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Abstract
In this paper, we propose a new approach to
learn multimodal multilingual embeddings for
matching images and their relevant captions
in two languages. We combine two existing
objective functions to make images and cap-
tions close in a joint embedding space while
adapting the alignment of word embeddings
between existing languages in our model. We
show that our approach enables better general-
ization, achieving state-of-the-art performance
in text-to-image and image-to-text retrieval
task, and caption-caption similarity task. Two
multimodal multilingual datasets are used for
evaluation: Multi30k with German and En-
glish captions and Microsoft-COCO with En-
glish and Japanese captions.

1 Introduction

In recent years, there has been a huge and sig-
nificant amount of research in text and image re-
trieval tasks which needs the joint modeling of
both modalities. Further, a large number of image-
text datasets have become available (Elliott et al.,
2016; Hodosh et al., 2013; Young et al., 2014;
Lin et al., 2014), and several models have been
proposed to generate captions for images in the
dataset (Lu et al., 2018; Bernardi et al., 2016; An-
derson et al., 2017; Lu et al., 2016; Mao et al.,
2014; Rennie et al., 2016). There has been a great
amount of research in learning a joint embedding
space for texts and images in order to use the
model in sentence-based image search or cross-
modal retrieval task (Frome et al., 2013; Kiros
et al., 2014; Donahue et al., 2014; Lazaridou et al.,
2015; Socher et al., 2013; Hodosh et al., 2013;
Karpathy et al., 2014).

Previous works in image-caption task and learn-
ing a joint embedding space for texts and images
are mostly related to English language, however,
recently there is a large amount of research in
other languages due to the availability of multilin-
gual datasets (Funaki and Nakayama, 2015; Elliott

et al., 2016; Rajendran et al., 2015; Miyazaki and
Shimizu, 2016; Lucia Specia and Elliott, 2016;
Young et al., 2014; Hitschler and Riezler, 2016;
Yoshikawa et al., 2017). The aim of these mod-
els is to map images and their captions in a single
language into a joint embedding space (Rajendran
et al., 2015; Calixto et al., 2017).

Related to our work, Gella et al. (2017) pro-
posed a model to learn a multilingual multimodal
embedding by utilizing an image as a pivot be-
tween languages of captions. While a text en-
coder is trained for each language in Gella et al.
(2017), we propose instead a model that learns a
shared and language-independent text encoder be-
tween languages, yielding better generalization. It
is generally important to adapt word embeddings
for the task at hand. Our model enables tuning
of word embeddings while keeping the two lan-
guages aligned during training, building a task-
specific shared embedding space for existing lan-
guages.

In this attempt, we define a new objective func-
tion that combines a pairwise ranking loss with a
loss that maintains the alignment in multiple lan-
guages. For the latter, we use the objective func-
tion proposed in Joulin et al. (2018) for learn-
ing a linear mapping between languages inspired
by cross-domain similarity local scaling (CSLS)
retrieval criterion (Conneau et al., 2017) which
obtains the state-of-the-art performance on word
translation task.

In the next sections, the proposed approach
is called Aligning Multilingual Embeddings for
cross-modal retrieval (AME). With experiments
on two multimodal multilingual datasets, we show
that AME outperforms existing models on text-
image multimodal retrieval tasks. The code we
used to train and evaluate the model is available
at https://github.com/alirezamshi/
AME-CMR

https://github.com/alirezamshi/AME-CMR
https://github.com/alirezamshi/AME-CMR
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2 Datasets

We use two multilingual image-caption datasets
to evaluate our model, Multi30k and Microsoft
COCO (Elliott et al., 2016; Lin et al., 2014).

Multi30K is a dataset with 31’014 German
translations of English captions and 155’070 inde-
pendently collected German and English captions.
In this paper, we use independently collected cap-
tions which each image contains five German and
five English captions. The training set includes
29’000 images. The validation and test sets con-
tain 1’000 images.

MS-COCO (Lin et al., 2014) contains 123’287
images and five English captions per image.
Yoshikawa et al. (2017) proposed a model which
generates Japanese descriptions for images. We
divide the dataset based on Karpathy and Li
(2014). The training set contains 113’287 images.
Each validation and test set contains 5’000 im-
ages.

3 Problem Formulation

3.1 Model for Learning a Multilingual
Multimodal Representation

Assume image i and captions cXi
and cYi are given

in two languages, X and Y respectively. Our aim
is to learn a model where the image i and its cap-
tions cXi

and cYi are close in a joint embedding
space of dimension m. AME consists of two en-
coders fi and fc, which encode images and cap-
tions. As multilingual text encoder, we use a re-
current neural network with gated recurrent unit
(GRU). For the image encoder, we use a convo-
lutional neural network (CNN) architecture. The
similarity between a caption c and an image i in
the joint embedding space is measured with a sim-
ilarity function P (c, i). The objective function is
as follows (inspired by Gella et al. (2017)):

LR =
∑

(cSi
,i)

(∑
cSj

max
{
0, α− P (cSi

, i) + P (cSj
, i)
}

+
∑
j

max
{
0, α− P (cSi

, i) + P (cSi
, j)
})

(1)

Where S stands for both languages, and α is the
margin. cSj

and j are irrelevant caption and image
of the gold-standard pair (cSi

, i).

3.2 Alignment Model
Each word k in the language X is defined by a
word embedding xk ∈ Rd (yk ∈ Rd in the lan-

guage Y respectively). Given a bilingual lexicon
of N pairs of words, we assume the first n pairs
{(xi, yi)}ni=1 are the initial seeds, and our aim is
to augment it to all word pairs that are not in the
initial lexicons. Mikolov et al. (2013) proposed a
model to learn a linear mapping W ∈ Rd×d be-
tween the source and target languages:

minW∈Rd×d

1

n

n∑
i=1

`(Wxi, yi|xi, yi)

`(Wxi, yi|xi, yi) = (Wxi − yi)2
(2)

Where ` is a square loss. One can find the
translation of a source word in the target lan-
guage by performing a nearest neighbor search
with Euclidean distance. But, the model suffers
from a ”hubness problem”: some word embed-
dings become uncommonly the nearest neighbors
of a great number of other words (Doddington
et al., 1998; Dinu and Baroni, 2014).

In order to resolve this issue, Joulin et al. (2018)
proposed a new objective function inspired by
CSLS criterion to learn the linear mapping:

LA =
1

n

n∑
i=1

−2xT
i W

T yi +
1

k

∑
yj∈NY (Wxi)

xT
i W

T yj

+
1

k

∑
Wxj∈NX (yi)

xT
j W

T yi

(3)

Where NX(yi) means the k-nearest neighbors
of yi in the set of source language X . They con-
strained the linear mapping W to be orthogonal,
and word vectors are l2-normalized.

The whole loss function is the equally weighted
summation of the aforementioned objective func-
tions:

Ltotal = LR + LA (4)

The model architecture is illustrated in Figure
1. We observe that updating the parameters in (3)
every T iterations with learning rate lralign obtains
the best performance.

We use two different similarity functions, sym-
metric and asymmetric. For the former, we use
the cosine similarity function and for the latter, we
use the metric proposed in Vendrov et al. (2015),
which encodes the partial order structure of the
visual-semantic hierarchy. The metric similarity
is defined as:

S(a, b) = −||max(0, b− a)||2 (5)

Where a and b are the embeddings of image and
caption.
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Image to Text Text to Image

R@1 R@5 R@10 Mr R@1 R@5 R@10 Mr Alignment

symmetric
Parallel (Gella et al., 2017) 31.7 62.4 74.1 3 24.7 53.9 65.7 5 -
UVS (Kiros et al., 2014) 23.0 50.7 62.9 5 16.8 42.0 56.5 8 -
EmbeddingNet (Wang et al., 2017) 40.7 69.7 79.2 - 29.2 59.6 71.7 - -
sm-LSTM (Huang et al., 2016) 42.5 71.9 81.5 2 30.2 60.4 72.3 3 -
VSE++ (Faghri et al., 2017) 43.7 71.9 82.1 2 32.3 60.9 72.1 3 -
Mono 41.4 74.2 84.2 2 32.1 63.0 73.9 3 -
FME 39.2 71.1 82.1 2 29.7 62.5 74.1 3 76.81%
AME 43.5 77.2 85.3 2 34.0 64.2 75.4 3 66.91%

asymmetric
Pivot (Gella et al., 2017) 33.8 62.8 75.2 3 26.2 56.4 68.4 4 -
Parallel (Gella et al., 2017) 31.5 61.4 74.7 3 27.1 56.2 66.9 4 -
Mono 47.7 77.1 86.9 2 35.8 66.6 76.8 3 -
FME 44.9 76.9 86.4 2 34.2 66.1 77.1 3 76.81%
AME 50.5 79.7 88.4 1 38.0 68.5 78.4 2 73.10%

Table 1: Image-caption ranking results for English (Multi30k)

Image to Text Text to Image

R@1 R@5 R@10 Mr R@1 R@5 R@10 Mr Alignment

symmetric
Parallel (Gella et al., 2017) 28.2 57.7 71.3 4 20.9 46.9 59.3 6 -
Mono 34.2 67.5 79.6 3 26.5 54.7 66.2 4 -
FME 36.8 69.4 80.8 2 26.6 56.2 68.5 4 76.81%
AME 39.6 72.7 82.7 2 28.9 58.0 68.7 4 66.91%

asymmetric
Pivot (Gella et al., 2017) 28.2 61.9 73.4 3 22.5 49.3 61.7 6 -
Parallel (Gella et al., 2017) 30.2 60.4 72.8 3 21.8 50.5 62.3 5 -
Mono 42.0 72.5 83.0 2 29.6 58.4 69.6 4 -
FME 40.5 73.3 83.4 2 29.6 59.2 72.1 3 76.81%
AME 40.5 74.3 83.4 2 31.0 60.5 70.6 3 73.10%

Table 2: Image-caption ranking results for German (Multi30k)

Figure 1: The AME - model architecture

4 Experiment and Results

4.1 Details of Implementation 1

We use a mini-batch of size 128. We use Adam op-
timizer with learning rate 0.00011 (0.00006) and
with early stopping on the validation set. We set
the dimensionality of joint embedding space and
the GRU hidden layer tom = 1024. We utilize the
pre-trained aligned word vectors of FastText for

1In this section, the hyper-parameters in parentheses are
related to the model trained on MS-COCO.

the initial word embeddings. For Japanese word
embedding, we use pre-trained word vectors of
FastText2, then align it to the English word embed-
ding with the same hyper-parameters used for MS-
COCO. We set the margin α = 0.2 and α = 0.05
for symmetric and asymmetric similarity functions
respectively.

We assign k-nearest neighbors to be 5 (4). We
set T = 500, and lralign = 2 (5). We tokenize
English and German captions with Europarl tok-
enizer (Koehn, 2005). For the Japanese caption,
we use Mecab analyzer (Kudo et al., 2004). We
train the model for 30 (20) epochs with updating
the learning rate (divided by 10) on epoch 15 (10).

To extract features of images, we use a
ResNet152 (He et al., 2015) CNN architecture pre-
trained on Imagenet and extract the image features
from FC7, the penultimate fully connected layer.
We use average features from 10-crop of the re-
scaled images.

For the metric of alignment, we use bilingual
lexicons of Multilingual Unsupervised and Super-

2Available at https://fasttext.cc/docs/en/
crawl-vectors.html, and https://fasttext.
cc/docs/en/aligned-vectors.html.

https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/aligned-vectors.html
https://fasttext.cc/docs/en/aligned-vectors.html
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Image to Text Text to Image

R@1 R@5 R@10 Mr R@1 R@5 R@10 Mr Alignment

symmetric
UVS (Kiros et al., 2014) 43.4 75.7 85.8 2 31.0 66.7 79.9 3 -
EmbeddingNet (Wang et al., 2017) 50.4 79.3 89.4 - 39.8 75.3 86.6 - -
sm-LSTM (Huang et al., 2016) 53.2 83.1 91.5 1 40.7 75.8 87.4 2 -
VSE++ (Faghri et al., 2017) 58.3 86.1 93.3 1 43.6 77.6 87.8 2 -
Mono 51.8 84.8 93.5 1 40.0 77.3 89.4 2 -
FME 42.2 76.6 91.1 2 31.2 69.2 83.7 3 92.70%
AME 54.6 85 94.3 1 42.1 78.7 90.3 2 82.54%

asymmetric
Mono 53.2 87.0 94.7 1 42.3 78.9 90 2 -
FME 48.3 83.6 93.6 2 37.2 75.4 88.4 2 92.70%
AME 58.8 88.6 96.2 1 46.2 82.5 91.9 2 84.99%

Table 3: Image-caption ranking results for English (MS-COCO)

Image to Text Text to Image

R@1 R@5 R@10 Mr R@1 R@5 R@10 Mr Alignment

symmetric
Mono 42.7 77.7 88.5 2 33.1 69.8 84.3 3 -
FME 40.7 77.7 88.3 2 30.0 68.9 83.1 3 92.70%
AME 50.2 85.6 93.1 1 40.2 76.7 87.8 2 82.54%
asymmetric
Mono 49.9 83.4 93.7 2 39.7 76.5 88.3 2 -
FME 48.8 81.9 91.9 2 37.0 74.8 87.0 2 92.70%
AME 55.5 87.9 95.2 1 44.9 80.7 89.3 2 84.99%

Table 4: Image-caption ranking results for Japanese (MS-COCO)

EN→ DE DE→ EN

R@1 R@5 R@10 R@1 R@5 R@10

FME 51.4 76.4 84.5 46.9 71.2 79.1
AME 51.7 76.7 85.1 49.1 72.6 80.5

Table 5: Textual similarity scores (asymmetric,
Multi30k).

vised Embeddings (MUSE) benchmark (Lample
et al., 2017). MUSE is a large-scale high-quality
bilingual dictionaries for training and evaluating
the translation task. We extract the training words
of descriptions in two languages. For training, we
combine ”full” and ”test” sections of MUSE, then
filter them to the training words. For evaluation,
we filter ”train” section of MUSE to the training
words. 3

For evaluating the benefit of the proposed objec-
tive function, we compare AME with monolingual
training (Mono), and multilingual training with-
out the alignment model described in Section 3.2.
For the latter, the pre-aligned word embeddings
are frozen during training (FME). We add Mono
since the proposed model in Gella et al. (2017) did
not utilize pre-trained word embeddings for the
initialization, and the image encoder is different
(ResNet152 vs. VGG19).

3You can find the code for building bilingual lexicons on
the Github link.

We compare models based on two retrieval met-
rics, recall at position k (R@k) and Median of
ranks (Mr).

4.2 Multi30k Results

In Table 1 and 2, we show the results for English
and German captions. For English captions, we
see 21.28% improvement on average compared to
Kiros et al. (2014). There is a 1.8% boost on aver-
age compared to Mono due to more training data
and multilingual text encoder. AME performs bet-
ter than FME model on both symmetric and asym-
metric modes, which shows the advantage of fine-
tuning word embeddings during training. We have
25.26% boost on average compared to Kiros et al.
(2014) in asymmetric mode.

For German descriptions, The results are
11.05% better on average compared to (Gella
et al., 2017) in symmetric mode. AME also
achieves competitive or better results than FME
model in German descriptions too.

4.3 MS-COCO Results4

In Table 3 and 4, we show the performance of
AME and baselines for English and Japanese cap-
tions. We achieve 10.42% improvement on aver-

4To compare with baselines, scores are measured by aver-
aging 5 folds of 1K test images.
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Figure 2: Alignment ratio in each validation step
(asymmetric mode - image-to-text - Multi30k dataset)

age compared to Kiros et al. (2014) in the sym-
metric manner. We show that adapting the word
embedding for the task at hand, boosts the general
performance, since AME model significantly out-
performs FME model in both languages.

For the Japanese captions, AME reaches 6.25%
and 3.66% better results on average compared to
monolingual model in symmetric and asymmetric
modes, respectively.

4.4 Alignment results

In Tables 1 and 2, we can see that the alignment
ratio for AME is 6.80% lower than FME which
means that the translators can almost keep lan-
guages aligned in Multi30k dataset. In MS-COCO
dataset, the alignment ratio for AME is 8.93%
lower compared to FME.

We compute the alignment ratio and recall at
position 1 (R@1) in each validation step. Figure
2 shows the trade-off between alignment and re-
trieval tasks. At the first few epochs, the model im-
proves the alignment ratio since the retrieval task
hasn’t seen enough number of instances. Then,
the retrieval task tries to fine-tune word embed-
dings. Finally, they reach an agreement near the
half of training process. At this point, we up-
date the learning rate of retrieval task to improve
the performance, and the alignment ratio preserves
constant.

Additionally, we also train AME model with-
out adding the alignment objective function, and
the model breaks the alignment between the initial
aligned word embeddings, so it’s essential to add
the alignment objective function to the retrieval
task.

4.5 Caption-Caption Similarity Scores

Given the caption in a language, the task is to re-
trieve the related caption in another language. In

Table 5, we show the performance on Multi30k
dataset in asymmetric mode. AME outperforms
the FME model, confirming the importance of
word embeddings adaptation.

5 Conclusion

We proposed a multimodal model with a shared
multilingual text encoder by adapting the align-
ment between languages for image-description re-
trieval task while training. We introduced a loss
function which is a combination of a pairwise
ranking loss and a loss that maintains the align-
ment of word embeddings in multiple languages.
Through experiments with different multimodal
multilingual datasets, we have shown that our ap-
proach yields better generalization performance
on image-to-text and text-to-image retrieval tasks,
as well as caption-caption similarity task.

In the future work, we can investigate
on applying self-attention models like Trans-
former (Vaswani et al., 2017) on the shared text
encoder to find a more comprehensive represen-
tation for descriptions in the dataset. Additionally,
we can explore the effect of a weighted summation
of two loss functions instead of equally summing
them together.
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