337 eec. To ta l :  18.9834 ee¢. 

Sentence' 
Query" 

Ana lys is :  

whose course does the student whom John l i ken  want to  be tak ing .  
[ <<the38 student39> • [John l ike4S <the38 student39>]> 

wont46 
[ <<the38 student39> • [John l ike4S <the38 student39>]> 

takeS6 
<course29 • [<w3e • [w3e animate]> pose caurwe29]> 

] 
] 
21.9999 eec. To ta l :  39.4 sac. 

Sentence: 
Query: 

Ana lys is :  

to  whom daee the p ro fessor  want which paper to be g iven.  
[ <the14 pro fessor lS> 

want17 
[ x39 givo3S <w7 k [w7 aninmte]> <w21 k [w21 paper22]> ] 

] 
14.3167 sec. To ta l :  29.5167 sec. 

Figure 5-2: Summary of Test Results 
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grammar u s e d  by SAUMER. except that it has a much 
smaller  lexicon, and al lows neither relat ive clauses nor 
possessive forms. Running on the same machine as 
SAUMER. ProGram required about 35 seconds to parse the 
sentence does John take cmpelOl, with a total processing 
time of abo,.u 140 second.~ SAUMER required just  over  2 
seconds to parse this phrase, and had a total processing 
t ime of about 4 seconds. 

As it stands, the semantic notation used by SAUMER 
does "not contain much of the relevant information that  

"would be required by a real system. Tense. number  and 
adverbial information, including concepts like location and 
time. would  be required in the AAA. If the SSL 
description were to be extended, wi th  the resulting system 
behaving as a natural  language interface of the AAA.  a 
more database directed semantic notation would  prove 
invaluable. 

6. PRESENT IXMITATIONS 

Although this application of metarules al lows succinct 
descriptions of a grammar, several problems have been 
observed. 

Since each metarule is applied to the rule  base only 
once. the order of the metarules is very  important.  In 
our sample grammar, the passive verb phrases were 
generated before the sentence inversion t ransformation was 
processed, and then the slash category propagation 
transformations were executed. For the curreat  
implementation, if a rule generated by t ransformation T1 
is to be subjected to transformation T2. then T1 must  
appear before T2. Moreover. no rule that  is the result  of 

.... T2-can  be operated on by TI .  It would  be preferable to 
remove this restriction and impose one. that  is less severe. 
such as the finite closure restriction which is described in 
(Thompson. 1982) and used by ProGram. With  this 
improvement,  the only restriction would  be that  a 
transformation could only be applied once in the 
derivation of a rule. 

The system can not current ly process rules expressed 

in the Immediate Dominance/ Linear Precedence (ID/LP) 
format.  (Gazdar and Pullum. 1982). With this format,  a 
production rule is expressed with an unordered right hand 
side with the ordering determined by a separate 
declaration of //near precedence. For example, a passive 
verb phrase rule could appear something like" 

(6.1) vp(pass.[MIN]) - -  > 

v([MIN], be . . . .  ). 

v(_ .  Root. Type. _ )  with 
(Root in [pass.carry.give]. 
indobj in Type. 
trans in Type). 

pp(to). 

optional(pp(by)) 
: x # #  Imda 

[optional" & <[v" & pp(to)" & x##] ]  

wi th  the components having a linear precedence of: 

(6.2) v(_.be)  < v < pp 

The result  would  be that  the pp(by) could appear before 
or af ter  the pp(to), since there is no restriction on ' thei r  
relative positions. I f  this format  were implemented, only 
one passive metarule  would  have to be explicitly stated. 
The direct processing of ID/LP gremm~rs is discussed in 
(Shieber. 1982). (Evans and Gazdar. 1984). and (Popowich. 
forthcoming). 

7. CONCLUSIONS 

SSL appears to adequately capture the f lavour  of 
GPSG descriptions while  allowing more procedural control. 
Investigation into a relationship between SSL and GPSG 
grammars could result  in a method for translating GPSG 
grammars into SSL for execution by SAUMER. Fur ther  
research could also provide a relationship between SSL and 
other grammar formalisms, such as /ex/c~-funct/on,d 
granmu~$ (Kaplan and Bresnan. 1982). The prolog 
implementation of SAUMER. allowing left  recursion in 
rules, should facilitate a more detailed s tudy of the 
specification language, and of some problems associated 
with  metarule  specifications. Due to the easy separabili ty 
of the semantic rules, one could at tempt to introduce a 
more database oriented semantic notation and develop an 
interface to a real database. One could then examine 
system behaviour wi th  a larger rule base and more 
involved transi 'ormations in an applications environment  

like that  of the AAA. However.  as is apparent from the 
application presented here and f rom prel iminary 
experimentation (Popowich. 1984) (Popowich. 1985), 
fur ther  investigation of the efficient operation of this 
Prolog implementation with large grammars wil l  be 
required. 
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