@inproceedings{zhang-etal-2019-multi-task,
title = "A Multi-Task Learning Framework for Extracting Bacteria Biotope Information",
author = "Zhang, Qi and
Liu, Chao and
Chi, Ying and
Xie, Xuansong and
Hua, Xiansheng",
booktitle = "Proceedings of The 5th Workshop on BioNLP Open Shared Tasks",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5716",
doi = "10.18653/v1/D19-5716",
pages = "105--109",
abstract = "This paper presents a novel transfer multi-task learning method for Bacteria Biotope rel+ner task at BioNLP-OST 2019. To alleviate the data deficiency problem in domain-specific information extraction, we use BERT(Bidirectional Encoder Representations from Transformers) and pre-train it using mask language models and next sentence prediction on both general corpus and medical corpus like PubMed. In fine-tuning stage, we fine-tune the relation extraction layer and mention recognition layer designed by us on the top of BERT to extract mentions and relations simultaneously. The evaluation results show that our method achieves the best performance on all metrics (including slot error rate, precision and recall) in the Bacteria Biotope rel+ner subtask.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2019-multi-task">
<titleInfo>
<title>A Multi-Task Learning Framework for Extracting Bacteria Biotope Information</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ying</namePart>
<namePart type="family">Chi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuansong</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiansheng</namePart>
<namePart type="family">Hua</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The 5th Workshop on BioNLP Open Shared Tasks</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a novel transfer multi-task learning method for Bacteria Biotope rel+ner task at BioNLP-OST 2019. To alleviate the data deficiency problem in domain-specific information extraction, we use BERT(Bidirectional Encoder Representations from Transformers) and pre-train it using mask language models and next sentence prediction on both general corpus and medical corpus like PubMed. In fine-tuning stage, we fine-tune the relation extraction layer and mention recognition layer designed by us on the top of BERT to extract mentions and relations simultaneously. The evaluation results show that our method achieves the best performance on all metrics (including slot error rate, precision and recall) in the Bacteria Biotope rel+ner subtask.</abstract>
<identifier type="citekey">zhang-etal-2019-multi-task</identifier>
<identifier type="doi">10.18653/v1/D19-5716</identifier>
<location>
<url>https://aclanthology.org/D19-5716</url>
</location>
<part>
<date>2019-nov</date>
<extent unit="page">
<start>105</start>
<end>109</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Multi-Task Learning Framework for Extracting Bacteria Biotope Information
%A Zhang, Qi
%A Liu, Chao
%A Chi, Ying
%A Xie, Xuansong
%A Hua, Xiansheng
%S Proceedings of The 5th Workshop on BioNLP Open Shared Tasks
%D 2019
%8 nov
%I Association for Computational Linguistics
%C Hong Kong, China
%F zhang-etal-2019-multi-task
%X This paper presents a novel transfer multi-task learning method for Bacteria Biotope rel+ner task at BioNLP-OST 2019. To alleviate the data deficiency problem in domain-specific information extraction, we use BERT(Bidirectional Encoder Representations from Transformers) and pre-train it using mask language models and next sentence prediction on both general corpus and medical corpus like PubMed. In fine-tuning stage, we fine-tune the relation extraction layer and mention recognition layer designed by us on the top of BERT to extract mentions and relations simultaneously. The evaluation results show that our method achieves the best performance on all metrics (including slot error rate, precision and recall) in the Bacteria Biotope rel+ner subtask.
%R 10.18653/v1/D19-5716
%U https://aclanthology.org/D19-5716
%U https://doi.org/10.18653/v1/D19-5716
%P 105-109
Markdown (Informal)
[A Multi-Task Learning Framework for Extracting Bacteria Biotope Information](https://aclanthology.org/D19-5716) (Zhang et al., EMNLP 2019)
ACL