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Abstract

We experiment with neural architectures
for temporal relation extraction and estab-
lish a new state-of-the-art for several sce-
narios. We find that neural models with
only tokens as input outperform state-of-
the-art hand-engineered feature-based mod-
els, that convolutional neural networks out-
perform LSTM models, and that encoding
relation arguments with XML tags outper-
forms a traditional position-based encod-
ing.

1 Introduction

Investigating drug adverse effects, disease progres-
sion, and clinical outcomes is inconceivable with-
out forming some representation of the temporal
structure of electronic health records. Temporal
relation extraction has emerged as the most viable
route to building timelines that tie each medical
event to the time of its occurrence. This connection
between times and events can be captured as a con-
tains relation which is the most frequent temporal
relation type in clinical data (Styler IV et al., 2014).
Consider the sentence: Patient was diagnosed with
a rectal cancer in May of 2010. It can be said that
the temporal expression May of 2010 in this sen-
tence contains the cancer event. The same relation
can exist between two events: During the surgery
the patient experienced severe tachycardia. Here,
the surgery event contains the tachycardia event.

The vast majority of systems in temporal infor-
mation extraction challenges, such as the i2b2 (Sun
et al., 2013) and Clinical TempEval tasks (Bethard
et al., 2015; Bethard et al., 2016), used classifiers
with a large number of manually engineered fea-
tures. This is not ideal, as most NLP components
used for feature extraction experience a significant
accuracy drop when applied to out-of-domain data

(Wu et al., 2014; McClosky et al., 2010; Daumé III,
2009; Blitzer et al., 2006), propagating the error to
the downstream components and ultimately lead-
ing to significant performance degradation. In this
work, we propose a novel temporal relation ex-
traction framework that requires minimal linguistic
pre-processing and can operate on raw tokens.

We experiment with two neural architectures
for temporal relation extraction: a convolutional
neural network (CNN) (LeCun et al., 1998) and a
long short-term memory neural network (LSTM)
(Hochreiter and Schmidhuber, 1997). Little work
exists on using these methods for relation extrac-
tion; to the best of our knowledge no work exists on
using LSTM models for relation extraction or CNN
models for temporal information extraction. Zeng
et al. (2014) and Nguyen and Grishman (2015)
employ CNNs for non-temporal relation extraction
and show that CNNs can be effective for relation
classification and perform as well as token-based
baselines for relation extraction. Our experiments,
on the other hand, show that neural relation extrac-
tion models can compete with a complex feature-
based state-of-the-art relation extraction system.

Another important difference that sets our work
apart is our representation of the argument posi-
tions: previous work used token position features
(embedded in a 50-dimensional space) to encode
the relative distance of the words in the sentence
to the relation arguments (Nguyen and Grishman,
2015; Zeng et al., 2014). We propose a much sim-
pler method for encoding relation argument posi-
tions and show that it works better in our experi-
ments. We introduce special tokens (e.g. <e1> and
</e1>) to mark the positions of the arguments in
a sentence, effectively annotating the relation argu-
ments with XML tags. The sentences augmented
with this markup become the input to a neural net-
work. This approach makes it possible to use the
same representations for CNN and LSTM models.
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Our contributions are the following: we intro-
duce a simple method for encoding relation argu-
ment positions and show that CNNs and LSTMs
can be successfully used for temporal relation ex-
traction, establishing a new state-of-the-art result.
Our best performing model has no input other than
word tokens, in contrast to previous state-of-the-
art systems that require elaborate linguistic pre-
processing and many hand-engineered features. Fi-
nally, we show that a neural model can be remark-
ably effective at extracting temporal relations when
provided with only part-of-speech tags of words,
rather than words themselves. This approach is
promising for the scenarios where reliance on word
tokens is undesirable (e.g. domain adaptation).

2 Methods

2.1 Input representation

All proposed models operate on a n× d matrix rep-
resenting the context of a temporal relation. This
matrix is formed by concatenating n word embed-
dings of d dimensions. Word embeddings can ei-
ther be initialized randomly or use the output of a
tool like word2vec (Mikolov et al., 2013) or GloVe
(Pennington et al., 2014). Similar representations
have been used for various sentence modeling tasks
(Kim, 2014; Kalchbrenner et al., 2014).

We adapt this input representation for relation ex-
traction by augmenting the input token sequences
with markup of the relation arguments. For exam-
ple, the markup Patient was <e> diagnosed </e>
with a rectal cancer in <t> may of 2010 </t>
indicates that the model is to predict a relation be-
tween the event diagnosis and the time May of
2010. Event-event relations are handled similarly,
e.g.: During the <e1> surgery </e1> the patient
experienced severe <e1> tachycardia </e2> .

The directionality of the temporal relation is
modeled as a three-way classification task: con-
tains vs. contains−1 vs. none. For event-time
relations, contains indicates that the time contains
the event, and contains−1 indicates the reverse. For
event-event relations, contains indicates that the
first event in the text contains the second event, and
contains−1 indicates the reverse. For both event-
event and event-time relations, none indicates that
no relation exists between the arguments.

In addition to training on token sequences, we
experiment with training on sequences of part-of-
speech (POS) tags. Under this scenario, the input
to the network is again an n× d matrix, but it now

embeds the POS tags in the d dimensional space.

2.2 Models

We experiment with two neural architectures for
temporal relation extraction: (1) a convolutional
neural network (CNN), and (2) a long short-term
memory neural network (LSTM). Both models start
by feeding the input word sequences into an embed-
ding layer, which we configure to learn the embed-
dings from scratch. In the CNN-based model, the
embedding layer is followed by a convolution layer
that applies convolving filters of various sizes to
extract n-gram-like features, which are then pooled
by a max-pooling layer. In the LSTM-based model,
the embedding layer is fed into a standard LSTM re-
current layer. The output of either the max-pooling
layer (for the CNN) or the last unit in the recurrent
layer (for the LSTM) is fed into a fully connected
dense layer, which is followed by the final softmax
layer outputting the probability distribution over
the three possible classes for the input.

We build a separate model for event-time and
event-event relations, and for each model we try
several input variants: token sequences, POS se-
quences, and token/POS sequence combination.
The latter model involves building two separate
neural network branches: the first receives tokens
as features, while the second receives POS tags; the
two branches are merged and fed into the softmax
layer, acting in effect as an ensemble classifier.

3 Evaluation

3.1 Datasets

We evaluated the proposed methods on a publicly
available clinical corpus (Styler IV et al., 2014)
that was the basis for the Clinical TempEval shared
tasks (Bethard et al., 2015; Bethard et al., 2016).
The gold standard annotations include time expres-
sions, events (both medical and general), and tem-
poral relations. We used the standard split estab-
lished by Clinical TempEval 2016, using the devel-
opment set for evaluating models and tuning model
parameters, and evaluating our best event-event
and event-time models on the test set. Following
Clinical TempEval, we focus only on the contains
relation, which was the most common relation and
had the highest inter-annotator agreement.

3.2 Experiments

We compare the performance of our neural mod-
els to the THYME system (Lin et al., 2016a),
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Model Argument representation Event-time relations Event-event relations
P R F1 P R F1

THYME full system n/a 0.583 0.810 0.678 0.569 0.574 0.572
THYME tokens only n/a 0.564 0.786 0.657 0.562 0.539 0.550
CNN tokens position embeddings 0.647 0.627 0.637 0.580 0.324 0.416
CNN tokens XML tags 0.660 0.775 0.713 0.566 0.522 0.543
CNN pos tags XML tags 0.707 0.708 0.707 0.630 0.204 0.309
LSTM tokens XML tags 0.691 0.626 0.657 0.610 0.418 0.496
LSTM pos tags XML tags 0.754 0.657 0.702 0.603 0.212 0.313
CNN token + pos tags XML tags 0.727 0.681 0.703 0.653 0.435 0.522
LSTM token + pos tags XML tags 0.698 0.660 0.679 0.572 0.458 0.508

Table 1: Event-time and event-event contains relation on dev set.

Model Event-time relations Event-event relations
P R F1 P R F1

THYME system 0.244 0.819 0.376 0.206 0.681 0.317
CNN tokens 0.268 0.768 0.398 0.309 0.538 0.393

Table 2: Event-time and event-event contains relations with medical arguments on dev set

which is based on hand-engineered linguistic fea-
tures and support vector machine classifiers, and
achieved the highest performance on the Clini-
cal TempEval 2015 test set (Lin et al., 2016b).
This system is available as part of cTAKES (http:
//ctakes.apache.org) and performs both event-
event and event-time relation classification. We
discard all non-contains relation instances from the
data, re-train this system, and re-evaluate it on the
official Clinical TempEval 2016 dev and test sets.

We train two versions of the the THYME sys-
tem: (1) a version based on the full set of features
including token features, dependency path features,
ontology (UMLS) based features, gold event and
time properties, and others; (2) token only features.
Our neural models include CNN and LSTM archi-
tectures trained on sequences of tokens, sequences
of POS tags, and a combination of the two. For
comparison, we also include a token-based CNN
model that uses position embeddings (Nguyen and
Grishman, 2015; Zeng et al., 2014) rather than
XML markup used in the rest of our neural models.

SemEval data includes gold annotations of both
medical (e.g. colonoscopy, tachycardia) and gen-
eral (e.g. discussed, reported) events. Relations
between medical events are the most important for
clinical applications, but also present a special chal-
lenge as the accuracy of their extraction is currently
low. To evaluate our models on the relations be-
tween clinical events, we filtered out all general
events (and relations associated with them) using a

UMLS dictionary. UMLS (Bodenreider, 2004) is
a comprehensive ontology of clinical terminology
(somewhat analogous to WordNet (Miller, 1995))
that includes most clinical terms and thus can be
used as a lookup resource for clinical vocabulary.
Similar evaluation was used in (Lin et al., 2016b).

We implemented all neural models in Keras 1.0.4
(Chollet, 2015) with the Theano (Theano Develop-
ment Team, 2016) backend. The code will be made
publicly available. All models were trained with
batch size of 50, dense layer dropout rate of 0.25,
and RMSprop optimizer. The words were repre-
sented using 300-dimensional embeddings initial-
ized randomly. The training was performed using
GeForce GTX Titan X GPU provided by NVIDIA
Corporation.

The CNN models used 200 filters each for filter
sizes 2, 3, 4, and 5, and a learning rate of 0.0001.
The LSTM models had 128 hidden units and a
learning rate of 0.001. The number of hidden fully
connected units was 300.

These settings are identical or similar to those
used in neural sentence modeling work (Nguyen
and Grishman, 2015; Zhang and Wallace, 2015;
Kim, 2014) and were validated on the SemEval
development set. We tuned the number of train-
ing epochs by starting from 3 and increasing until
validation accuracy began to decrease. Once the pa-
rameter tuning was finalized, we evaluated our best
event-event and event-time models on the held-out
test set.
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Model Event-time relations Event-event relations
P R F1 P R F1

THYME system (all events) 0.577 0.845 0.685 0.595 0.572 0.584
CNN tokens (all events) 0.683 0.717 0.700 0.688 0.412 0.515
THYME system (medical events only) 0.230 0.851 0.362 0.215 0.703 0.330
CNN tokens (medical events only) 0.272 0.714 0.394 0.300 0.519 0.380

Table 3: Event-time and event-event contains relations on test set

3.3 Results

Table 1 shows the evaluation of different model
types and feature sets on the dev set. For both event-
time and event-event relations, the best-performing
neural model was the CNN with only tokens as fea-
tures. For event-time relations, all our neural mod-
els except the token-based LSTM outperformed
the state-of-the-art THYME system, and all mod-
els performed as well or better than the THYME
tokens-only baseline. For event-event relations,
none of the neural models performed as well as the
state-of-the-art THYME system, and only the CNN
token-based model came close to the performance
of the THYME tokens-only baseline. The CNN
with position embeddings (CNN tokens / position
embeddings row) performed worse then when argu-
ments were marked with XML tags (CNN tokens /
XML tags row). CNNs with position embeddings
have considerably more parameters and are harder
to train; this likely explains the performance drop
comparing to the models where the arguments are
marked with XML tags.

Table 2 shows the performance of the THYME
system and our best neural model (CNN tokens
with XML tags) on the modified data that only
contains relations between medical events. The
neural models outperform the feature-based system
in both cases.

Finally, Table 3 shows the performance of the
state-of-the-art THYME system and the best neural
systems on the test set. For event-time relation ex-
traction, our neural models establish a new state-of-
the art, and when focusing on only medical events
our neural models outperform the state-of-the-art
on both event-time and event-event relations.

4 Discussion

Of all the neural architectures we experimented
with, the token-based CNN demonstrated the best
performance across all experimental conditions.
And in all scenarios but one (event-event relations,
all events), this model with only token input outper-

formed the feature-based THYME system which
includes not only tokens and part of speech tags,
but syntactic tree features and gold event and time
properties. Intriguingly, for event-time relations,
the part-of-speech-based CNN also outperformed
the feature-based THYME system (and was very
close to the performance of the token-based CNN),
suggesting that part-of-speech alone is enough to
make accurate predictions in this task, when cou-
pled with the modeling power of a neural network.

We also found that CNN models outperformed
LSTM models for our relation extraction tasks, de-
spite the intuition that LSTMs, by modeling the
entire word sequence, should be a better model of
natural language data. In practice, the local pre-
dictors of class membership obtained by the CNN
seem to provide stronger cues to the classifier than
the vectorized representation of the entire sequence
formed by the LSTM.

Despite the structural similarities between event-
time relation classification and event-event relation
classification, the neural models fell short of tra-
ditional feature-based models for event-event rela-
tions, reaching only up to the level of a traditional
feature-based model that has access only to the to-
kens (the same input as the neural models). This
suggests that the neural models for event-event re-
lations are not able to generalize over the token
input as well as they were for event-time relations.
This may be due in part to the difficulty of the
task: even for feature-based models, event-event
classification performance is about 10 points lower
than event-time classification performance. But it
may also be due to class imbalance issues, as there
are many more none relations in the event-event
task: the positive to negative ratio is 1:15 for event-
event, but only 1:3 for event-time. The THYME
system for event-event relations is tuned with class-
specific weights that help it deal with class imbal-
ance, and without these class-specific weights, its
performance drops more than 10 points in F1. Our
neural models do not yet include any equivalent
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for addressing class imbalance, so this may be a
source of the problem. The fact that the event-
event CNN system beats the feature-based system
when tested on only medical events supports this
view: after non-medical events are removed from
the sentence, the imbalance problem is alleviated
(a medical event is more likely to be involved in a
relation), which likely allows the CNN model to
generalize better. Addressing this class imbalance
problem is an interesting avenue for future work.
Additionally, we plan to investigate the applica-
bility of the proposed neural models for general
(non-temporal) relation extraction.
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