
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 324–330,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Joining Hands: Exploiting Monolingual Treebanks for Parsing of
Code-mixing Data

Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Manish Shrivastava and
Dipti Misra Sharma

LTRC, IIIT-H, Hyderabad, India

{irshad.bhat,riyaz.bhat,m.shrivastava,dipti}@iiit.ac.in

Abstract

In this paper, we propose efficient and
less resource-intensive strategies for pars-
ing of code-mixed data. These strategies
are not constrained by in-domain anno-
tations, rather they leverage pre-existing
monolingual annotated resources for train-
ing. We show that these methods can pro-
duce significantly better results as com-
pared to an informed baseline. Besides,
we also present a data set of 450 Hindi and
English code-mixed tweets of Hindi mul-
tilingual speakers for evaluation. The data
set is manually annotated with Universal
Dependencies.

1 Introduction

Code-switching or code-mixing is a sociolin-
guistic phenomenon, where multilingual speak-
ers switch back and forth between two or more
common languages or language varieties in a
single utterance1. The phenomenon is mostly
prevalent in spoken language and in informal set-
tings on social media such as in news groups,
blogs, chat forums etc. Computational model-
ing of code-mixed data, particularly from social
media, is presumed to be more challenging than
monolingual data due to various factors. The
main contributing factors are non-adherence to
a standard grammar, spelling variations and/or
back-transliteration. It has been generally ob-
served that traditional NLP techniques perform
miserably when processing code-mixed language
data (Solorio and Liu, 2008b; Vyas et al., 2014;
Çetinoğlu et al., 2016).

1For brevity, we will not differentiate between intra- and
inter-sentential mixing of languages and use the terms code-
mixing and code-switching interchangeably throughout the
paper.

More recently, there has been a surge in stud-
ies concerning code-mixed data from social media
(Solorio and Liu, 2008a; Solorio and Liu, 2008a;
Vyas et al., 2014; Sharma et al., 2016; Rudra et al.,
2016; Joshi et al., 2016, and others). Besides these
individual research articles, a series of shared-
tasks and workshops on preprocessing and shallow
syntactic analysis of code-mixed data have also
been conducted at multiple venues such as Em-
pirical Methods in NLP (EMNLP 2014 and 2016),
International Conference on NLP (ICON 2015 and
2016) and Forum for Information Retrieval Evalu-
ation (FIRE 2015 and 2016). Most of these works
are an attempt to address preprocessing issues–
such as language identification and transliteration–
that any higher NLP application may face in pro-
cessing such data.

Due to paucity of annotated resources in code-
mixed genre, the performance of monolingual
parsing models is yet to be evaluated on code-
mixed structures. This paper serves to fill this gap
by presenting an evaluation set annotated with de-
pendency structures. Besides, we also propose dif-
ferent parsing strategies that exploit nothing but
the pre-existing annotated monolingual data. We
show that by making trivial adaptations, monolin-
gual parsing models can effectively parse code-
mixed data.

2 Parsing Strategies

We explore three different parsing strategies to
parse code-mixed data and evaluate their perfor-
mance on a manually annotated evaluation set.
These strategies are distinguished by the way they
use pre-existing treebanks for parsing code-mixed
data.

• Monolingual: The monolingual method uses
two separate models trained from the respective

324



monolingual treebanks of the languages which
are present in the code-mixed data. We can
use the monolingual models in two different
ways. Firstly, we can parse each code-mixed
sentence by intelligently choosing the monolin-
gual model based on the matrix language of
the sentence.2 A clear disadvantage of this
method is that the monolingual parser may not
accurately parse those fragments of a sentence
which belong to a language unknown to the
model. Therefore, we consider this as the base-
line method. Secondly, we can linearly interpo-
late the predictions of both monolingual models
at the inference time. The interpolation weights
are chosen based on the matrix language of each
parsing configuration. The interpolated oracle
output is defined as:

y = argmax(λm ∗ f(φ(cm))+
(1− λm) ∗ f(φ(cs)))

(1)

where f(·) is a softmax layer of our neural
parsing model, φ(cm) and φ(cs) are the fea-
ture functions of the matrix and subordinate lan-
guages respectively and λm is the interpolation
weight for the matrix language (see Section §5
for more details on the parsing model).

Instead of selecting the matrix language at sen-
tence level, we define the matrix language in-
dividually for each parsing configuration. We
define the matrix language of a configuration
based on the language tags of top 2 nodes in the
stack and buffer belonging to certain syntactic
categories such as adposition, auxiliary, particle
and verb.
• Multilingual: In the second approach, we train

a single model on a combined treebank of the
languages represented in the code-mixed data.
This method has a clear advantage over the
baseline Monolingual method in that it would
be aware of the grammars of both languages of
the code-mixed data. However, it may not be
able to properly connect the fragments of two
languages as the model lacks evidence for such
mixed structures in the augmented data. This
would particularly happen if the code-mixed
languages are typologically diverse.
2In any code-mixed utterance, the matrix language defines

the overall grammatical structure of an utterance, while sub-
ordinate language represents any individual words or phrases
embedded in the matrix language. We use a simple count-
based approach to identify the matrix and subordinate lan-
guages of a code-mixed sentence.

Moreover, training a parsing model on aug-
mented data with more diverse structures will
worsen the structural ambiguity problem. But
we can easily circumvent this problem by in-
cluding token-level language tag as an addi-
tional feature in the parsing model (Ammar et
al., 2016).
• Multipass: In the Multipass method, we train

two separate models like the Monolingual
method. However, we apply these models on
the code-mixed data differently. Unlike Mono-
lingual method, we use both models simultane-
ously for each sentence and pass the input to the
models twice. There are two possible ways to
accomplish this. We can first parse all the frag-
ments of each language using their respective
parsing models one by one and then the root
nodes of the parsed fragments would be parsed
by the matrix language parsing model. Or, we
can parse the subordinate language first and then
parse the root of the subordinate fragments with
the fragments of matrix language using the ma-
trix language parser. In both cases, monolingual
parsers would not be affected by the cross lan-
guage structures. More importantly, matrix lan-
guage parser in the second pass would be unaf-
fected by the internal structure of the subordi-
nate language fragments. But there is a caveat,
we need to identify the code-mixed fragments
accurately, which is a non-trivial task. In this
paper, we use token-level language information
to segment tweets into subordinate or matrix
language fragments.

3 Code-mixed Dependency Annotations

To the best of our knowledge, there is no avail-
able code-mixed data set that contains dependency
annotations. There are, however, a few available
code-mixed data sets that provide annotations re-
lated to language of a token, its POS and chunk
tags. For an intrinsic evaluation of our parsing
models on code-mixed texts, we manually an-
notated a data set of Hindi-English code-mixed
tweets with dependency structures. The code-
mixed tweets were sampled from a large set of
tweets of Indian language users that we crawled
from Twitter using Tweepy3–a Twitter API wrap-
per. We used a language identification system
(see §4) to filter Hindi-English code-mixed tweets
from the crawled Twitter data. Only those tweets

3http://www.tweepy.org/

325



were selected that satisfied a minimum ratio of
30:70(%) code-mixing. From this data set, we
manually selected 450 tweets for annotation. The
selected tweets are thoroughly checked for code-
mixing ratio. While calculating the code-mixing
ratio, we do not consider borrowings from En-
glish as an instance of code-mixing. For POS
tagging and dependency annotation, we used Uni-
versal dependency guidelines (De Marneffe et al.,
2014), while language tags are assigned based on
the tagset defined in (Solorio et al., 2014; Jamatia
et al., 2015). The annotations are split into test-
ing and tuning sets for evaluation and tuning of
our models. The tuning set consists of 225 tweets
(3,467 tokens) with a mixing ratio of 0.54 and the
testing set contains 225 tweets (3,322 tokens) with
a mixing ratio of 0.53. Here mixing ratio is defined
as:

1
n

n∑
s=1

Hs

Hs + Es
(2)

where n is the number of sentences in the data
set, Hs and Es are the number of Hindi words and
English words in sentence s respectively.

4 Preprocessing

The parsing strategies that we discussed above for
code-mixed texts heavily rely on language identi-
fication of individual tokens. Besides we also need
normalization of non-standard word forms preva-
lent in code-mixed social media content and back-
transliteration of Romanized Hindi words. Here
we discuss both preprocessing steps in brief.

Language Identification We model language
identification as a classification problem where
each token needs to be classified into one of
the following tags: ‘Hindi’ (hi), ‘English’ (en),
‘Acronym’ (acro), ‘Named Entity’ (ne) and ‘Uni-
versal’ (univ). For this task, we use the feed-
forward neural network architecture of Bhat et al.
(2016)4 proposed for Named Entity extraction in
code mixed-data of Indian languages. We train
the network with similar feature representations
on the data set provided in ICON 20155 shared
task on language identification. The data set con-
tains 728 Facebook comments annotated with the
five language tags noted above. We evaluated the

4Due to space limitation we don’t discuss the system ar-
chitecture in detail. The interested reader can refer to the
original paper for a detailed description.

5http://ltrc.iiit.ac.in/icon2015/

predictions of our identification system against the
gold language tags in our code-mixed develop-
ment set and test set. Even though the model is
trained on a very small data set, its prediction ac-
curacy is still above 96% for both the development
set and the test set. The results are shown in Table
1.

Normalization and Transliteration We model
the problem of both normalization and back-
transliteration of (noisy) Romanized Hindi words
as a single transliteration problem. Our goal is
to learn a mapping for both standard and non-
standard Romanized Hindi word forms to their
respective standard forms in Devanagari. For
this purpose, we use the structured perceptron of
Collins (Collins, 2002) which optimizes a given
loss function over the entire observation sequence.
For training the model, we use the translitera-
tion pairs (87,520) from the Libindic transliter-
ation project6 and Brahmi-Net (Kunchukuttan et
al., 2015) and augmented them with noisy translit-
eration pairs (63,554) which are synthetically gen-
erated by dropping non-initial vowels and replac-
ing consonants based on their phonological prox-
imity. We use Giza++ (Och and Ney, 2003) to
character align the transliteration pairs for train-
ing.

At inference time, our transliteration model
would predict the most likely word form for each
input word. However, the single-best output from
the model may not always be the best option con-
sidering an overall sentential context. Contracted
word forms in social media content are quite of-
ten ambiguous and can represent different stan-
dard word forms such as ‘pt’ may refer to ‘put’,
‘pit’, ‘pat’, ‘pot’ and ‘pet’. To resolve this ambi-
guity, we extract n-best transliterations from the
transliteration model using beam-search decod-
ing. The best word sequence is then decoded
using an exact search over bn word sequences7

scored by a tri-gram language model. The lan-
guage model is trained on monolingual data us-
ing IRSTLM-Toolkit (Federico et al., 2008) with
Kneser-Ney smoothing. For English, we use a
similar model for normalization which we trained
on the noisy word forms (3,90,000) synthetically
generated from the English vocabulary.

6https://github.com/libindic/indic-trans
7b is the size of beam-width and n is the sentence length.

For each word, we extract five best transliterations or normal-
izations i.e., b=5.

326



Label Development-Set Test-Set
Precision Recall F1-Score Count Precision Recall F1-Score Count

acro 0.920 0.742 0.821 31 0.955 0.724 0.824 29
en 0.962 0.983 0.972 1303 0.952 0.981 0.966 1290
hi 0.971 0.975 0.973 1545 0.968 0.964 0.966 1460
ne 0.915 0.701 0.794 154 0.889 0.719 0.795 167

univ 0.982 0.995 0.989 434 0.987 1.000 0.993 376
Accuracy 0.967 3467 0.961 3322

Table 1: Language Identification results on code-mixed development set and
test set.

5 Experimental Setup

The parsing experiments reported in this paper
are conducted using a non-linear neural network-
based transition system which is similar to (Chen
and Manning, 2014). The models are trained on
Universal Dependency Treebanks of Hindi and
English released under version 1.4 of Universal
Dependencies (Nivre et al., 2016).

Parsing Models Our parsing model is based
on transition-based dependency parsing paradigm
(Nivre, 2008). Particularly, we use an arc-eager
transition system (Nivre, 2003). The arc-eager
system defines a set of configurations for a sen-
tence w1,...,wn, where each configuration C = (S,
B, A) consists of a stack S, a buffer B, and a
set of dependency arcs A. For each sentence, the
parser starts with an initial configuration where S =
[ROOT], B = [w1,...,wn] and A = ∅ and terminates
with a configuration C if the buffer is empty and
the stack contains the ROOT. The parse trees de-
rived from transition sequences are given by A. To
derive the parse tree, the arc-eager system defines
four types of transitions (t): 1) Shift, 2) Left-Arc,
3) Right-Arc, and 4) Reduce.

Similar to (Chen and Manning, 2014), we use
a non-linear neural network to predict the transi-
tions for the parser configurations. The neural net-
work model is the standard feed-forward neural
network with a single layer of hidden units. We
use 200 hidden units and RelU activation func-
tion. The output layer uses softmax function for
probabilistic multi-class classification. The model
is trained by minimizing cross entropy loss with
an l2-regularization over the entire training data.
We also use mini-batch Adagrad for optimization
(Duchi et al., 2011) and apply dropout (Hinton et
al., 2012).

From each parser configuration, we extract fea-
tures related to the top four nodes in the stack, top
four nodes in the buffer and leftmost and rightmost
children of the top two nodes in the stack and the
leftmost child of the top node in the buffer.

POS Models We train POS tagging models us-
ing a similar neural network architecture as dis-

cussed above. Unlike (Collobert et al., 2011), we
do not learn separate transition parameters. In-
stead we include the structural features in the in-
put layer of our model with other lexical and non-
lexical units. We use second-order structural fea-
tures, two words to either side of the current word,
and last three characters of the current word.

We trained two POS tagging models: Mono-
lingual and Multilingual. In the Monolingual ap-
proach, we divide each code-mixed sentence into
contiguous fragments based on the language tags
assigned by the language identifier. Words with
language tags other than ‘Hi’ and ‘En’ (such as
univ, ne and acro) are merged with the preced-
ing fragment. Each fragment is then individually
tagged by the monolingual POS taggers trained on
their respective monolingual POS data sets. In the
Multilingual approach, we train a single model on
combined data sets of the languages in the code-
mixed data. We concatenate an additional 1x2
vector8 in the input layer of the neural network
representing the language tag of the current word.
Table 2 gives the POS tagging accuracies of the
two models.

Model LID Development-Set Test-Set
HIN ENG Total HIN ENG Total

Monolingual G 0.849 0.903 0.873 0.832 0.889 0.860
A 0.841 0.892 0.866 0.825 0.883 0.853

Multilingual G 0.835 0.903 0.867 0.798 0.892 0.843
A 0.830 0.900 0.862 0.790 0.888 0.836

Table 2: POS Tagging accuracies for monolingual and multilingual models.
LID = Language tag, G = Gold LID, A = Auto LID.

Word Representations For both POS tagging
and parsing models, we include the lexical fea-
tures in the input layer of the Neural Network
using the pre-trained word representations while
for the non-lexical features, we use randomly
initialized embeddings within a range of −0.25
to +0.25.9 We use Hindi and English monolin-
gual corpora to learn the distributed representa-
tion of the lexical units. The English monolingual
data contains around 280M sentences, while the
Hindi data is comparatively smaller and contains
around 40M sentences. The word representations
are learned using Skip-gram model with negative
sampling which is implemented in word2vec
toolkit (Mikolov et al., 2013). For multilingual
models, we use robust projection algorithm of Guo
et al. (2015) to induce bilingual representations

8In our experiments we fixed these to be {-0.25,0.25} for
Hindi and {0.25,-0.25 } for English

9Dimensionality of input units in POS and parsing mod-
els: 80 for words, 20 for POS tags, 2 for language tags and
20 for affixes.

327



Gold (POS + language tag) Auto (POS + language tag)
Data-set Monolingual Interpolated Multilingual Multipassf Multipasss Monolingual Interpolated Multilingual Multipassf Multipasss

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
CMd 60.77 49.24 74.62 64.11 75.77 65.32 69.37 58.83 70.23 59.64 55.80 43.36 68.24 56.07 67.71 55.18 63.34 52.22 64.60 53.03
CMt 60.05 48.52 74.40 63.65 74.16 64.11 68.54 57.87 69.12 58.64 54.95 43.03 65.14 54.00 66.18 54.40 62.37 51.11 63.74 52.34
HINt 93.29 90.60 92.61 89.64 91.96 88.46 93.29 90.60 93.29 90.60 91.92 88.39 91.82 88.34 89.52 84.83 91.92 88.39 91.92 88.39
ENGt 85.12 82.86 84.21 81.82 85.16 82.79 85.12 82.86 85.12 82.86 83.28 79.90 82.08 78.54 82.53 79.11 83.28 79.90 83.28 79.90

Table 3: Accuracy of different parsing strategies on Code-mixed as well as Hindi and English evaluation sets. CMd|t = Code-mixed development and testing sets;
HINt = Hindi test set; ENGt = English test set; Multipassf|s = fragment-wise and subordinate-first parsing methods.

using the monolingual embedding space of En-
glish and a bilingual lexicon of Hindi and English
(∼63,000 entries). We extracted the bilingual lex-
icon from ILCI and Bojar Hi-En parallel corpora
(Jha, 2010; Bojar et al., 2014).

6 Experiments and Results

We conducted multiple experiments to measure ef-
fectiveness of the proposed parsing strategies in
both gold and predicted settings. In predicted set-
tings, we use the monolingual POS taggers for
all the experiments. We used the Monolingual
method as the baseline for evaluating other parsing
strategies. The baseline model parses each sen-
tence in the evaluation sets by either using Hindi
or English parsing model based on the matrix lan-
guage of the sentence. For baseline and the Mul-
tipass methods, we use bilingual embedding space
derived from matrix language embedding space
(Hindi or English) to represent lexical nodes in the
input layer of our parsing architecture. In the In-
terpolation method, we use separate monolingual
embedding spaces for each model. The interpola-
tion weights are tuned using the development set
and the best results are achieved at λm ranging
from 0.7 to 0.8 (see eq. 1). The results of our ex-
periments are reported in Table 3. Table 4 shows
the impact of sentential decoding for choosing the
best normalized and/or back-transliterated tweets
on different parsing strategies (see §4).

First Best K-Best
Data-set Multilingual Interpolated Multilingual Interpolated

UAS LAS UAS LAS UAS LAS UAS LAS
CMd 66.21 53.55 66.70 53.68 67.71 55.18 68.24 56.07
CMt 65.87 53.92 64.26 53.35 66.18 54.40 65.14 54.00

Table 4: Parsing accuracies with exact search and k-best search (k = 5). CMd|t
= Code-mixed development and testing sets.

All of our parsing models produce results that
are at-least 10 LAS points better than our baseline
parsers which otherwise provide competitive re-
sults on Hindi and English evaluation sets (Straka
et al., 2016).10 Among all the parsing strategies,
the Interpolated methods perform comparatively

10Our results are not directly comparable to (Straka et al.,
2016) due to different parsing architectures. While we use
a simple greedy, projective transition system, Straka et al.
(2016) use a search-based swap system.

better on both monolingual and code-mixed eval-
uation sets. Interpolation method manipulates the
parameters of both languages quite intelligently at
each parsing configuration. Despite being quite
accurate on code-mixed evaluation sets, the Mul-
tilingual model is less accurate in single language
scenario. Also the Multilingual model performs
worse for Hindi since its lexical representation is
derived from English embedding space. It is at-
least 2 LAS points worse than the Interpolated
and the Multipass methods. However, unlike the
latter methods, the Multilingual models do not
have a run-time and computational overhead. In
comparison to Interpolated and Multilingual meth-
ods, Multipass methods are mostly affected by
the errors in language identification. Quite often
these errors lead to wrong segmentation of code-
mixed fragments which adversely alter their inter-
nal structure.

Despite higher gains over the baseline models,
the performance of our models is nowhere near the
performance of monolingual parsers on newswire
texts. This is due to inherent complexities of
code-mixed social media content (Solorio and Liu,
2008b; Vyas et al., 2014; Çetinoğlu et al., 2016).

7 Conclusion

In this paper, we have evaluated different strate-
gies for parsing code-mixed data that only lever-
age monolingual annotated data. We have shown
that code-mixed texts can be efficiently parsed by
the monolingual parsing models if they are intel-
ligently manipulated. Against an informed mono-
lingual baseline, our parsing strategies are at-least
10 LAS points better. Among different strategies
that we proposed, Multilingual and Interpolation
methods are two competitive methods for parsing
code-mixed data.

The code of the parsing models is available
at the GitHub repository https://github.
com/irshadbhat/cm-parser, while the
data can be found under the Universal Depen-
dencies of Hindi at https://github.com/
UniversalDependencies/UD_Hindi.

328



References
Waleed Ammar, George Mulcaire, Miguel Ballesteros,

Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431–444.

Irshad Ahmad Bhat, Manish Shrivastava, and
Riyaz Ahmad Bhat. 2016. Code mixed entity ex-
traction in indian languages using neural networks.
In Proceedings of the Shared Task on Code Mix
Entity Extraction in Indian Languages (CMEE-IL).

Ondřej Bojar, Vojtěch Diatka, Pavel Rychlý, Pavel
Straňák, Vı́t Suchomel, Aleš Tamchyna, and Daniel
Zeman. 2014. HindEnCorp - Hindi-English
and Hindi-only Corpus for Machine Translation.
In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Hrafn Loftsson, Bente
Maegaard, Joseph Mariani, Asuncion Moreno, Jan
Odijk, and Stelios Piperidis, editors, Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), Reykjavik,
Iceland. European Language Resources Association
(ELRA).

Özlem Çetinoğlu, Sarah Schulz, and Ngoc Thang Vu.
2016. Challenges of computational processing of
code-switching. In Proceedings of the Second Work-
shop on Computational Approaches to Code Switch-
ing, pages 1–11, Austin, Texas, November. Associa-
tion for Computational Linguistics.

Danqi Chen and Christopher D. Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), volume 1, pages 740–750.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings
of the 2002 Conference on Empirical Methods in
Natural Language Processing, pages 1–8. Associ-
ation for Computational Linguistics, July.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12.

Marie-Catherine De Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Uni-
versal stanford dependencies: A cross-linguistic ty-
pology. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation,
volume 14, pages 4585–92.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12(Jul).

Marcello Federico, Nicola Bertoldi, and Mauro Cet-
tolo. 2008. Irstlm: an open source toolkit for han-
dling large scale language models. In Interspeech,
pages 1618–1621.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual depen-
dency parsing based on distributed representations.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing, volume 1, pages 1234–1244.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

Anupam Jamatia, Björn Gambäck, and Amitava Das.
2015. Part-of-speech tagging for code-mixed
english-hindi twitter and facebook chat messages.
page 239.

Girish Nath Jha. 2010. The TDIL program and the
Indian language corpora initiative (ILCI). In Pro-
ceedings of the Seventh Conference on International
Language Resources and Evaluation (LREC 2010).
European Language Resources Association (ELRA).

Aditya Joshi, Ameya Prabhu, Manish Shrivastava, and
Vasudeva Varma. 2016. Towards sub-word level
compositions for sentiment analysis of hindi-english
code mixed text. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2482–2491,
Osaka, Japan, December. The COLING 2016 Orga-
nizing Committee.

Anoop Kunchukuttan, Ratish Puduppully, and Pushpak
Bhattacharyya. 2015. Brahmi-net: A transliteration
and script conversion system for languages of the in-
dian subcontinent.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Ben-
goetxea, Yevgeni Berzak, Riyaz Ahmad Bhat, Eck-
hard Bick, Carl Börstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Gülşen Cebirolu Eryiit,
Giuseppe G. A. Celano, Fabricio Chalub, Çar
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Arantza Diaz de
Ilarraza, Kaja Dobrovoljc, Timothy Dozat, Kira
Droganova, Puneet Dwivedi, Marhaba Eli, Tomaž
Erjavec, Richárd Farkas, Jennifer Foster, Claudia
Freitas, Katarı́na Gajdošová, Daniel Galbraith, Mar-
cos Garcia, Moa Gärdenfors, Sebastian Garza, Filip
Ginter, Iakes Goenaga, Koldo Gojenola, Memduh

329



Gökrmak, Yoav Goldberg, Xavier Gómez Guino-
vart, Berta Gonzáles Saavedra, Matias Grioni, Nor-
munds Grūzītis, Bruno Guillaume, Jan Hajič, Linh
Hà M, Dag Haug, Barbora Hladká, Radu Ion,
Elena Irimia, Anders Johannsen, Fredrik Jørgensen,
Hüner Kaşkara, Hiroshi Kanayama, Jenna Kanerva,
Boris Katz, Jessica Kenney, Natalia Kotsyba, Si-
mon Krek, Veronika Laippala, Lucia Lam, Phng
Lê Hng, Alessandro Lenci, Nikola Ljubešić, Olga
Lyashevskaya, Teresa Lynn, Aibek Makazhanov,
Christopher Manning, Cătălina Mărănduc, David
Mareček, Héctor Martı́nez Alonso, André Martins,
Jan Mašek, Yuji Matsumoto, Ryan McDonald, Anna
Missilä, Verginica Mititelu, Yusuke Miyao, Simon-
etta Montemagni, Keiko Sophie Mori, Shunsuke
Mori, Bohdan Moskalevskyi, Kadri Muischnek,
Nina Mustafina, Kaili Müürisep, Lng Nguyn Th,
Huyn Nguyn Th Minh, Vitaly Nikolaev, Hanna
Nurmi, Petya Osenova, Robert Östling, Lilja Øvre-
lid, Valeria Paiva, Elena Pascual, Marco Passarotti,
Cenel-Augusto Perez, Slav Petrov, Jussi Piitulainen,
Barbara Plank, Martin Popel, Lauma Pretkalnia,
Prokopis Prokopidis, Tiina Puolakainen, Sampo
Pyysalo, Alexandre Rademaker, Loganathan Ra-
masamy, Livy Real, Laura Rituma, Rudolf Rosa,
Shadi Saleh, Baiba Saulīte, Sebastian Schuster,
Wolfgang Seeker, Mojgan Seraji, Lena Shakurova,
Mo Shen, Natalia Silveira, Maria Simi, Radu
Simionescu, Katalin Simkó, Mária Šimková, Kiril
Simov, Aaron Smith, Carolyn Spadine, Alane Suhr,
Umut Sulubacak, Zsolt Szántó, Takaaki Tanaka,
Reut Tsarfaty, Francis Tyers, Sumire Uematsu,
Larraitz Uria, Gertjan van Noord, Viktor Varga,
Veronika Vincze, Lars Wallin, Jing Xian Wang,
Jonathan North Washington, Mats Wirén, Zdeněk
Žabokrtský, Amir Zeldes, Daniel Zeman, and
Hanzhi Zhu. 2016. Universal dependencies 1.4.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University
in Prague.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT).

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational linguistics, 29(1):19–51.

Koustav Rudra, Shruti Rijhwani, Rafiya Begum, Kalika
Bali, Monojit Choudhury, and Niloy Ganguly. 2016.
Understanding language preference for expression
of opinion and sentiment: What do hindi-english
speakers do on twitter? In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1131–1141, Austin, Texas,
November. Association for Computational Linguis-
tics.

Arnav Sharma, Sakshi Gupta, Raveesh Motlani, Piyush
Bansal, Manish Shrivastava, Radhika Mamidi, and
Dipti M. Sharma. 2016. Shallow parsing pipeline -
hindi-english code-mixed social media text. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1340–1345, San Diego, California, June. Associa-
tion for Computational Linguistics.

Thamar Solorio and Yang Liu. 2008a. Learning to pre-
dict code-switching points. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 973–981. Association for
Computational Linguistics.

Thamar Solorio and Yang Liu. 2008b. Part-of-speech
tagging for english-spanish code-switched text. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 1051–
1060. Association for Computational Linguistics.

Thamar Solorio, Elizabeth Blair, Suraj Maharjan, Steve
Bethard, Mona Diab, Mahmoud Gonheim, Abdelati
Hawwari, Fahad AlGhamdi, Julia Hirshberg, Alison
Chang, and Pascale Fung. 2014. Overview for the
first shared task on language identification in code-
switched data. In Proceedings of the First Workshop
on Computational Approaches to Code-Switching.
EMNLP 2014, Conference on Empirical Methods in
Natural Language Processing, Octobe, 2014, Doha,
Qatar.

Milan Straka, Jan Hajic, and Jana Straková. 2016.
Udpipe: Trainable pipeline for processing conll-u
files performing tokenization, morphological anal-
ysis, pos tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016), Portorož,
Slovenia, pages 4290–4297.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Ka-
lika Bali, and Monojit Choudhury. 2014. Pos tag-
ging of english-hindi code-mixed social media con-
tent. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), volume 14, pages 974–979.

330


