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Abstract

Popular QA benchmarks like SQuAD have
driven progress on the task of identifying an-
swer spans within a specific passage, with
models now surpassing human performance.
However, retrieving relevant answers from a
huge corpus of documents is still a chal-
lenging problem, and places different require-
ments on the model architecture. There is
growing interest in developing scalable answer
retrieval models trained end-to-end, bypass-
ing the typical document retrieval step. In
this paper, we introduce Retrieval Question-
Answering (ReQA), a benchmark for evaluat-
ing large-scale sentence-level answer retrieval
models. We establish baselines using both
neural encoding models as well as classical in-
formation retrieval techniques. We release our
evaluation code to encourage further work on
this challenging task.

1 Introduction

Popular QA benchmarks like SQuAD (Rajpurkar
et al., 2016) have driven impressive progress on
the task of identifying spans of text within a spe-
cific passage that answer a posed question. Re-
cent models using BERT pretraining (Devlin et al.,
2019) have already surpassed human performance
on SQuAD 1.1 and 2.0.

While impressive, these systems are not yet suf-
ficient for the end task of answering user ques-
tions at scale, since in general, we don’t know
which documents are likely to contain an answer.
On the one hand, typical document retrieval so-
lutions fall short here, since they aren’t trained
to directly model the connection between ques-
tions and answers in context. For example, in Fig-
ure 1, a relevant answer appears on the Wikipedia
page for New York, but this document is un-
likely to be retrieved, as the larger document is not
highly relevant to the question. On the other hand,

Question: Which US county has the densest
population?

Wikipedia Page: New York City

Answer: Geographically co-extensive with
New York County, the borough of Manhattan’s
2017 population density of 72,918 inhabitants
per square mile (28,154/km2) makes it the high-
est of any county in the United States and higher
than the density of any individual American city.

Figure 1: A hypothetical example of end-to-end answer
retrieval, where the document containing the answer is
not “on topic” for the question.

QA models with strong performance on reading
comprehension can’t be used directly for large-
scale retrieval. This is because competitive QA
models use interactions between the question and
candidate answer in the early stage of modeling
(e.g. through cross-attention) making it infeasible
to score a large set of candidates at inference time.

There is growing interest in training end-to-end
retrieval systems that can efficiently surface rele-
vant results without an intermediate document re-
trieval phase (Gillick et al., 2018; Cakaloglu et al.,
2018; Seo et al., 2019; Henderson et al., 2019).
We are excited by this direction, and hope to pro-
mote further research by offering the Retrieval
Question-Answering (ReQA) benchmark, which
tests a model’s ability to retrieve relevant answers
efficiently from a large set of documents. Our
code is available at https://github.com/
google/retrieval-qa-eval.

The remainder of the paper is organized as fol-
lows. In Section 2, we define our goals in develop-
ing large-scale answer retrieval models. Section 3
describes our method for transforming within-
document reading comprehension tasks into Re-
trieval Question-Answering (ReQA) tasks, and de-

https://github.com/google/retrieval-qa-eval
https://github.com/google/retrieval-qa-eval
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tails our evaluation procedure and metrics. Sec-
tion 4 describes various neural and non-neural
baseline models, and characterizes their perfor-
mance on several ReQA tasks. Finally, Section 5
discusses related work.

2 Objectives

What properties would we like a large-scale an-
swer retrieval model to have? We discuss five
characteristics below that motivate the design of
our evaluation.

First, we would like an end-to-end solution. As
illustrated in Figure 1, some answers are found
in surprising places. Pipelined systems that first
retrieve topically relevant documents and then
search for answer spans within only those docu-
ments risk missing good answers from documents
that appear to have less overall relevance to the
question.

Second, we need efficient retrieval, with the
ability to scale to billions of answers. Here we
impose a specific condition that guarantees scala-
bility. We require the model to encode questions
and answers independently as high-dimensional
(e.g. 512d) vectors, such that the relevance of a
QA pair can be computed by taking their dot-
product, as in Henderson et al. (2017).1 This
technique enables retrieval of relevant answers us-
ing approximate nearest neighbor search, which
is sub-linear in the number of documents, and in
practice close to log(N). This condition rules out
the powerful models like BERT that perform best
on reading comprehension metrics. Note, these
approaches could be used to rerank a small set of
retrieved candidate answers, but the evaluation of
such multi-stage systems is out of the scope of this
work.

Third, we focus on sentence-level retrieval. In
practice, sentences are a good size to present a
user with a “detailed” answer, making it unnec-
essary to highlight specific spans for many use
cases.2 While the experiments in this paper pri-
marily target sentence-level retrieval, we recog-
nize that some domains may be best served by re-
trieval at a different granularity, such as phrase or

1Other distance metrics are possible. Another popular
option for nearest neighbor search is cosine distance. Note,
models using cosine distance can still compute relevance
through a dot-product, provided the final encoding vectors
are L2-normalized.

2In cases where highlighting the relevant span within a
sentence is important, a separate highlighting module could
be learned that takes a retrieved sentence as input.

passage. The evaluation techniques described in
Section 3 can be easily extended to cover these
different granularities.

Fourth, a retrieval model should be context
aware, in the sense that the context surrounding
a sentence should affect its appropriateness as an
answer. For example, an ideal QA system should
be able to tell that the bolded sentence in Figure 2
is a good answer to the question, since the context
makes it clear that “The official language” refers
to the official language of Nigeria.

Question: What is Nigeria’s official language?

Answer in Context: [...] Nigeria has one of the
largest populations of youth in the world. The
country is viewed as a multinational state, as it
is inhabited by over 500 ethnic groups, of which
the three largest are the Hausa, Igbo and Yoruba;
these ethnic groups speak over 500 different lan-
guages, and are identified with wide variety of
cultures. The official language is English. [...]

Figure 2: An example from SQuAD 1.1 where looking
at the surrounding context is necessary to determine the
relevance of the answer sentence.

Finally, we believe a strong model should be
general purpose, with the ability to generalize
to new domains and datasets gracefully. For this
reason, we advocate using a retrieval evaluation
drawn from a specific task/domain that is never
used for model training. In the case of our tasks
built on SQuAD and Natural Questions (NQ), we
evaluate on retrieval over the entire training sets,
with the understanding that all data from these sets
is off-limits for model training. Additionally, we
recommend not training on any Wikipedia data, as
this is the source of the SQuAD and NQ document
text. However, should this latter recommenda-
tion prove impractical, then, at the very least, the
use of Wikipedia during training should be noted
when reporting results on ReQA, being as specific
as possible as to which subset was used and in
what manner. This increases our confidence that a
model that evaluates well on our retrieval metrics
can be applied to a wide range of open-domain QA
tasks.3

3We strongly assert that when NLP models are used in
applied systems, it is generally preferable to evaluate alterna-
tive models using data that is as distinct as reasonably pos-
sible from model training data. While this is common prac-
tice in some sub-fields of NLP such as machine translation,
it is still unfortunately very common to assess other NLP
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3 ReQA Evaluation

In this section, we describe our method for con-
structing Retrieval Question-Answering (ReQA)
evaluation tasks from existing machine reading
based QA challenges. To perform this evaluation
over existing QA datasets, we first extract a large
pool of candidate answers from the dataset. Mod-
els are then evaluated on their ability to correctly
retrieve and rank answers to individual questions
using two metrics, mean reciprocal rank (MRR)
and recall at N (R@N). In Eq (1), Q is the set of
questions, and ranki is the rank of the first correct
answer for the ith question. In Eq (2), A∗i is the
set of correct answers for the ith question, and Ai

is a scored list of answers provided by the model,
from which the top N are extracted.

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(1)

R@N =
1

|Q|

|Q|∑
i=1

|maxN (Ai) ∩A∗i |
|A∗i |

(2)

We explore using the ReQA evaluation on both
SQuAD 1.1 and Natural Questions. However, the
technique is general and can be applied to other
datasets as well.

3.1 ReQA SQuAD
SQuAD 1.1 is a reading comprehension challenge
that consists of over 100,000 questions composed
to be answerable by text from Wikipedia articles.
The data is organized into paragraphs, where each
paragraph has multiple associated questions. Each
question can have one or more answers in its para-
graph.4

We choose SQuAD 1.1 for our initial ReQA
evaluation because it is a widely studied dataset,

models on dev and test data that is very similar to its train-
ing data (e.g., harvested from the same source using a com-
mon pipeline and a common pool of annotators). This makes
it more difficult to interpret claims of models approaching
“human-level” performance.

4Typically, multiple answers come from the same sen-
tence. For example, the question “Where did Super Bowl 50
take place?” is associated with three answers found within
the sentence “The game was played on February 7, 2016, at
Levi’s Stadium in the San Francisco Bay Area at Santa Clara,
California.” The answer spans are: [Santa Clara, California],
[Levi’s Stadium] and [Levi’s Stadium in the San Francisco
Bay Area at Santa Clara, California.].

and covers many question types.5 To turn SQuAD
into a retrieval task, we first split each para-
graph into sentences using a custom sentence-
breaking tool included in our public release. For
the SQuAD 1.1 train set, splitting 18,896 para-
graphs produces 91,707 sentences. Next, we con-
struct an “answer index” containing each sentence
as a candidate answer. The model being evalu-
ated computes an answer embedding for each an-
swer (using any encoding strategy), given only the
sentence and its surrounding paragraph as input.
Crucially, this computation must be done indepen-
dently of any specific question. The answer index
construction process is described more formally in
Algorithm 1.

Algorithm 1 Constructing the answer index
Input: c is a representation of a dataset in SQuAD

format6; S is a function that accepts a string of
text, s, and returns a sequence of sentences,
[s0, s1, · · · , sn]; Ea is the embedding func-
tion, which takes answer text, a, into points
in Rn.

Output: A list of 〈sentence, encoding〉 tuples.

1: function ENCODEINDEX(c, S, Ea)
2: I← new list
3: for x in c.data do . for every passage
4: for p in x.paragraphs do
5: for s in S(p.context) do
6: se← Ea(s, p.context)
7: append 〈s, se〉 to I
8: return I

Similarly, we embed each question using the
model’s question encoder, with the restriction that
only the question text be used. For the SQuAD 1.1
train set, this gives around 88,000 questions.

After all questions and answers are encoded, we
compute a “relevance score” for each question-
answer pair by taking the dot-product of the ques-
tion and answer embeddings, as shown in Al-

5SQuAD 2.0 adds questions that have no answer in the
paragraph. While these questions are useful for testing ma-
chine reading over fixed passages, their value in a large-scale
retrieval evaluation is less clear. Specifically, we can’t be sure
that such questions aren’t answered by another sentence in
the larger corpus.

6The SQuAD JSON format consists of a top-level list of
data elements that represent Wikipedia articles, each contain-
ing a list of paragraphs. Every paragraph defines a context,
which is its text, and a corresponding list of questions and
answers. For clarity, the algorithm definition uses the same
names (lines 3-6).
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gorithm 2. These scores can be used to rank
all (around 92,000) candidate answers for each
question, and compute standard ranking metrics
such as mean reciprocal rank (MRR) and recall
(R@k).7

Algorithm 2 Scoring questions and answers
Input: Q[q×n] is a matrix of question embeddings

in Rn, arranged so that the i-th row, Q[i], cor-
responds to the embedding of qi; A[a×n] is a
matrix of answer embeddings, also in Rn, de-
rived from the answer index, I , and arranged
so that the i-th row, A[i], corresponds to the
embedding of ai.

Output: R[q×a] a matrix of ranking data that can
be used to compute metrics such as MRR and
R@k. It is arranged so that i-th row is a vector
of dot-product scores for qi, that is, [qi ·a0, qi ·
a1, · · · , qi · aa]

1: function SCORE(Q, A)
2: S[q×a]← QAT . compute dot-products
3: R[q×a]← new matrix
4: for i← 1 to q do
5: R[i]← rankdata8(S[i])

6: return R

3.2 ReQA NQ
Natural Questions (NQ) consists of over 320,000
examples, where each example contains a ques-
tion and an entire Wikipedia article. The questions
are real questions issued by multiple users to the
Google search engine, for which a Wikipedia page
appeared in the top five search results. The exam-
ples are annotated by humans as to whether the re-
turned article contains an answer to the question,
and if so where. For roughly 36% of examples,
the article is found to contain a “short answer”: a
span of text (or rarely multiple spans) that directly
answers the question.

Our procedure for converting NQ into a ReQA
task is similar to that described for SQuAD above.
We restrict to questions with a single-span short

7Rarely, the same question is asked in different contexts.
For example, the question “How tall is Mount Olympus?”
appears twice in SQuAD, with answers on the pages for both
Greece and Cyprus. In this case, we consider both answers
correct for the purposes of our evaluation metrics.

8This function assigns ranks to data, in this case as-
signing 1 to the largest dot-product, 2 to the second-
largest dot-product, and so forth. For more details, see
scipy.stats.rankdata.

answer, contained within an HTML <P> (para-
graph) block, as opposed to answers within a list
or table. When applied to the NQ training set, this
filtering produces around 74,000 questions. As
with SQuAD, we consider the enclosing paragraph
as context (available for the model in building an
answer embedding), and split the paragraph into
sentences. The target answer is the sentence con-
taining the short answer span. Each sentence in the
paragraph is added to the answer index as a sepa-
rate answer candidate, resulting in around 240,000
candidates overall.9

As with ReQA SQuAD, we advocate exclud-
ing all of Wikipedia from model training materi-
als. Models satisfying this restriction give us more
confidence that they can be extended to perform
answer retrieval in new domains.

3.3 Dataset Statistics
The number of questions and candidate answers
in the ReQA SQuAD and ReQA NQ datasets is
shown in Table 1. While the number of questions
is similar, ReQA SQuAD has around 2.6x fewer
candidate answer sentences, making it an easier
task overall. This difference is due to the fact that
SQuAD itself was constructed to have many dif-
ferent questions answered by the same Wikipedia
paragraphs.

SQuAD NQ

Questions 87,599 74,097
Candidate Sentences 91,707 239,013
Candidate Paragraphs 18,896 58,699

Table 1: The number of questions and candidates in the
constructed datasets ReQA SQuAD and ReQA NQ.

Table 2 lists the average number of tokens in
question and sentence-level answer text, as well
as the “query coverage”, which is the percentage
of tokens in the question that also appear in the
answer. The token coverage for ReQA SQuAD is
much larger than for ReQA NQ, indicating more
lexical overlap between the question and answer.
This is likely due to the original SQuAD construc-
tion process whereby writers “back-wrote” ques-
tions to be answerable by the given documents.

9Since NQ includes the entire Wikipedia article, we
could consider adding all sentences from all paragraphs as
candidate answers. However even restricting to sentences
from paragraphs containing short answers already produced a
large index and challenged existing models, so we opted not
to increase the search space further.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rankdata.html
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By comparison, NQ questions are naturally oc-
curring anonymized, aggregated search queries,
where users had no access to the answering doc-
ument ahead of time.

Table 3 shows the distribution of question
types for each dataset. Nearly half (47.7%)
of ReQA SQuAD questions are what questions,
with the next most frequent being who (9.6%)
and how (9.3%). ReQA NQ is more balanced
across question types, with the leading types being
who (32.6%), when (20.3%) and what (15.3%).

We note that neither dataset contains many why
questions. Performing well on this type of ques-
tion may require additional reasoning ability, so it
would be interesting to explore why questions fur-
ther through more targeted ReQA datasets.

SQuAD NQ

Average Length (tokens)
Question 10.1 9.1
Answer 24.0 22.9

Query Coverage (%)
Mean 31.7 24.3
Standard Deviation 18.9 16.9

Table 2: Token-level statistics of the constructed
datasets. Average Length is the average number of
tokens in the question and sentence-level answer text.
Query Coverage is the percentage of tokens in the
question that also appear in the sentence-level answer.

Question Type SQuAD NQ

what 47.7 15.3
who 9.6 32.6
how 9.3 5.0
when 6.2 20.3
which 5.5 2.0
where 3.8 13.1
why 1.4 0.6

other 16.5 11.1

Table 3: The distribution of question types in
ReQA SQuAD and ReQA NQ. A question is assigned
to a question type if it starts with the question type
word. Note, types what and which include questions
where a preposition (e.g. at, by, in, on, with) appears
before the wh- word.

3.4 Discussion

A defining feature of the SQuAD dataset is that the
questions are “back-written”, with advance knowl-
edge of the target answer and its surrounding con-
text. One concern when adapting this data for a
ReQA task is that questions may become ambigu-
ous or underspecified when removed from the con-
text of a specific document and paragraph. For ex-
ample, SQuAD 1.1 contains the question “What
instrument did he mostly compose for?”. This
question makes sense in the original context of
the Wikipedia article on Frédéric Chopin, but is
underspecified when asked in isolation, and could
reasonably have other answers. One possible res-
olution would be to include the context title as part
of the question context. However this is unrealistic
from the point of view of end systems where the
user doesn’t have a specific document in mind.

This concern can be avoided by switching from
“back-written” datasets to “web-search based”
datasets. These include MS MARCO (Nguyen
et al., 2016), TriviaQA (Joshi et al., 2017) and
Natural Questions (Kwiatkowski et al., 2019).
For these sets, questions are taken from natural
sources, and a search engine is used in the process
of constructing QA pairs.

However, there is an important caveat to men-
tion when using web-search data to build ReQA
tasks. In these datasets, the answers are derived
from web documents retrieved by a search engine,
where the question is used as the search query.
This introduces a bias toward answers that are al-
ready retrievable through traditional search meth-
ods. By comparison, answers in SQuAD 1.1 may
be found in “off-topic” documents, and it is valu-
able for an evaluation to measure the ability to re-
trieve such answers. Since both types of datasets
(back-written and web-search based) have their
advantages, we believe there is value in evaluating
on ReQA tasks of both types.

4 Models and Results

In this section we evaluate neural models and
classic information retrieval techniques on the
ReQA SQuAD and ReQA NQ benchmark tasks.

4.1 Neural Baselines

Dual encoder models are learned functions that
collocate queries and results in a shared embed-
ding space. This architecture has shown strong
performance on sentence-level retrieval tasks, in-
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cluding conversational response retrieval (Hender-
son et al., 2017; Yang et al., 2018), translation
pair retrieval (Guo et al., 2018; Yang et al., 2019b)
and similar text retrieval (Gillick et al., 2018). A
dual encoder for use with ReQA has the schematic
shape illustrated in Figure 3.

Figure 3: A schematic dual encoder for question-
answer retrieval.

As our primary neural baseline, we take the
recently released universal sentence encoder QA
(USE-QA) model from Yang et al. (2019c)10. This
is a multilingual QA retrieval model that co-trains
a question-answer dual encoder along with sec-
ondary tasks of translation ranking and natural lan-
guage inference. The model uses sub-word to-
kenization, with a 128k “sentencepiece” vocabu-
lary (Kudo and Richardson, 2018). Question and
answer text are encoded independently using a 6-
layer transformer encoder (Vaswani et al., 2017),
and then reduced to a fixed-length vector through
average pooling. The final encoding dimension-
ality is 512. The training corpus contains over a
billion question-answer pairs from popular online
forums and QA websites like Reddit and Stack-
Overflow.

As a second neural baseline, we include an in-
ternal QA model (QALite) designed for use on mo-
bile devices. Like USE-QA, this model is trained
over online forum data, and uses a transformer-
based text encoder. The core differences are re-
duction in width and depth of model layers, reduc-
tion of sub-word vocabulary size, and a decrease in
the output embedding size from 512 dimensions to
only 100.

Finally, we include the text embedding sys-
tem InferSent, which, although not explicitly de-
signed for question answering tasks, neverthe-
less produces strong results on a wide range of

10https://tfhub.dev/google/universal-
sentence-encoder-multilingual-qa/1

semantic tasks without requiring additional fine-
tuning (Conneau et al., 2017). Note, however,
that at 4096 dimensions, its embeddings are sig-
nificantly larger than the other baselines pre-
sented. Other systems in this class include Skip-
thought (Kiros et al., 2015), ELMo (Peters et al.,
2018), and the Universal Sentence Encoder11.

Table 4 presents the ReQA results for our base-
line models. As expected, the larger USE-QA
model outperforms the smaller QALite model. The
recall@1 score of 0.439 on ReQA SQuAD indi-
cates that USE-QA is able to retrieve the correct
answer from a pool of 91,707 candidates roughly
44% of the time. The ReQA NQ scores are lower,
likely due to both the larger pool of candidate an-
swers, as well as the lower degree of lexical over-
lap between questions and answers.

Table 5 illustrates the tradeoff between model
accuracy and resource usage.

Model MRR R@1 R@5 R@10

ReQA SQuAD
USE-QA 0.539 0.439 0.656 0.727
QALite 0.412 0.325 0.507 0.576
InferSent 0.317 0.240 0.402 0.468

ReQA NQ
USE-QA 0.234 0.147 0.317 0.391
QALite 0.172 0.103 0.233 0.297
InferSent 0.080 0.043 0.109 0.145

Table 4: Mean reciprocal rank (MRR) and recall@K
performance of neural baselines on ReQA SQuAD and
ReQA NQ.

Model Size Latency12 Memory
(MB) (ms) (MB)

USE-QA 392.9 17.3 71.8
QALite 2.6 10.2 3.6

Table 5: Time and space tradeoffs of different models.
Latency was measured on an Intel Xeon CPU E5-1650
v3 @ 3.50GHz, which has 6 cores and 12 threads.

11The non-QA versions of the Universal Sentence En-
coder produce general semantic embeddings of text.

12This is the latency for encoding a single piece of text.
However, by batching the encoding requests, it’s possible to
significantly reduce the amortized encoding time. In practice,
batch sizes of 200 provide an amortized speedup of up to 5x.

https://tfhub.dev/google/universal-sentence-encoder-multilingual-qa/1
https://tfhub.dev/google/universal-sentence-encoder-multilingual-qa/1
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4.2 BM25 Baseline
While neural retrieval systems are gaining popu-
larity, TF-IDF based methods remain the dominant
method for document retrieval, with the BM25
family of ranking functions providing a strong
baseline (Robertson and Zaragoza, 2009). Unlike
the neural models described above that can di-
rectly retrieve content at the sentence level, such
methods generally consist of two stages: doc-
ument retrieval, followed by sentence highlight-
ing (Mitra and Craswell, 2018). Previous work in
open domain question answering has shown that
BM25 is a difficult baseline to beat when ques-
tions were written with advance knowledge of the
answer (Lee et al., 2019).

To obtain our baseline using traditional IR
methods, we constructed a paragraph-level re-
trieval task which allows a direct comparison be-
tween the neural systems in Table 4 and BM25.13

We evaluate BM25 by measuring its ability to re-
call the paragraph containing the answer to the
question.14 To get a paragraph retrieval score for
our neural baselines, we run sentence retrieval as
before, and use the retrieved sentence to select the
enclosing paragraph. As shown in Table 6, the
USE-QA neural baseline outperforms BM25 on
paragraph retrieval.

Model MRR R@1 R@5 R@10

ReQA SQuAD
USE-QA 0.634 0.533 0.756 0.823
QALite 0.503 0.407 0.613 0.689
InferSent 0.369 0.279 0.469 0.548
BM2515 0.602 0.517 0.702 0.755

ReQA NQ
USE-QA 0.366 0.247 0.486 0.578
QALite 0.274 0.177 0.366 0.450
InferSent 0.145 0.082 0.199 0.258
BM25 0.103 0.066 0.140 0.175

Table 6: Performance of various models on paragraph-
level retrieval.

13We opted not to evaluate BM25 on sentence-level re-
trieval as earlier work has shown that traditional term-based
document retrieval technologies are unsuccessful when ap-
plied to sentence-level retrieval (Allan et al., 2003).

14Our experiments make use of the implementation
at https://github.com/nhirakawa/BM25 with de-
fault hyperparameter settings.

15BM25 statistics were computed over the first 10,000
questions of each dataset, due to slow scoring speed.

5 Related Work

Open domain question answering is the problem
of answering a question from a large collection of
documents (Voorhees and Tice, 2000). Success-
ful systems usually follow a two-step approach to
answer a given question: first retrieve relevant ar-
ticles or blocks, and then scan the returned text
to identify the answer using a reading comprehen-
sion model (Jurafsky and Martin, 2018; Kratzwald
and Feuerriegel, 2018; Yang et al., 2019a; Lee
et al., 2019). While the reading comprehen-
sion step has been widely studied with many ex-
isting datasets (Rajpurkar et al., 2016; Nguyen
et al., 2016; Dunn et al., 2017; Kwiatkowski et al.,
2019), machine reading at scale is still a challeng-
ing task for the community.

Chen et al. (2017) recently proposed
DrQA, treating Wikipedia as a knowledge
base over which to answer factoid questions
from SQuAD (Rajpurkar et al., 2016), Curat-
edTREC (Baudiš and Šedivý, 2015) and other
sources. The task measures how well a system
can successfully extract the answer span given a
question, but it still relies on a document retrieval
step. The ReQA eval differs from DrQA task by
skipping the intermediate step and retrieving the
answer sentence directly.

There is also a growing interest in answer selec-
tion at scale. Surdeanu et al. (2008) constructs a
dataset with 142,627 question-answer pairs from
Yahoo! Answers, with the goal of retrieving the
right answer from all answers given a question.
However, the dataset is limited to “how to” ques-
tions, which simplifies the problem by restricting
it to a specific domain. Additionally the under-
lying data is not as broadly accessible as SQuAD
and other more recent QA datasets, due to more
restrictive terms of use.

WikiQA (Yang et al., 2015) is another task in-
volving large-scale sentence-level answer selec-
tion. The candidate sentences are, however, lim-
ited to a small set of documents returned by Bing
search, and is smaller than the scale of our ReQA
tasks. WikiQA consists of 3,047 questions and
29,258 candidate answers, while ReQA SQuAD
and ReQA NQ each contain over 20x that num-
ber of questions and over 3x that number of candi-
dates (see Table 1). Moreover, as discussed in Sec-
tion 3.4, restricting the domain of answers to top
search engine results limits the evaluation’s appli-
cability for testing end-to-end retrieval.

https://github.com/nhirakawa/BM25
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Cakaloglu et al. (2018) made use of SQuAD
for a retrieval task at the paragraph level. We ex-
tend this work by investigating sentence level re-
trieval and by providing strong sentence-level and
paragraph-level baselines over a replicable con-
struction of a retrieval evaluation set from the
SQuAD data. Further, while Cakaloglu et al.
(2018) trained their model on data drawn from
SQuAD, we would like to highlight that our own
strong baselines do not make use of any training
data from SQuAD. We advocate for future work
to attempt a similar approach of using sources of
model training and evaluation data that are distinct
as possible in order to provide a better picture of
how well models generally perform a task.

Finally, Seo et al. (2018) construct a phrase-
indexed question answering challenge that is sim-
ilar to ReQA in requiring the question and the an-
swer be encoded separately of one another. How-
ever, while ReQA focuses on sentence-based re-
trieval, their benchmark retrieves phrases, allow-
ing for a direct F1 and exact-match evaluation on
SQuAD. Seo et al. (2019) demonstrate an imple-
mentation of a phrase-indexed question answering
system using a combination of dense (neural) and
sparse (term-frequency based) indices.

We believe that ReQA can help guide develop-
ment of such systems by providing a point of eval-
uation between SQuAD, whose passages are too
small to test retrieval performance, and SQuAD-
Open (Chen et al., 2017), which operates at a re-
alistic scale but is expensive and slow to evalu-
ate. In practice, our evaluation runs completely in
memory and finishes within two hours on a devel-
oper workstation, making it easy to integrate di-
rectly into the training process, where it can, for
instance, trigger early stopping.

6 Conclusion

In this paper, we introduce Retrieval Question-
Answering (ReQA) as a new benchmark for eval-
uating end-to-end answer retrieval models. The
task assesses how well models are able to retrieve
relevant sentence-level answers to queries from
a large corpus. We describe a general method
for converting reading comprehension QA tasks
into cross-document answer retrieval tasks. Us-
ing SQuAD and Natural Questions as examples,
we construct the ReQA SQuAD and ReQA NQ
tasks, and evaluate several models on sentence-
and paragraph-level answer retrieval. We find that

a freely available neural baseline, USE-QA, out-
performs a strong information retrieval baseline,
BM25, on paragraph retrieval, suggesting that
end-to-end answer retrieval can offer improve-
ments over pipelined systems that first retrieve
documents and then select answers within. We re-
lease our code for both evaluation and conversion
of the datasets into ReQA tasks.

Acknowledgments

We thank our teammates from Descartes and other
Google groups for their feedback and sugges-
tions. We would like to recognize Javier Snaider,
Igor Krivokon and Ray Kurzweil. Special thanks
goes to Jonni Kanerva for developing the tailored
sentence-breaking algorithm.

References
James Allan, Courtney Wade, and Alvaro Bolivar.

2003. Retrieval and novelty detection at the sen-
tence level. In Proceedings of the 26th Annual Inter-
national ACM SIGIR Conference on Research and
Development in Informaion Retrieval, SIGIR ’03,
pages 314–321, New York, NY, USA. ACM.
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