
Proceedings of the Beyond Vision and LANguage: inTEgrating Real-world kNowledge (LANTERN), pages 41–50
Hong Kong, China, November 3, 2019. c©2019 Association for Computational Linguistics

41

Learning to Request Guidance in Emergent Communication
Benjamin Kolb∗, Leon Lang∗, Henning Bartsch, Arwin Gansekoele,

Raymond Koopmanschap, Leonardo Romor, David Speck, Mathijs Mul†, Elia Bruni†

{benjamin.kolb, leon.lang, henning.bartsch,
arwin.gansekoele, raymond.koopmanschap, leonardo.romor,

david.speck, mathijs.mul}@student.uva.nl
elia.bruni@gmail.com

University of Amsterdam

Abstract
Previous research into agent communication
has shown that a pre-trained guide can speed
up the learning process of an imitation learn-
ing agent. The guide achieves this by pro-
viding the agent with discrete messages in an
emerged language about how to solve the task.
We extend this one-directional communication
by a one-bit communication channel from the
learner back to the guide: It is able to ask
the guide for help, and we limit the guidance
by penalizing the learner for these requests.
During training, the agent learns to control
this gate based on its current observation. We
find that the amount of requested guidance de-
creases over time and guidance is requested in
situations of high uncertainty. We investigate
the agent’s performance in cases of open and
closed gates and discuss potential motives for
the observed gating behavior.

1 Introduction

A long-term goal of AI is to develop agents that
can help humans execute complex tasks in the real
world. Since reward functions that are aligned
with human intentions are hard to manually spec-
ify (Amodei and Clark, 2016), other approaches
besides Reinforcement Learning are needed for
creating agents that behave in the intended way.
Among these are Reward Modeling (Leike et al.,
2018) and Imitation Learning (Pomerleau, 1991),
but, eventually, it would be useful if we could use
natural language to transmit wishes to the agents.

Recently, Mul et al. (2019) made progress in
this direction by showing how communication can
be used to guide a learner in a gridworld envi-
ronment. Using emergent discrete messages, the
guide is able to speed up the learning process of
the learner and to let it generalize across incremen-
tally more difficult environments.

∗Equal contributions
†Shared senior authorship

In this setting, the communication channel is
completely one-way: in each time step, the guide
transmits a message that may help the learner
make its decisions. In reality, however, commu-
nication is more complex than that: the guidance
may be expensive and it can, therefore, be ben-
eficial to have more sparse messages. Further-
more, the learner may want to ask for clarifica-
tion if something is unclear. Therefore, it would be
worthwhile if there was a communication channel
from the learner back to the guide. It is this in-
teractive nature of communication that arguably is
needed for more advanced AI systems (Mikolov
et al., 2016).

In this paper, we equip the learner introduced
by Mul et al. (2019) with a binary gate to indicate
its need for guidance in each time step. A penalty
for the use of guidance incentivizes a sparse usage
of the gate. By analyzing the relationship between
the learner’s usage of the gate and a number of
measures, we show that the learner indeed learns
to ask for guidance in a smart and economical way.

2 Related Work

In this section we briefly lay out relevant work that
relate to our approach on the dimensions of fol-
lowing language instructions, emergent communi-
cation and the interactions that emerge from guid-
ance requests.

2.1 Following Language Instruction

In recent years, much research has been con-
ducted in the field of following language instruc-
tions. Since language commands build a way to
interact with agents and communicate informa-
tion in an effective and human-interpretable way,
the agent’s processing and understanding of these
commands is relevant for our project. Starting
with manually engineered mappings (Winograd,



42

1971), the currently most relevant grounded lan-
guage acquisition methods focus on learning a
parser to map linguistic input to its executable
equivalent, i.e. action specifications using statis-
tical models (Yu et al., 2018), (Kim and Mooney,
2012), (Artzi and Zettlemoyer, 2013), (Mei et al.,
2016). In the BabyAI platform introduced by
Chevalier-Boisvert et al. (2019) a synthetic “Baby
Language” is used, which consists of a subset of
English and whose semantics is generated by a
context-free grammar (as opposed to instruction
templates) and is easily understood by humans.
They employ a single model to combine linguis-
tic and visual information, similar to Misra et al.
(2017). Our setup builds on Mul et al. (2019) who
extend that platform with a guide, like Co-Reyes
et al. (2018), that supplements the agent’s infor-
mation with iterative linguistic messages.

2.2 Emergent Communication
In order to benefit most from the guide, the agent
would ideally communicate back, thus creating a
multi-agent cooperation scenario. Recent research
in this area investigates the emergence and usage
of emergent language, e.g. in the context of ref-
erential games (Lazaridou et al., 2016). Further-
more, Mordatch and Abbeel (2018) show that mul-
tiple agents can develop a grounded compositional
language to fulfill their tasks more effectively with
spoken exchange. In our setup the emergent com-
munication consists of discrete word tokens sim-
ilar to Havrylov and Titov (2017). Jiang and
Lu (2018) propose an attentional communication
model to learn when communication is needed
(and helpful), resulting in more effective (large-
scale) multi-agent cooperation.

2.3 Guidance Requests
In prior work (Mul et al., 2019), guidance is given
at every time step and the communication is one-
way from guide to learner. We extend this ap-
proach by allowing a communication channel in
the other direction. Here we survey work that uses
similar requests for help.

Most similar to our work is Clouse (1997),
where “Ask for help” is proposed: in this setting,
an RL agent has one additional action with which
it can signify to a “trainer” that it wants to re-
ceive help. The trainer then chooses the agent’s
action. Whether to ask for help is based on un-
certainty about the highest action value. This is
different from our setting in which the uncertainty

is only implicitly responsible for queries, as can be
seen in Section 5. Kosoy (2019) studies the “Ask
for help” setting theoretically and proves a regret
bound for agents that act in infinite-horizon dis-
counted MDPs and are able to delegate actions to
an “advisor”.

In Nguyen et al. (2019) there is a help-
requesting policy πhelp that can signify if the agent
needs help. If this is the case, a guide answers with
a language-based instruction of subgoals. Addi-
tionally, there is a budget that limits asking for
help.

Also related is Werling et al. (2015), where
structured prediction problems are considered: a
sequence of words is received and each word is
supposed to be mapped to a label. The system can
query a crowd (as in crowd-sourcing) to obtain an-
swers on specific words in the sequence. As in our
case, querying the crowd is penalized by an addi-
tional loss.

In Krueger (2016), Schulze and Evans (2018),
active reinforcement learning (ARL) is proposed:
different from usual RL, the agent has to choose
in each round if it wants to receive the reward that
results from its action, which results in a constant
query-cost c > 0. Note that in this setting, what
is queried is feedback, whereas in our setting, the
model queries guidance prior to making a deci-
sion. Active Reward Learning (Daniel et al., 2014)
is a similar approach in the context of continuous
control tasks.

3 Approach

3.1 BabyAI Game

All our experiments take place in the BabyAI plat-
form (Chevalier-Boisvert et al., 2019). In this plat-
form, an agent learns to complete tasks given by
instructions in a subset of English in a mini grid-
world environment. The environments are only
partially observable to the agent.

Figure 1 shows two example levels. In total
there are 19 different levels that increase in dif-
ficulty and complexity of tasks. For each level, the
BabyAI framework can randomly generate many
missions that require roughly the same skillset and
are provided with a similar language instruction.
For the following investigation, we only focus on
the levels “GoToObj” and “PutNextLocal”. These
are chosen to be simple but nevertheless require
a representative set of skills. As such, our results
can be understood as a proof of concept.



43

(a) GoToObj (b) PutNextLocal

Figure 1: Example levels from BabyAI. GoToObj is the
simplest level, requiring the agent to go to a specific ob-
ject. This task is given by a language instruction to the
agent, such as “Go to the purple ball”. PutNextLocal
is more difficult, requiring a more complex skill-set.
An example task in this setting would be “Put the grey
key next to the red box”. Shown in the images are the
agent (red triangle), different objects (boxes, keys, balls
in different colors) and the observation of the agent (a
brighter 7× 7 visual field that has the agent in the mid-
dle of the bottom row relative to the agent. Parts of this
is outside of the shown images)

3.2 Model
In this section, we describe the model that we use
for a learner that may ask for guidance. We refer
to Figure 2 for a visual explanation.

Based on the observation ot, the instruction i
and its own memory unit, the learner L builds a
representation rt:

rt = L(ot, i). (1)

ot is a 7× 7× 3 tensor describing the viewable
environment (e.g. the brighter area in Figure 1)
and i is a natural language instruction (e.g. ”Go to
the purple ball”). The representation unit L uses
a FiLM module (Perez et al., 2017) followed by a
memory RNN.

First, consider a learner without guidance. In
this setting it directly takes the representation rt
and feeds it into the policy module P that outputs
the next action at = P (rt). For more details on
this baseline setting, see Chevalier-Boisvert et al.
(2019).

A guided learner
Now consider Mul et al. (2019), where a guide is
added. The guide follows the same architecture
as the learner-policy combination, but between the
representing unit and the policy there is a discrete
“bottleneck” that only allows 9 different messages
to pass. The policy then needs to encode this mes-
sage continuously in order to choose the correct

ot i

at

mt

rt

gt

Enc(mt)

hl
t−1 hg

t−1

�

FiLM

Memory
RNN

Policy

Gate

Guidance
Encoder

FiLM

Memory
RNN

Guidance
Decoder

Figure 2: Architecture of a learner that can ask for
guidance. Depicted variables are ot: observation in-
put, i: linguistic instruction, hlt−1 and hgt−1: mem-
ory, rt: learned representation, mt: the discrete guid-
ance message, gt: the gating weight and at: the action
chosen based on rt and possibly the encoded message
Enc(mt). The red part (the guide) is pretrained and
then finetuned, while the blue parts (conceptually be-
longing to the learner) are newly initialized at the be-
ginning of the training.

action out of 7 possibilities. After this guide-
policy combination is trained, the messages are
fed into the policy attached to a newly initialized
learner in order to help it make its decision. In this
later guided training stage, the policy of the guide
is not used anymore.

More formally, the guide uses the same input
and a memory unit to produce a message mt of
two words with 3 possible tokens for each.

mt = G(ot, i). (2)

The message mt is then encoded to a higher di-
mensional continuous encoding Enc(mt) that is
produced by an encoder of the same architecture
as the encoder used while training the guide. The
policy then bases its decision on both the learned
representation rt and encoding Enc(mt), which
are simply concatenated:

at = P (rt,Enc(mt)). (3)

More details can be found in Mul et al. (2019).



44

Adding a gate
To enable the learner to decide when to receive
guidance, we extend the learner with a gate mod-
ule G to learn a gating weight gt ∈ {0, 1} that
switches the policy input between (rt,Enc(mt))
(guided) and (rt,0) (unguided):

at = P (rt, gt · Enc(mt))

= P ((1− gt) · (rt,0) + gt · (rt,Enc(mt)))

=

{
P (rt,0), if gt = 0,

P (rt,Enc(mt)), if gt = 1,

(4)

where gt = G(rt). The gate module G is a
two-layered MLP with a tanh activation functions
that outputs a scalar, followed by a sigmoid activa-
tion function and a threshold function with param-
eter 0.5. The module G that produces the gating
weight will from here on be referred to as the gate.

3.3 Training

We use a pretrained Reinforcement Learning
(RL) expert, trained as in Mul et al. (2019) and
Chevalier-Boisvert et al. (2019) by proximal pol-
icy optimization (Schulman et al., 2017). After
training, the expert is placed once in many mis-
sions in order to create training data containing
the expert behavior. Using imitation learning as
in Mul et al. (2019), we have a cross-entropy loss
function Lce that measures how much the distribu-
tion over actions given by the policy of our model
deviates from the “correct” action of the RL ex-
pert.1 Furthermore, we penalize the learner for
asking for guidance by adding the gating weight
to the loss and balance these incentives by a hy-
perparameter λ:

L = Lce + λ · g. (5)

We use λ = 0.3 in all GoToObj experiments and
0.05 for PutNextLocal, values that were found by
hyperparameter search. The combined model con-
sisting of pre-trained guide, also trained by im-
itation learning as in Mul et al. (2019), and the
newly initialized learner is then trained end-to-end
by backpropagating the gradients to all the weights

1For mitigating confusion, we mention explicitly that the
RL expert is not the same as the guide: the expert creates
the data that is used for backpropagating the model and thus
for training it following the choice of the action. The guide,
however, gives its guidance prior to the decision about the
chosen action.

of the combined model. In order to pass the gra-
dients also through the discrete gate G, we use
the straight-through estimator (Bengio et al., 2013;
Courbariaux et al., 2016). In order to allow the
learner to learn the usefulness of the guidance at
the beginning of training, we initialize G with a
positive bias.

4 Experiments

In this section, we describe the experiments con-
ducted in order to test the setting of a learner that
queries the guide for help. In order to assess this,
we train the combined model with λ = 0.3 for 7
runs on the simplest level, GoToObj, until conver-
gence. In this level, the learner is instructed to go
to a specific object. Results with λ = 0.05 for
7 runs on the level PutNextLocal can be found in
Appendix B.

Performance and dynamics. First of all, we
are interested in how our model performs com-
pared to baselines. The first baseline is the learner
on its own trained with imitation learning, which
was the setting in Chevalier-Boisvert et al. (2019).
The second baseline is the learner that receives
guidance in each round without the need to query
for it, which was studied in Mul et al. (2019).
We expect that our model learns faster than the
original learner model, due to its access to guid-
ance, but slower than the guided learner without
the gate, since it does not always receive guidance.
The results can be found in Figure 3 (a), where we
plot the success rate, i.e. portion of successfully
completed episodes, during validation.

We monitor the average gating weight over
epochs, which we call guidance rate, to inspect
the usage of the gate over the course of the train-
ing. Furthermore, we compare the overall accu-
racy with the accuracy conditioned on the cases of
an open or closed gate to assess the influence on
performance. These metrics can be found in Fig-
ure 3 (b)2.

Since the accuracy plots in Figure 3 (b) are
solely correlational, we furthermore plot the val-
idation accuracy for the case where we intervene
during validation in the gate in order to have it
opened or closed to assess the causal influence of
the open gate on the accuracy, see Figure 4.

Economic requests. While the accuracy mea-

2The accuracy is the percentage of chosen actions that co-
incide with the “correct” action of the RL expert that is used
in the imitation learning process.



45

(a) Baseline Success Rate Comparison (b) Validation Accuracy Comparison

Figure 3: Results of training our combined model until convergence on GoToObj. Results are averaged over 7
runs. Shaded regions represent standard deviations.

Figure 4: We compare the accuracy during validation
in cases of forced open and closed gates: irrespective
of the gating weight gt computed from the system, we
set gt = 1 (so that the policy bases its decision on the
encoded guidance Enc(mt)) for the red dotted curve
and gt = 0 for the black curve.

sures how often the agent was “right”, the cross-
entropy policy loss gives greater insights into the
performance with respect to the actual training
objective. We would like to assess whether the
learner uses the gate economically, since it is pe-
nalized. This means to ask for guidance in situ-
ations in which it expects the greatest reduction
in the policy loss. The policy loss for cases of
open and closed gate can therefore be found in
Figure 5. We compare it with the counterfactual
policy losses that arise if we force the gate to be
opened if the learner wants it to be closed and vice
versa. This intervention now allows us to assess
the causal influence of the gate on the policy loss.

Guidance semantics. Finally, we are interested
in whether there are meaningful correlations be-
tween the frames in which the learner asks for
guidance and the actions that the learner takes

Figure 5: Policy Loss Comparison

(Figure 6) as well as the messages emitted by the
guide (Figure 7). By analyzing this, we can see if
the learner masters certain situations that require
a certain action or are accompanied by a certain
message.

Figure 6: Frequency of open gate conditioned on ac-
tions and frequencies of actions themselves.

5 Analysis

5.1 Results and analysis of experiments

After outlining the experiments, we now briefly
analyze the results.

Performance and dynamics. First, we notice
in Figure 3 (a) that, while initially our model is



46

Figure 7: Frequency of open gate conditioned on mes-
sages and frequencies of messages themselves.

indeed faster than the learner baseline and keeps
up with the guided baseline, from epoch 10 to 30
there is a performance dip not seen in the former
models. This is precisely the phase in which the
gate successively closes more and more, as can be
seen in Figure 3 (b). Our explanation for this dip is
that the policy first needs to adjust to the fact that it
does not get the familiar guidance anymore. Even-
tually, from epoch 30 onward, our model performs
almost perfectly and as well as the baselines.

As mentioned already, the learner becomes in-
deed more independent over time, roughly choos-
ing its action on its own in 80% of the cases from
epoch 50 onward. As soon as the guidance rate be-
gins to drop in epoch 10, we can compute an accu-
racy conditioned on cases where the gate is closed,
as can be seen in the blue line of Figure 3 (b). This
accuracy is lower than the accuracy in case of an
open gate (red dotted line) and only fully catches
up roughly after 25 epochs of training.

About the intervention accuracy in Figure 4: we
observe that the initial phase with a guidance rate
at 1 sees a steep increase in accuracy with guid-
ance but nearly no change in the accuracy with-
out guidance. We suppose that is the case since in
this phase the training happens exclusively with an
open gate. Then, the guidance rate drops and train-
ing happens increasingly without guidance. Ac-
cordingly, the accuracy without guidance starts to
increase and eventually catches up. In many in-
dividual runs, the performance without guidance

is ultimately actually even better. We hypothesize
that this is since the gate is mostly closed and so
the policy doesn’t “expect” the gate to be open
anymore. Consequently, an open gate and addi-
tional encoded message is confusing and leads to
misbehavior. Intuitively, this is similar to how hu-
mans who are very experienced in their profession
may actually just be distracted by someone who
occasionally tries to give them advice instead of
just letting them do their task on their own.

Economic requests. In order to get a better
feeling for how smart the agent is in its guidance
requests, we look at Figure 5. For similar results
about the entropy, see Appendix A. We see an
overall tendency for the policy loss to decrease,
as we would expect due to the training. At the
same time, the situations where the gate is open
are those that are more difficult for the learner
(including in the comparison of the counterfac-
tual cases where we change the gate). Addition-
ally, in those situations the reduction in policy loss
achieved by asking for guidance is greater – this
can be seen by comparing with the counterfactual
situations. We furthermore observe that after the
guidance rate starts to drop around epoch 10, the
policy loss in situations of a closed gate rapidly
sinks as the learner adapts to those novel situa-
tions. In the meantime, the open gate policy loss
stabilizes until around epoch 20, while the coun-
terfactual policy loss in these situations strongly
increases. This indicates that the learner learns to
selectively open the gate in situations that are more
difficult and especially so without guidance.

Guidance semantics. To gain insights about
dependencies between specific actions and the
guidance rate, we now look at Figure 6. We see
that in situations where the learner takes action 2,
which corresponds to “move forward”, the guid-
ance rate drops relatively early to 0. This may be
the case since this is the most common and sup-
posedly most easily identifiable action. For action
0 that corresponds to “turn right” and action 1 that
corresponds to “turn left”, we see that the guidance
rate also decreases, albeit slower and asymmetri-
cally. This may be due to a higher difficulty of
distinguishing those actions from each other. Intu-
itively they are symmetric and it may often be un-
clear what to do if “move forward” is not a promis-
ing action. In some runs, the guidance rate drops
more for action 0 and in some more for action 1.
We may attempt to explain this by the learner ei-



47

ther learning to request help in situations where
action 0 is one of the promising options (poten-
tially the only one) or learning the same with ac-
tion 1. In both cases, it is ensured that situations
with confusion between those two actions are en-
compassed.

On the guidance rate conditioned on messages:
as we can see in Figure 7, mainly three messages
are used to convey guidance and for all of them
the guidance rate decreases over time. We suppose
that the overall trends happen due to the close cor-
respondence between messages and actions that
was already observed by Mul et al. (2019).

5.2 Guidance in space and time

So far, we mainly discussed “global” metrics, in
the sense that we aggregate information over com-
plete epochs. This still leaves open the question
how guidance requests evolve with respect to the
position of the agent and temporally during an
episode.

For the first aim, we create heatmaps as in Fig-
ure 8. For more maps, see Figure 13 in Appendix
A.

Figure 8: Two example heatmaps from training in level
GoToObj, one in the beginning of training and one in
an advanced stage. These heatmaps are created as fol-
lows: after an epoch is finished, the agent is placed in a
specific mission. Then, we let it follow its path until the
episode is over. For each point in the agent trajectory
we record whether it asks for guidance. Multiple tra-
jectories are sampled by randomly placing the agent in
a new position. The brightness of the color in the figure
depicts the average guidance rate within that position.

As we can see, the trained agent asks for guid-
ance often specifically if it is near the goal object
in order to find out if it should “turn towards it”,
which would cause the goal to be reached. It is im-
portant for the agent to be reasonably sure about
the goal being reached beforehand, since other-
wise turning to the object will result in two lost
moves.

Figure 9: Observation types in GoToLocal. GoToLocal
is a level different from GoToObj or PutNextLocal and
is used to illustrate some of the extra possibilities ((1,x)
and (x,1)) on further levels. In the left mission, the
agent is tasked to go to the blue ball. This is directly left
from the agent, whereas to the right, there is no feature
in common with the goal. Therefore, the observation
type is (2, 0). In the right mission, the goal is to go to
a grey ball. Since the blue ball shares one feature with
the grey one (namely being a ball), the corresponding
observation type is (1, 2).

In order to test the influence of objects on the
agent more quantitatively, we create another met-
ric that conditions the guidance rate on how “goal-
like” the observation is that the agent faces. For
this matter, we assign tuples (d1, d2) to each ob-
servation, where d1 and d2 signify how goal-like
the object left and right from the agent is. We
measure this by the number of features it has in
common with the goal object, where features are
both color and object-type. di = k means that
the object shares k ∈ {0, 1, 2} features with the
goal object. This creates 9 observation types3. See
Figure 9 for examples. The results can be found
in Figure 10. We can observe strong changes in
the guidance rate if the goal object is to the left or
right: if it is on the left, the guidance rate is signif-
icantly greater and if it is to the right, the guidance
rate is significantly smaller than usually. This is
in line with the plots of the guidance rate condi-
tioned on actions, Figure 6, which already showed
that turning to the left requires considerably more
guidance than turning to the right. This indicates
that the high guidance rate at goal objects may to
a large extend be caused by the high correlation
between turning actions and guidance rates and be
mostly independent of the fact that there is a goal

3Note that even the combination (2, 2) is in principle pos-
sible in higher levels: There are tasks such as “Go to a red
ball” where several red ball can be in the mission. However,
this is unlikely and the expert never places itself between two
goal objects. Furthermore, in GoToObj there is simply just
one object in the mission. Therefore, the graph in Figure 10
corresponding to (2, 2) is empty.



48

around.

Figure 10: Frequency of open gate conditioned on ob-
servation types and frequencies of observation types
themselves. For example, type (2, 0) is a situation
where directly left of the agent there is the goal and
right of it there is no object sharing any feature with
the goal-object. In GoToObj there is only one object in
the level so situations like (1, x) or (x, 1) do not occur
and are left out in this plot.

Now we turn to the question about the guidance
rate in time: within one episode, are there usually
phases where more or less guidance is needed?
The heatmaps suggest that the agent mostly asks
for guidance in the end of the episode.

In order to answer this question, we create the
“guidance per time quantile” plot, Figure 11. As
we can see, the guidance rate is in general high
in the beginning of episodes and drops once more
knowledge about the environment is acquired.
However, in the end of the episode, the guidance
rate grows again and is greatest in the very end,
which is in line with the qualitative assessment
from the heatmaps.

One interpretation for this is the following: in
the beginning, the agent needs to roughly figure
out “in which direction to head”. Once this is
clear, it can walk there without further guidance.
But in the very end, it needs more precision and
asks for guidance again in order to finally find its
goal. This is similar to how humans often look at
a map in the beginning of a hike in order to figure
out the direction, and then in the end again in or-
der to reassess how their new position now relates
to the goal.

Figure 11: Guidance per time quantile: roughly speak-
ing, a timepoint t is in quantile k of 10 if t/l ≈ k/10,
where l is the length of the corresponding episode. The
plots show the guidance rate corresponding to the dif-
ferent quantiles. Dark blue curves belong to earlier
epochs whereas red curves belong to later epochs.

6 Conclusion and future research

In this paper, we extended a recently proposed
method to guide a learner in a gridworld envi-
ronment by letting the learner explicitly ask for
help. To accomplish this, we defined a binary gate
in the learner’s model. We brought the original
approach closer to the real world by (i) enabling
bi-directional communication and (ii) attaching a
cost to it.

We showed that the learner successfully learns
to utilize the guidance gate to achieve a favorable
trade-off between learning speed and amount of
guidance requested. Initially using the full guid-
ance to learn faster than a learner without guid-
ance, it eventually learns to request guidance only
where it is especially helpful, acting increasingly
independent.

Future research could consist of retraining the
guide to see if it learns to send more abstract mes-
sages that provide guidance over multiple time
steps. This may be fruitfully combined with giv-
ing the guide an additional information advantage
like a bird’s eye’s view so that the guide has more
foresight than the learner. It would require a way
for the learner to memorize past messages.

Another direction is to replace the gate by an
emergent communication channel from the learner
to the guide, so that the learner can send its guid-
ance requests in more nuanced ways. Further-
more, we saw that the policy may have problems
dealing with the additional guidance it receives
unexpectedly in late training. It may be worth-
while to experiment with policy architectures that
can deal better with spontaneous changes in its in-
put.



49

Finally, research might as well aim at finding
ways to meaningfully replace the guide agent by
a human. This might allow for better learning in
tasks that autonomous agents struggle to learn by
themselves.

References
Dario Amodei and Jack Clark. 2016. Faulty reward

functions in the wild. https://openai.com/
blog/faulty-reward-functions/. Ac-
cessed: 2019-06-22.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. arXiv preprint arXiv:1308.3432.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau,
Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. 2019.
BabyAI: First steps towards grounded language
learning with a human in the loop. In International
Conference on Learning Representations.

J. Clouse. 1997. On integrating apprentice learning
and reinforcement learning title2:. Technical report,
Amherst, MA, USA.

John D Co-Reyes, Abhishek Gupta, Suvansh San-
jeev, Nick Altieri, John DeNero, Pieter Abbeel,
and Sergey Levine. 2018. Guiding policies
with language via meta-learning. arXiv preprint
arXiv:1811.07882.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry,
Ran El-Yaniv, and Y Bengio. 2016. Binarized neu-
ral networks: Training deep neural networks with
weights and activations constrained to +1 or -1.

C. Daniel, M. Viering, J. Metz, O. Kroemer, and J. Pe-
ters. 2014. Active reward learning. In Proceedings
of Robotics: Science & Systems.

Serhii Havrylov and Ivan Titov. 2017. Emergence
of language with multi-agent games: Learning to
communicate with sequences of symbols. In Ad-
vances in neural information processing systems,
pages 2149–2159.

Jiechuan Jiang and Zongqing Lu. 2018. Learning at-
tentional communication for multi-agent coopera-
tion. In Advances in Neural Information Processing
Systems, pages 7254–7264.

Joohyun Kim and Raymond J Mooney. 2012. Unsuper-
vised pcfg induction for grounded language learning
with highly ambiguous supervision. In Proceedings
of the 2012 Joint Conference on Empirical Methods

in Natural Language Processing and Computational
Natural Language Learning, pages 433–444. Asso-
ciation for Computational Linguistics.

Vanessa Kosoy. 2019. Delegative reinforcement learn-
ing: learning to avoid traps with a little help. Safe
Machine Learning workshop at ICLR.

David Krueger. 2016. Active reinforcement learning :
Observing rewards at a cost.

Angeliki Lazaridou, Alexander Peysakhovich, and
Marco Baroni. 2016. Multi-agent cooperation and
the emergence of (natural) language. arXiv preprint
arXiv:1612.07182.

Jan Leike, David Krueger, Tom Everitt, Miljan Mar-
tic, Vishal Maini, and Shane Legg. 2018. Scalable
agent alignment via reward modeling: a research di-
rection. CoRR, abs/1811.07871.

Hongyuan Mei, Mohit Bansal, and Matthew R Wal-
ter. 2016. Listen, attend, and walk: Neural mapping
of navigational instructions to action sequences. In
Thirtieth AAAI Conference on Artificial Intelligence.

Tomas Mikolov, Armand Joulin, and Marco Baroni.
2016. A roadmap towards machine intelligence.

Dipendra Misra, John Langford, and Yoav Artzi. 2017.
Mapping instructions and visual observations to ac-
tions with reinforcement learning. arXiv preprint
arXiv:1704.08795.

Igor Mordatch and Pieter Abbeel. 2018. Emergence
of grounded compositional language in multi-agent
populations. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Mathijs Mul, Diane Bouchacourt, and Elia Bruni.
2019. Mastering emergent language: learning to
guide in simulated navigation. arXiv e-prints, page
arXiv:1908.05135.

Khanh Nguyen, Debadeepta Dey, Chris Brockett, and
Bill Dolan. 2019. Vision-based navigation with
language-based assistance via imitation learning
with indirect intervention. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 12527–12537.

Ethan Perez, Florian Strub, Harm de Vries, Vincent
Dumoulin, and Aaron Courville. 2017. Film: Visual
reasoning with a general conditioning layer.

Dean A. Pomerleau. 1991. Efficient training of arti-
ficial neural networks for autonomous navigation.
Neural Computation, 3:97.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347.

Sebastian Schulze and Owain Evans. 2018. Active re-
inforcement learning with monte-carlo tree search.
CoRR, abs/1803.04926.

https://openai.com/blog/faulty-reward-functions/
https://openai.com/blog/faulty-reward-functions/
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
http://arxiv.org/abs/1811.07871
http://arxiv.org/abs/1811.07871
http://arxiv.org/abs/1811.07871
http://arxiv.org/abs/1511.08130
http://arxiv.org/abs/1908.05135
http://arxiv.org/abs/1908.05135
http://arxiv.org/abs/arXiv:1709.07871
http://arxiv.org/abs/arXiv:1709.07871
http://arxiv.org/abs/1803.04926
http://arxiv.org/abs/1803.04926


50

Keenon Werling, Arun Tejasvi Chaganty, Percy S
Liang, and Christopher D Manning. 2015. On-
the-job learning with bayesian decision theory. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 28, pages 3465–3473.
Curran Associates, Inc.

Terry Winograd. 1971. Procedures as a represen-
tation for data in a computer program for under-
standing natural language. Technical report, MAS-
SACHUSETTS INST OF TECH CAMBRIDGE
PROJECT MAC.

Haonan Yu, Haichao Zhang, and Wei Xu. 2018. In-
teractive grounded language acquisition and gen-
eralization in a 2d world. arXiv preprint
arXiv:1802.01433.

http://papers.nips.cc/paper/5860-on-the-job-learning-with-bayesian-decision-theory.pdf
http://papers.nips.cc/paper/5860-on-the-job-learning-with-bayesian-decision-theory.pdf

