@inproceedings{bar-haim-etal-2017-stance,
title = "Stance Classification of Context-Dependent Claims",
author = "Bar-Haim, Roy and
Bhattacharya, Indrajit and
Dinuzzo, Francesco and
Saha, Amrita and
Slonim, Noam",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1024",
pages = "251--261",
abstract = "Recent work has addressed the problem of detecting relevant claims for a given controversial topic. We introduce the complementary task of Claim Stance Classification, along with the first benchmark dataset for this task. We decompose this problem into: (a) open-domain target identification for topic and claim (b) sentiment classification for each target, and (c) open-domain contrast detection between the topic and the claim targets. Manual annotation of the dataset confirms the applicability and validity of our model. We describe an implementation of our model, focusing on a novel algorithm for contrast detection. Our approach achieves promising results, and is shown to outperform several baselines, which represent the common practice of applying a single, monolithic classifier for stance classification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bar-haim-etal-2017-stance">
<titleInfo>
<title>Stance Classification of Context-Dependent Claims</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roy</namePart>
<namePart type="family">Bar-Haim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Indrajit</namePart>
<namePart type="family">Bhattacharya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francesco</namePart>
<namePart type="family">Dinuzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amrita</namePart>
<namePart type="family">Saha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noam</namePart>
<namePart type="family">Slonim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-apr</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent work has addressed the problem of detecting relevant claims for a given controversial topic. We introduce the complementary task of Claim Stance Classification, along with the first benchmark dataset for this task. We decompose this problem into: (a) open-domain target identification for topic and claim (b) sentiment classification for each target, and (c) open-domain contrast detection between the topic and the claim targets. Manual annotation of the dataset confirms the applicability and validity of our model. We describe an implementation of our model, focusing on a novel algorithm for contrast detection. Our approach achieves promising results, and is shown to outperform several baselines, which represent the common practice of applying a single, monolithic classifier for stance classification.</abstract>
<identifier type="citekey">bar-haim-etal-2017-stance</identifier>
<location>
<url>https://aclanthology.org/E17-1024</url>
</location>
<part>
<date>2017-apr</date>
<extent unit="page">
<start>251</start>
<end>261</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Stance Classification of Context-Dependent Claims
%A Bar-Haim, Roy
%A Bhattacharya, Indrajit
%A Dinuzzo, Francesco
%A Saha, Amrita
%A Slonim, Noam
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 apr
%I Association for Computational Linguistics
%C Valencia, Spain
%F bar-haim-etal-2017-stance
%X Recent work has addressed the problem of detecting relevant claims for a given controversial topic. We introduce the complementary task of Claim Stance Classification, along with the first benchmark dataset for this task. We decompose this problem into: (a) open-domain target identification for topic and claim (b) sentiment classification for each target, and (c) open-domain contrast detection between the topic and the claim targets. Manual annotation of the dataset confirms the applicability and validity of our model. We describe an implementation of our model, focusing on a novel algorithm for contrast detection. Our approach achieves promising results, and is shown to outperform several baselines, which represent the common practice of applying a single, monolithic classifier for stance classification.
%U https://aclanthology.org/E17-1024
%P 251-261
Markdown (Informal)
[Stance Classification of Context-Dependent Claims](https://aclanthology.org/E17-1024) (Bar-Haim et al., EACL 2017)
ACL
- Roy Bar-Haim, Indrajit Bhattacharya, Francesco Dinuzzo, Amrita Saha, and Noam Slonim. 2017. Stance Classification of Context-Dependent Claims. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 251–261, Valencia, Spain. Association for Computational Linguistics.