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Abstract

We predict the compositionality of multi-
word expressions using distributional sim-
ilarity between each component word and
the overall expression, based on transla-
tions into multiple languages. We evaluate
the method over English noun compounds,
English verb particle constructions and
German noun compounds. We show that
the estimation of compositionality is im-
proved when using translations into multi-
ple languages, as compared to simply us-
ing distributional similarity in the source
language. We further find that string sim-
ilarity complements distributional similar-
ity.

1 Compositionality of MWEs

Multiword expressions (hereafter MWEs) are
combinations of words which are lexically, syntac-
tically, semantically or statistically idiosyncratic
(Sag et al., 2002; Baldwin and Kim, 2009). Much
research has been carried out on the extraction and
identification of MWEs1 in English (Schone and
Jurafsky, 2001; Pecina, 2008; Fazly et al., 2009)
and other languages (Dias, 2003; Evert and Krenn,
2005; Salehi et al., 2012). However, considerably
less work has addressed the task of predicting the
meaning of MWEs, especially in non-English lan-
guages. As a step in this direction, the focus of
this study is on predicting the compositionality of
MWEs.

An MWE is fully compositional if its meaning
is predictable from its component words, and it is
non-compositional (or idiomatic) if not. For ex-
ample, stand up “rise to one’s feet” is composi-

1In this paper, we follow Baldwin and Kim (2009) in
considering MWE “identification” to be a token-level disam-
biguation task, and MWE “extraction” to be a type-level lex-
icon induction task.

tional, because its meaning is clear from the mean-
ing of the components stand and up. However, the
meaning of strike up “to start playing” is largely
unpredictable from the component words strike
and up.

In this study, following McCarthy et al. (2003)
and Reddy et al. (2011), we consider composition-
ality to be graded, and aim to predict the degree
of compositionality. For example, in the dataset
of Reddy et al. (2011), climate change is judged
to be 99% compositional, while silver screen is
48% compositional and ivory tower is 9% com-
positional. Formally, we model compositionality
prediction as a regression task.

An explicit handling of MWEs has been shown
to be useful in NLP applications (Ramisch, 2012).
As an example, Carpuat and Diab (2010) proposed
two strategies for integrating MWEs into statisti-
cal machine translation. They show that even a
large scale bilingual corpus cannot capture all the
necessary information to translate MWEs, and that
in adding the facility to model the compositional-
ity of MWEs into their system, they could improve
translation quality. Acosta et al. (2011) showed
that treating non-compositional MWEs as a sin-
gle unit in information retrieval improves retrieval
effectiveness. For example, while searching for
documents related to ivory tower, we are almost
certainly not interested in documents relating to
elephant tusks.

Our approach is to use a large-scale multi-way
translation lexicon to source translations of MWEs
and their component words, and then model the
relative similarity between each of the component
words and the MWE, using distributional similar-
ity based on monolingual corpora for the source
language and each of the target languages. Our
hypothesis is that using distributional similarity
in more than one language will improve the pre-
diction of compositionality. Importantly, in order
to make the method as language-independent and
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broadly-applicable as possible, we make no use of
corpus preprocessing such as lemmatisation, and
rely only on the availability of a translation dictio-
nary and monolingual corpora.

Our results confirm our hypothesis that distri-
butional similarity over the source language in ad-
dition to multiple target languages improves the
quality of compositionality prediction. We also
show that our method can be complemented with
string similarity (Salehi and Cook, 2013) to further
improve compositionality prediction. We achieve
state-of-the-art results over two datasets.

2 Related Work

Most recent work on predicting the composi-
tionality of MWEs can be divided into two
categories: language/construction-specific and
general-purpose. This can be at either the token-
level (over token occurrences of an MWE in a cor-
pus) or type-level (over the MWE string, indepen-
dent of usage). The bulk of work on composition-
ality has been language/construction-specific and
operated at the token-level, using dedicated meth-
ods to identify instances of a given MWE, and
specific properties of the MWE in that language
to predict compositionality (Lin, 1999; Kim and
Baldwin, 2007; Fazly et al., 2009).

General-purpose token-level approaches such
as distributional similarity have been commonly
applied to infer the semantics of a word/MWE
(Schone and Jurafsky, 2001; Baldwin et al., 2003;
Reddy et al., 2011). These techniques are based
on the assumption that the meaning of a word is
predictable from its context of use, via the neigh-
bouring words of token-level occurrences of the
MWE. In order to predict the compositionality of
a given MWE using distributional similarity, the
different contexts of the MWE are compared with
the contexts of its components, and the MWE is
considered to be compositional if the MWE and
component words occur in similar contexts.

Identifying token instances of MWEs is not al-
ways easy, especially when the component words
do not occur sequentially. For example consider
put on in put your jacket on, and put your jacket
on the chair. In the first example put on is an
MWE while in the second example, put on is a
simple verb with prepositional phrase and not an
instance of an MWE. Moreover, if we adopt a con-
servative identification method, the number of to-
ken occurrences will be limited and the distribu-

tional scores may not be reliable. Additionally,
for morphologically-rich languages, it can be dif-
ficult to predict the different word forms a given
MWE type will occur across, posing a challenge
for our requirement of no language-specific pre-
processing.

Pichotta and DeNero (2013) proposed a token-
based method for identifying English phrasal
verbs based on parallel corpora for 50 languages.
They show that they can identify phrasal verbs bet-
ter when they combine information from multiple
languages, in addition to the information they get
from a monolingual corpus. This finding lends
weight to our hypothesis that using translation data
and distributional similarity from each of a range
of target languages, can improve compositionality
prediction. Having said that, the general applica-
bility of the method is questionable — there are
many parallel corpora involving English, but for
other languages, this tends not to be the case.

Salehi and Cook (2013) proposed a general-
purpose type-based approach using translation
data from multiple languages, and string similar-
ity between the MWE and each of the compo-
nent words. They use training data to identify the
best-10 languages for a given family of MWEs, on
which to base the string similarity, and once again
find that translation data improves their results
substantially. Among the four string similarity
measures they experimented with, longest com-
mon substring was found to perform best. Their
proposed method is general and applicable to dif-
ferent families of MWEs in different languages. In
this paper, we reimplement the method of Salehi
and Cook (2013) using longest common substring
(LCS), and both benchmark against this method
and combine it with our distributional similarity-
based method.

3 Our Approach

To predict the compositionality of a given MWE,
we first measure the semantic similarity between
the MWE and each of its component words2 using
distributional similarity based on a monolingual
corpus in the source language. We then repeat the
process for translations of the MWE and its com-
ponent words into each of a range of target lan-
guages, calculating distributional similarity using

2Note that we will always assume that there are two
component words, but the method is easily generalisable to
MWEs with more than two components.
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Figure 1: Outline of our approach to computing
the distributional similarity (DS) of translations
of an MWE with each of its component words,
for a given target language. score1 and score2
are the similarity for the first and second compo-
nents, respectively. We obtain translations from
Panlex, and use Wikipedia as our corpus for each
language.

a monolingual corpus in the target language (Fig-
ure 1). We additionally use supervised learning to
identify which target languages (or what weights
for each language) optimise the prediction of com-
positionality (Figure 2). We hypothesise that by
using multiple translations — rather than only in-
formation from the source language — we will be
able to better predict compositionality.

We optionally combine our proposed approach
with string similarity, calculated based on the
method of Salehi and Cook (2013), using LCS.

Below, we detail our method for calculating dis-
tributional similarity in a given language, the dif-
ferent methods for combining distributional simi-
larity scores into a single estimate of composition-
ality, and finally the method for selecting the target
languages to use in calculating compositionality.

3.1 Calculating Distributional Similarity

In order to be consistent across all languages and
be as language-independent as possible, we calcu-

CSmethod CSmethod 

Score1 for each language Score2 for each language 

21 )1( ss  

Compositionality  score 

s1 s2 

Figure 2: Outline of the method for combin-
ing distributional similarity scores from multiple
languages, across the components of the MWE.
CSmethod refers to one of the methods described
in Section 3.2 for calculating compositionality.

late distributional similarity in the following man-
ner for a given language.

Tokenisation is based on whitespace delimiters
and punctuation; no lemmatisation or case-folding
is carried out. Token instances of a given MWE
or component word are identified by full-token n-
gram matching over the token stream. We assume
that all full stops and equivalent characters for
other orthographies are sentence boundaries, and
chunk the corpora into (pseudo-)sentences on the
basis of them. For each language, we identify the
51st–1050th most frequent words, and consider
them to be content-bearing words, in the manner
of Schütze (1997). This is based on the assump-
tion that the top-50 most frequent words are stop
words, and not a good choice of word for calculat-
ing distributional similarity over. That is not to say
that we can’t calculate the distributional similarity
for stop words, however (as we will for the verb
particle construction dataset — see Section 4.3.2)
they are simply not used as the dimensions in our
calculation of distributional similarity.

We form a vector of content-bearing words
across all token occurrences of the target word,
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on the basis of these content-bearing words. Dis-
tributional similarity is calculated over these con-
text vectors using cosine similarity. Accord-
ing to Weeds (2003), using dependency rela-
tions with the neighbouring words of the target
word can better predict the meaning of the target
word. However, in line with our assumption of no
language-specific preprocessing, we just use word
co-occurrence.

3.2 Calculating Compositionality
First, we need to calculate a combined composi-
tionality score from the individual distributional
similarities between each component word and the
MWE. Following Reddy et al. (2011), we combine
the component scores using the weighted mean (as
shown in Figure 2):

comp = αs1 + (1− α)s2 (1)

where s1 and s2 are the scores for the first and
the second component, respectively. We use dif-
ferent α settings for each dataset, as detailed in
Section 4.3.

We experiment with a range of methods for cal-
culating compositionality, as follows:

CSL1 : calculate distributional similarity using
only distributional similarity in the source
language corpus (This is the approach used
by Reddy et al. (2011), as discussed in Sec-
tion 2).

CSL2N : exclude the source language, and com-
pute the mean of the distributional similarity
scores for the best-N target languages. The
value of N is selected according to training
data, as detailed in Section 3.3.

CSL1+L2N : calculate distributional similarity
over both the source language (CSL1 ) and
the mean of the best-N languages (CSL2N ),
and combine via the arithmetic mean.3 This
is to examine the hypothesis that using
multiple target languages is better than just
using the source language.

CSSVR(L1+L2 ): train a support vector regressor
(SVR: Smola and Schölkopf (2004)) over the
distributional similarities for all 52 languages
(source and target languages).

3We also experimented with taking the mean over all the
languages — target and source — but found it best to com-
bine the scores for the target languages first, to give more
weight to the source language.

CS string : calculate string similarity using the
LCS-based method of Salehi and Cook
(2013).4

CS string+L1 : calculate the mean of the string
similarity (CS string ) and distributional sim-
ilarity in the source language (Salehi and
Cook, 2013).

CSall : calculate the mean of the string similarity
(CS string ) and distributional similarity scores
(CSL1 and CSL2N ).

3.3 Selecting Target Languages

We experiment with two approaches for combin-
ing the compositionality scores from multiple tar-
get languages.

First, in CSL2N (and CSL1+L2N and CSall that
build off it), we use training data to rank the target
languages according to Pearson’s correlation be-
tween the predicted compositionality scores and
the gold-standard compositionality judgements.
Based on this ranking, we take the best-N lan-
guages, and combine the individual composition-
ality scores by taking the arithmetic mean. We se-
lect N by determining the value that optimises the
correlation over the training data. In other words,
the selection ofN and accordingly the best-N lan-
guages are based on nested cross-validation over
training data, independently of the test data for that
iteration of cross-validation.

Second in CSSVR(L1+L2 ), we combine the
compositionality scores from the source and all 51
target languages into a feature vector, and train an
SVR over the data using LIBSVM.5

4 Resources

In this section, we describe the resources required
by our method, and also the datasets used to eval-
uate our method.

4.1 Monolingual Corpora for Different
Languages

We collected monolingual corpora for each of 52
languages (51 target languages + 1 source lan-
guage) from XML dumps of Wikipedia. These
languages are based on the 54 target languages

4Due to differences in our random partitioning, our re-
ported results over the two English datasets differ slightly
over the results of Salehi and Cook (2013) using the same
method.

5http://www.csie.ntu.edu.tw/˜cjlin/libsvm
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used by Salehi and Cook (2013), excluding Span-
ish because we happened not to have a dump of
Spanish Wikipedia, and also Chinese and Japanese
because of the need for a language-specific word
tokeniser. The raw corpora were preprocessed us-
ing the WP2TXT toolbox6 to eliminate XML tags,
HTML tags and hyperlinks, and then tokenisa-
tion based on whitespace and punctuation was per-
formed. The corpora vary in size from roughly
750M tokens for English, to roughly 640K tokens
for Marathi.

4.2 Multilingual Dictionary

To translate the MWEs and their components,
we follow Salehi and Cook (2013) in using Pan-
lex (Baldwin et al., 2010). This online dictio-
nary is massively multilingual, covering more than
1353 languages. For each MWE dataset (see Sec-
tion 4.3), we translate the MWE and component
words from the source language into each of the
51 languages.

In instances where there is no direct translation
in a given language for a term, we use a pivot lan-
guage to find translation(s) in the target language.
For example, the English noun compound silver
screen has direct translations in only 13 languages
in Panlex, including Vietnamese (màn bac) but
not French. There is, however, a translation of
màn bac into French (cinéma), allowing us to
infer an indirect translation between silver screen
and cinéma. In this way, if there are no direct
translations into a particular target language, we
search for a single-pivot translation via each of our
other target languages, and combine them all to-
gether as our set of translations for the target lan-
guage of interest.

In the case that no translation (direct or indirect)
can be found for a given source language term into
a particular target language, the compositionality
score for that target language is set to the average
across all target languages for which scores can be
calculated for the given term. If no translations are
available for any target language (e.g. the term is
not in Panlex) the compositionality score for each
target language is set to the average score for that
target language across all other source language
terms.

6http://wp2txt.rubyforge.org/

4.3 Datasets
We evaluate our proposed method over three
datasets (two English, one German), as described
below.

4.3.1 English Noun Compounds (ENC)
Our first dataset is made up of 90 binary English
noun compounds, from the work of Reddy et al.
(2011). Each noun compound was annotated by
multiple annotators using the integer scale 0 (fully
non-compositional) to 5 (fully compositional). A
final compositionality score was then calculated
as the mean of the scores from the annotators.
If we simplistically consider 2.5 as the threshold
for compositionality, the dataset is relatively well
balanced, containing 48% compositional and 52%
non-compositional noun compounds. Following
Reddy et al. (2011), in combining the component-
wise distributional similarities for this dataset, we
weight the first component in Equation 1 higher
than the second (α = 0.7).

4.3.2 English Verb Particle Constructions
(EVPC)

The second dataset contains 160 English verb par-
ticle constructions (VPCs), from the work of Ban-
nard (2006). In this dataset, a verb particle con-
struction consists of a verb (the head) and a prepo-
sitional particle (e.g. hand in, look up or battle on).

For each component word (the verb and parti-
cle, respectively), multiple annotators were asked
whether the VPC entails the component word. In
order to translate the dataset into a regression task,
we calculate the overall compositionality as the
number of annotations of entailment for the verb,
divided by the total number of verb annotations for
that VPC. That is, following Bannard et al. (2003),
we only consider the compositionality of the verb
component in our experiments (and as such α = 1
in Equation 1).

One area of particular interest with this dataset
will be the robustness of the method to function
words (the particles), both under translation and
in terms of calculating distributional similarity, al-
though the findings of Baldwin (2006) for English
prepositions are at least encouraging in this re-
spect. Additionally, English VPCs can occur in
“split” form (e.g. put your jacket on, from our
earlier example), which will complicate identifi-
cation, and the verb component will often be in-
flected and thus not match under our identification
strategy (for both VPCs and the component verbs).
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Dataset Language Frequency Family

ENC

Italian 100 Romance
French 99 Romance
German 86 Germanic

Vietnamese 83 Viet-Muong
Portuguese 62 Romance

EVPC

Bulgarian 100 Slavic
Breton 100 Celtic
Occitan 100 Romance

Indonesian 100 Indonesian
Slovenian 100 Slavic

GNC

Polish 100 Slavic
Lithuanian 99 Baltic

Finnish 74 Uralic
Bulgarian 72 Slavic

Czech 40 Slavic

Table 1: The 5 best languages for the ENC, EVPC
and GNC datasets. The language family is based
on Voegelin and Voegelin (1977).

4.3.3 German Noun Compounds (GNC)

Our final dataset is made up of 246 German noun
compounds (von der Heide and Borgwaldt, 2009;
Schulte im Walde et al., 2013). Multiple anno-
tators were asked to rate the compositionality of
each German noun compound on an integer scale
of 1 (non-compositional) to 7 (compositional).
The overall compositionality score is then calcu-
lated as the mean across the annotators. Note that
the component words are provided as part of the
dataset, and that there is no need to perform de-
compounding. Following Schulte im Walde et al.
(2013), we weight the first component higher in
Equation 1 (α = 0.8) when calculating the overall
compositionality score.

This dataset is significant in being non-English,
and also in that German has relatively rich mor-
phology, which we expect to impact on the iden-
tification of both the MWE and the component
words.

5 Results

All experiments are carried out using 10 iterations
of 10-fold cross validation, randomly partitioning
the data independently on each of the 10 iterations,
and averaging across all 100 test partitions in our
presented results. In the case of CSL2N and other
methods that make use of it (i.e. CSL1+L2N and
CSall ), the languages selected for a given training
fold are then used to compute the compositionality
scores for the instances in the test set. Figures 3a,
3b and 3c are histograms of the number of times

each N is selected over 100 folds on ENC, EVPC
and GNC datasets, respectively. From the his-
tograms, N = 6, N = 15 and N = 2 are the most
commonly selected settings for ENC, EVPC and
GNC, respectively. That is, multiple languages are
generally used, but more languages are used for
English VPCs than either of the compound noun
datasets. The 5 most-selected languages for ENC,
EVPC and GNC are shown in Table 1. As we
can see, there are some languages which are al-
ways selected for a given dataset, but equally the
commonly-selected languages vary considerably
between datasets.

Further analysis reveals that 32 (63%) target
languages for ENC, 25 (49%) target languages
for EVPC, and only 5 (10%) target languages for
GNC have a correlation of r ≥ 0.1 with gold-
standard compositionality judgements. On the
other hand, 8 (16%) target languages for ENC, 2
(4%) target languages for EVPC, and no target lan-
guages for GNC have a correlation of r ≤ −0.1.

5.1 ENC Results

English noun compounds are relatively easy to
identify in a corpus,7 because the components oc-
cur sequentially, and the only morphological vari-
ation is in noun number (singular vs. plural). In
other words, the precision for our token match-
ing method is very high, and the recall is also
acceptably high. Partly as a result of the ease
of identification, we get a high correlation of
r = 0.700 for CSL1 (using only source language
data). Using only target languages (CSL2N ), the
results drop to r = 0.434, but when we combine
the two (CSL1+L2N ), the correlation is higher
than using only source or target language data, at
r = 0.725. When we combine all languages us-
ing SVR, the results rise slightly higher again to
r = 0.744, which is slightly above the correla-
tion of the state-of-the-art method of Salehi and
Cook (2013), which combines their method with
the method of Reddy et al. (2011) (CS string+L1 ).
These last two results support our hypothesis that
using translation data can improve the prediction
of compositionality. The results for string similar-
ity on its own (CS string , r = 0.644) are slightly
lower than those using only source language dis-
tributional similarity, but when combined with

7Although see Lapata and Lascarides (2003) for discus-
sion of the difficulty of reliably identifying low-frequency
English noun compounds.
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Figure 3: Histograms displaying how many times a given N is selected as the best number of languages
over each dataset. For example, according to the GNC chart, there is a peak for N = 2, which shows
that over 100 folds, the best-2 languages achieved the highest correlation on 18 folds.

Method Summary of the Method ENC EVPC GNC
CSL1 Source language 0.700 0.177 0.141
CSL2N Best-N target languages 0.434 0.398 0.113
CSL1+L2N Source + best-N target languages 0.725 0.312 0.178
CSSVR(L1+L2 ) SVR (Source + all 51 target languages) 0.744 0.389 0.085
CS string String Similarity (Salehi and Cook, 2013) 0.644 0.385 0.372
CS string+L1 CS string +CSL1 (Salehi and Cook, 2013) 0.739 0.360 0.353
CSall CSL1 + CSL2N + CS string 0.732 0.417 0.364

Table 2: Pearson’s correlation on the ENC, EVPC and GNC datasets

CSL1+L2N (i.e. CSall ) there is a slight rise in cor-
relation (from r = 0.725 to r = 0.732).

5.2 EVPC Results

English VPCs are hard to identify. As discussed
in Section 2, VPC components may not occur se-
quentially, and even when they do occur sequen-
tially, they may not be a VPC. As such, our sim-
plistic identification method has low precision and
recall (hand analysis of 927 identified VPC in-
stances would suggest a precision of around 74%).
There is no question that this is a contributor to
the low correlation for the source language method
(CSL1 ; r = 0.177). When we use target lan-
guages instead of the source language (CSL2N ),
the correlation jumps substantially to r = 0.398.

When we combine English and the target lan-

guages (CSL1+L2N ), the results are actually lower
than just using the target languages, because of
the high weight on the target language, which is
not desirable for VPCs, based on the source lan-
guage results. Even for CSSVR(L1+L2 ), the re-
sults (r = 0.389) are slightly below the target
language-only results. This suggests that when
predicting the compositionality of MWEs which
are hard to identify in the source language, it may
actually be better to use target languages only. The
results for string similarity (CS string : r = 0.385)
are similar to those for CSL2N . However, as with
the ENC dataset, when we combine string simi-
larity and distributional similarity (CSall ), the re-
sults improve, and we achieve the state-of-the-art
for the dataset.

In Table 3, we present classification-based eval-
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Method Precision Recall F-score (β = 1) Accuracy
Bannard et al. (2003) 60.8 66.6 63.6 60.0
Salehi and Cook (2013) 86.2 71.8 77.4 69.3
CSall 79.5 89.3 82.0 74.5

Table 3: Results (%) for the binary compositionality prediction task on the EVPC dataset

uation over a subset of EVPC, binarising the com-
positionality judgements in the manner of Bannard
et al. (2003). Our method achieves state-of-the-art
results in terms of overall F-score and accuracy.

5.3 GNC Results

German is a morphologically-rich language, with
marking of number and case on nouns. Given
that we do not perform any lemmatization or other
language-specific preprocessing, we inevitably
achieve low recall for the identification of noun
compound tokens, although the precision should
be nearly 100%. Partly because of the resultant
sparseness in the distributional similarity method,
the results for CSL1 are low (r = 0.141), al-
though they are lower again when using target lan-
guages (r = 0.113). However, when we combine
the source and target languages (CSL1+L2N ) the
results improve to r = 0.178. The results for
CSSVR(L1+L2 ), on the other hand, are very low
(r = 0.085). Ultimately, simple string similar-
ity achieves the best results for the dataset (r =
0.372), and this result actually drops slightly when
combined with the distributional similarities.

To better understand the reason for the lacklus-
tre results using SVR, we carried out error analysis
and found that, unlike the other two datasets, about
half of the target languages return scores which
correlate negatively with the human judgements.
When we filter these languages from the data, the
score for SVR improves appreciably. For example,
over the best-3 languages overall, we get a corre-
lation score of r = 0.179, which is slightly higher
than CSL1+L2N .

We further investigated the reason for getting
very low and sometimes negative correlations with
many of our target languages. We noted that
about 24% of the German noun compounds in
the dataset do not have entries in Panlex. This
contrasts with ENC where only one instance does
not have an entry in Panlex, and EVPC where all
VPCs have translations in at least one language in
Panlex. We experimented with using string sim-
ilarity scores in the case of such missing transla-

tions, as opposed to the strategy described in Sec-
tion 4.2. The results for CSSVR(L1+L2 ) rose to
r = 0.269, although this is still below the correla-
tion for just using string similarity.

Our results on the GNC dataset using string
similarity are competitive with the state-of-the-art
results (r = 0.45) using a window-based distribu-
tional similarity approach over monolingual Ger-
man data (Schulte im Walde et al., 2013). Note,
however, that their method used part-of-speech in-
formation and lemmatisation, where ours does not,
in keeping with the language-independent philos-
ophy of this research.

6 Conclusion and Future Work

In this study, we proposed a method to predict the
compositionality of MWEs based on monolingual
distributional similarity between the MWE and
each of its component words, under translation
into multiple target languages. We showed that
using translation and multiple target languages en-
hances compositionality modelling, and also that
there is strong complementarity between our ap-
proach and an approach based on string similarity.

In future work, we hope to address the ques-
tion of translation sparseness, as observed for the
GNC dataset. We also plan to experiment with un-
supervised morphological analysis methods to im-
prove identification recall, and explore the impact
of tokenization. Furthermore, we would like to in-
vestigate the optimal number of stop words and
content-bearing words for each language, and to
look into the development of general unsupervised
methods for compositionality prediction.
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