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Abstract
The Multilingual Surface Realization Shared
Task 2019 focuses on generating sentences
from lemmatized sets of universal dependency
parses with rich features. This paper describes
the system design and the results of our par-
ticipation in the deep track. The core inno-
vation in our approach is to use a graph con-
volutional network to encode the dependency
trees given as input. Upon adding morpho-
logical features, our system achieves the sec-
ond rank in the deep track without using data
augmentation techniques or additional compo-
nents (such as a re-ranker).

1 Introduction

The goal in the Multilingual Surface Realization
Shared Task 2019 (MSR’19) is to generate flu-
ent text from Universal Dependencies (UD) struc-
tures. The task makes available UD-annotated
resources in 11 languages for the shallow task,
and three languages (English, Spanish, French)
for the deep track. Developing surface genera-
tion systems that are largely language-independent
is a central objective of the shared task (Mille
et al., 2018). To generate sentences based on the
UD structure and morphological features, recent
neural approaches mainly adopt neural sequence-
to-sequence architectures (Cabezudo and Pardo,
2018; Madsack et al., 2018; Elder and Hokamp,
2018). While representing the feature-rich data in
a linearized manner proved to be a viable option,
we argue that these linear sequences do not opti-
mally exploit the input information. We therefore
propose to encode the dependency trees using a
graph convolutional network (GCN) and find that
this GCN encoder leads to a substantial boost in
performance, compared to a sequential encoder.

The datasets in the deep track consist of seman-
tic representations induced from syntactic depen-
dency parses, see Figure 1 for an example. This
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Figure 1: An example of a UD structure with concate-
nated feature embeddings from the MSR’19 deep task.

task is reflects the information that’s realistically
available in real-world natural language genera-
tion task.

Our method works as follows: We first apply
delexicalization to the datasets, replacing rare to-
kens with placeholders. Next, encode the de-
pendency trees using graph representation learn-
ing techniques (Li et al., 2015; Xu et al., 2018a),
in order to improve the encoding of structured
data within the encoder-decoder architecture. Our
model hence learns a mapping between graph in-
puts and sequence outputs. Our ablation study
in the evaluation demonstrates that encoding UD
structure in this manner does embed additional se-
mantic information and subsequently improves the
performance across the three languages available
for the deep track (i.e. English, French, and Span-
ish). Finally, we use an LSTM decoder with copy
mechanism and attention to generate surface text.

Our contributions are as follows:

1. We show that a GCN encoder for UD input
structures outperforms sequential encoders.

2. We propose to use a variant of relational
GCN (R-GCN) to better represent edge labels
in the graph, and show that this boosts overall
performance.

3. We show that structural encoding with the
GCN benefits all three languages in the task.
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2 Related Work

2.1 Neural NLG

Systems proposed as part of the Surface Realiza-
tion Shared Task 2018 are largely sequence-to-
sequence models targeting the Shallow Task. Most
systems in the past contain two separate compo-
nents: 1) preprocessing of the UD dataset, and the
2) neural generator with the encoder-decoder ar-
chitecture.

Most neural generators combine features by
concatenating the aligned feature sequences and
feed them as a single sequence into the neural gen-
erator (Elder and Hokamp, 2018; Madsack et al.,
2018). In these systems, a pre-trained embed-
ding is typically used to represent each lemmas,
before concatenated with embeddings of surface-
level morphological categories and dependency
relations. A form of Recurrent Neural Network
(RNN) are utilized to map the input to a latent
space, and another RNN then decodes into target
output. Examples of common RNN usage include
Long Short-Term memory (LSTM) or the Bi-
directional LSTM as used in Elder and Hokamp
(2018); Madsack et al. (2018).

2.2 Graph-to-text Generation

Considering the fact that a dependency tree is a
special case of a directed acyclic graph, surface re-
alization is a graph-to-text generation tasks. Graph
neural networks have been successfully applied to
different graph to text generation task like SQL to
text generation (Xu et al., 2018b), AMR-to-text
generation (Beck et al., 2018) and semantic ma-
chine translation (Song et al., 2019). LSTM can be
modified to model graph-level information (Song
et al., 2018). Graph Convolutional Networks
(GCN), originally designed for semi-supervised
learning of node representations in graphs (Kipf
and Welling, 2017), explicitly exploit tree struc-
ture data and outperform LSTM and TreeLSTM
on AMR-to-text generation (Damonte and Cohen,
2019). To also model different types of edges in
graphs, Relational Graph Convolutional Networks
(R-GCN) represent each type of edge with a cor-
responding parameter matrix (Schlichtkrull et al.,
2018). We leverage the R-GCN by grouping in-
edge and out-edge together and apply to a graph-
to-text generation task.

3 Our Approach

3.1 Feature Representations
The input format of the MSR’19 deep track is
multi-source in the sense that each type of fea-
ture corresponds to a sequence of features, i.e.,
part-of-speech tags (POS), morphological features
etc. As shown in Figure 1, we transform the tree-
structured data into a graph. We construct node
representations by simply concatenating token and
its features. Then we use an embedding matrix to
map the representations into low-dimensional vec-
tor space.

To handle rare words in input tokens, we firstly
perform delexicalization for all datasets as fol-
lows:

1. Replace tokens that have part-of-speech tags
of NAME, PROPN, NUM and X with place-
holders jointly indexed by the number of
head and the number of entities.

2. Build a dictionary from placeholders to orig-
inal tokens for each input-output pair.

After obtaining the model output, we lexicalize the
text by looking up each generated placeholder in
the corresponding dictionary and insert the origi-
nal token.

For our official submission to the shared task,
we did not make use of features, in order to
see whether the dependency tree is informative
enough for surface realization. However, we per-
formed additional experiments to show the effec-
tiveness of GCN encoder with selected concate-
nated features, see Table 1.

3.2 Model
The graph-to-text generation task has a directed
acyclic graph as input G = {V,E}, where V is
a set of nodes and E is a set of directed edges e
between nodes. In this paper, a node is an em-
bedding vector containing a token and its features.
An edge is the dependency relation between two
nodes. The output Y is a sequence of tokens which
form a sentence expressing the input. We ex-
tend the architecture by Marcheggiani and Perez-
Beltrachini (2018) which combines a graph con-
volutional encoder and attentional LSTM decoder
as described in Figure 2.

Graph Convolutional Encoder We use R-GCN,
a variant of GCN (Schlichtkrull et al., 2018) as-
signing parameters for edges in a graph, to model
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Figure 2: (A): depicts the conceptual relationship between the GCN encoder and LSTM decoder. (B): Addition of
a dense layer is analogous to adding extra connections between multiple layers of graphical representation.

graph-structure input explicitly. Given a directed
graph G, we represent each node with an embed-
ding vector xv ∈ Rd. Then the l-th R-GCN layer
compute the hidden representation for node v in
(l + 1)-th layer as follows:

hl+1
v = f(Whl

v +
∑

u∈N(v)

Weh
l
u) (1)

where W,We ∈ Rd×h and e ∈ E. f is the lin-
ear rectifier (ReLU), a non-linear activation func-
tion. N(v) is the set of all neighbours of node
v. This design is over-parameterized and there is
no parameter sharing between similar edge labels.
Therefore we redesign the update rule to:

hl+1
v = f(Whl

v +
∑

u∈N(v)

Wdir(e)h
l
u ◦ re) (2)

where “◦” is the Hadamard production, Wr(u,v) ∈
Rd×h, dir(e) ∈ {in, out} represents direction of
the edge eu,v and re ∈ Rh is an embedding vector
of the label of eu,v.

Each layer aggregates the direct neighbours of
each node. To model neighbours of neighbours,
we stack L GCN layers where L is set to the aver-
age radius of all graphs (here, average depth of all
trees). Stacking GCN into deep neural networks
could lead to gradient vanishing problem, thus we
add residual connections (He et al., 2016) or dense
connections (Huang et al., 2017) for each layer.

LSTM Decoder We apply stacked LSTM layers
(Hochreiter and Schmidhuber, 1997) as the de-
coder on top of the GCN. The first layer is an
input-feed LSTM (Luong et al., 2015) that aggre-
gates the hidden representations of nodes into one
hidden vector hC for the whole graph. The sec-
ond LSTM layer decodes the hidden vector and

generates the representations of output token at
each time step. We use global attention (Luong
et al., 2015) to re-weight the hidden representa-
tions from the first layer and merge them into a
global hidden vector hG. In order to generate the
placeholder directly from the input, we apply the
copying mechanism (Gu et al., 2016), which is ef-
fective when using lexcalization. The probability
of token yt conditioned on input G and previous
token y1:t−1 is obtained by applying a softmax
layer on the decoder output as P (yt|y1:t−1, G) =
softmax(g(hG,hC)), where g is a perceptron.
The model is trained to maximize the likelihood
function L =

∏t=1
|Y | P (yt|y1:t−1, G).

Encoder BLEU NIST DIST
GCN (*) 23.0 6.88 42
LSTM 28.8 8.13 44.48

BiLSTM 31.2 8.53 46.86
GCN 35.9 8.73 52.86

R-GCN (residual) 39.81 9.24 55.45
R-GCN (dense) 41.01 9.43 56.49

(*) denotes system without morphological features,
which is also our official submission to the shared task.

Table 1: Ablation study: results of models on the
MSR’19 validation set of UD English EWT (enewt-
ud-dev) corpus. We compare different encoders while
keeping decoder constant, i.e., LSTM decoder with
copy mechanism and coverage attention. For beam
search we maintain a constant use of blocking 3-gram.

3.3 Experiments
We built our system on a variant of OpenNMT-py
(Klein et al., 2017) from Marcheggiani and Perez-
Beltrachini (2018) with customized encoders. We
construct the training and validation datasets by
concatenating corresponding splits of all available
corpora for each language. We stack 4 R-GCN



78

Encoder Output

BiLSTM
President Bush threw two members to replace manufacturers
in the Washington area to replace manufacturers in federal nations.

GCN
In Tuesday, President Bush commissioned two connections to

replace the federal individual of federal statements in the Washington area.

RGCN
In Tuesday, President Bush nominated two individuals to replace

jurist trials to the Washington area.

Gold
President Bush on Tuesday nominated two individuals to replace
retiring jurist on federal courts in the Washington area.

Table 2: Comparison of outputs from systems with encoder variants given the graph in Figure 1 as input. We
highlighted obvious erroneous blocks of text for contrast. Note that the only variants are the encoders, all other
configurations remain the same.

Dev Test
Corpus GCN (*) R-GCN (dense) GCN (*) R-GCN (dense)

en ewt-ud 23.0 41.01 23.35 18.37
en gum-ud 17.71 34.47 17.97 14.6
en lines-ud 18.32 12.7 20.96 14.89

en partut-ud 18.54 35.3 17.19 12.85
es ancora-ud 21.09 37.2 18.59 36.85

es gsd-ud 20.56 33.39 18.69 35.92
fr gsd-ud 20.48 35.12 15.83 10.65

fr partut-ud 19.16 33.57 14.06 6.07
fr sequoia-ud 21.07 34.49 18.52 10.22

en pud-ud - - 18.11 12.31
en ewt-Pred-HIT - - 22.42 39.05

en pud-Pred-LATTICE - - 17.3 35.85
es ancora-Pred-HIT - - 21.1 37.2

(*) denotes our submission to the shared task, which doesn’t use morphological features

Table 3: Evaluation of our submissions to MSR’19 Deep Task across all corpora on both Test and Dev sets.
Numbers are BLEU scores.

layers with dense connections as encoder and train
the model with dropout rate of 0.5. We per-
form early stopping when the training accuracy is
higher than the validation accuracy and choose the
checkpoint before over-fitting for evaluation.

4 Results and Analysis

4.1 Encoder Model Selection

As indicated in Table 1, we compare R-GCN with
different encoders. Systems are evaluated on the
validation set of UD English EWT (enewt-ud-
dev) corpus. With the same linearized inputs,
we began with a LSTM encoder before moving
on to bi-directional LSTM (BiLSTM). With 2.4
BLEU points improvement, BiLSTM appeared to
be the option in terms of sequential encoder. Next,

we employed the variant of GCN by Marcheg-
giani and Perez-Beltrachini (2018) with four fully-
connected layers. We observed that this change
gave an additional 4.7 BLEU points boost, which
outperforms sequential encoders significantly. We
then compare our R-GCN model to the GCN,
which obtains additional 3.91 BLEU points. We
further add dense conenctions to R-GCN, termed
the dense, that eventually result in 41.01 BLEU
points on the validation set. This was an overall 12
BLEU points improvement from the initial LSTM
encoder.

4.2 Ablation Study: Decoder

We intend to investigate if the LSTM decoder can
be further modified for improvement. Two of such
changes are the copy mechanism and coverage
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attention. The copy mechanism was shown to
be beneficial in numerous similar tasks such as
data-to-text generation (Li and Wan, 2018). With
the addition of copy mechanism while keeping the
encoder unchanged, an average of 1 BLEU score
improvement can be observed; reusing the global
attention for copying mechanism gave the system
another 5 BLEU point boost.

4.3 Discussion

Our analysis shows that structural encoding of the
UD trees leads to substantial improvements in per-
formance. It also shows that including morpholog-
ical features is crucial to performance of the sur-
face realizer — without these features, we observe
many errors in tense and agreement.

We also analyzed the system outputs to look
for evidence to substantiate the intuition that a
structural encoder can better represent the a pri-
ori linguistic information. One of such examples
is shown in Table 2, where we observe fluency im-
provements going from BiLSTM encoder to GCN,
and finally to R-GCN, where an overall improve-
ment in fluency is conspicuous.

We report the results of our submissions in
Table 3. Comparing to the validation results,
GCN(*) trained without morphological features
performs similarly across validation and test
datasets of each corpus, however R-GCN(dense)
has a significant drop from validation to test and
experiences over-fitting. Importantly, we no-
tice substantial BLEU rise and drop going from
GCN(*) to R-GCN(dense) on the test datasets.
We postulate that addition of relational modeling
of edges (R-GCN) on top of rich features constrain
the model to learn specific subset of a priori lin-
guistic structures, thereby mitigating the overall
performance.

5 Conclusion

We have shown that without additional modules
such as re-ranker or data augmentation, the tra-
ditional encoder-decoder architecture can still be
competitive by exploiting the existing structural
input information. For future work, we intend to
see if the performance can be further improved
with pre-trained language models such as GPT-2
(Radford et al.).
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