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Abstract

This paper presents our participation in the
AGAC Track from the 2019 BioNLP Open
Shared Tasks. We provide a solution for Task
3, which aims to extract “gene – function
change – disease” triples, where “gene” and
“disease” are mentions of particular genes and
diseases respectively and “function change” is
one of four pre-defined relationship types. Our
system extends BERT (Devlin et al., 2018), a
state-of-the-art language model, which learns
contextual language representations from a
large unlabelled corpus and whose parameters
can be fine-tuned to solve specific tasks with
minimal additional architecture. We encode
the pair of mentions and their textual context
as two consecutive sequences in BERT, sepa-
rated by a special symbol. We then use a single
linear layer to classify their relationship into
five classes (four pre-defined, as well as ‘no re-
lation’). Despite considerable class imbalance,
our system significantly outperforms a random
baseline while relying on an extremely simple
setup with no specially engineered features.

1 Introduction

Bidirectional Encoder Representations from
Transformers (BERT) is a language representation
model that has recently advanced the state of the
art in a wide range of NLP tasks (e.g. natural
language inference, question answering, sentence
classification etc.) (Devlin et al., 2018). This
is due to its capacity for learning lexical and
syntactic aspects of language (Clark et al., 2019;
Goldberg, 2019) using large unlabelled corpora.
BERT achieves much of its expressive power us-
ing a bi-directional Transformer encoder (Vaswani
et al., 2017) and a ‘predict the missing word”
training objective based on Cloze tasks (Taylor,
1953). In the biomedical domain, BioBERT (Lee
et al., 2019) and SciBERT (Beltagy et al., 2019)

learn more domain-specific language representa-
tions. The former uses the pre-trained BERT-Base
model and further trains it with biomedical text
(Pubmed1 abstracts and Pubmed Central2 full-text
articles). The latter trains a BERT model from
scratch on a large corpus of scientific text (over
80% biomedical) and learns a domain-specific
vocabulary using WordPiece tokenisation (Wu
et al., 2016).

BERT has been adapted for use in relation ex-
traction as a basis for supervised, unsupervised
and few-shot learning models (Soares et al., 2019).
A recent model, Transformer for Relation Extrac-
tion (TRE) (Alt et al., 2019) uses an architecture
similar to that of BERT by extending the Ope-
nAI Generative Pre-trained Transformer (Radford
et al., 2018), in order to perform relation classi-
fication for entity mention pairs. In contrast to
BERT, TRE uses a next word prediction objec-
tive. The model encodes the pairs and their con-
text in a sequence separated by a special symbol.
In our model, we use a similar way of encod-
ing gene-disease pairs and their textual context in
order to predict their ‘function change’ relation-
ship, but in contrast to TRE, we leverage SciB-
ERT’s domain-specific vocabulary and represen-
tations learnt from scientific text.

2 Task and data

Task description Task 3 of the AGAC track
of BioNLP-OST 2019 involves Pubmed abstract-
level relation extraction of gene-disease relations.
The relations of interest concern the function
change of the gene which affects the disease. The
four relation types are:

• Loss of Function (LOF): a gene undergoes a
mutation leading to a loss of function which

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.ncbi.nlm.nih.gov/pmc/

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pmc/
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then affects the disease.

• Gain of Function (GOF): a gene mutation
causes a gain of function.

• Regulation (REG): the function change is ei-
ther neutral or unknown.

• Complex (COM): the function change is too
complex to be described as any of the former
relations.

To illustrate these relation types more con-
cretely, we repeat the examples given on the task
webpage. The following sentence depicts the Gain
of Function relation between SHP-2 and juvenile
myelomonocytic leukemia: ‘Mutations in SHP-
2 phosphatase that cause hyperactivation of its
catalytic activity have been identified in human
leukemias, particularly juvenile myelomonocytic
leukemia.’ In this case, ‘hyperactivation of cat-
alytic activity’ indicates Gain of Function.

An example of the Regulation relation, on the
other hand, would be the following sentence:
‘Lynch syndrome (LS) caused by mutations in
DNA mismatch repair genes MLH1.’. The phrase
‘caused by’ demonstrates an association between
MLH1 and Lynch syndrome but no information is
given on the specific nature of the mechanism re-
lating them.

Annotated corpus The training data provided
consist of 250 PubMed abstracts with annotations
of the form ‘Gene; Function change; Disease’
for each abstract. For test data, a further 1000
PubMed abstracts have been provided (without an-
notations).

Train/dev split Given that no development set
had been explicitly provided, we divided the
PubMed ids of the original training set into a
smaller training and a development set using an
80/20 split, in order to be able to prevent over-
fitting and perform early stopping. We assigned
Pubmed ids to each one of the two sets in the
prespecified proportions randomly but choosing a
random seed that ensures a small KL divergence
between the train and dev class distributions. In
the rest of the paper, we use the terms ‘train set’
or ‘training data’ to refer to 80% of the original
annotated data that we use to train our model.

Generation of negative labels The training
data contain some Pubmed ids that have no

relation annotations whatsoever (either from the
four pre-defined classes or explicitly negative).
However, negative examples are crucial for train-
ing a model for such a task given that the majority
of gene-disease pair mentions that are found in
a randomly selected abstract are not expected to
be related with a function change relationship.
To generate pairs of negative mentions, we used
a widely available Named Entity Recognition
(NER) and Entity Linking system (see Section
3) to find mentions of genes and diseases in
the abstracts. An entity mention predicted by
NER was aligned to a labelled entity mention
in the training data if they are both grounded
to the same identifier. A pair was aligned if
both its entity mentions (gene and disease) could
be aligned. In less than 20% of the pairs we
performed manual alignment in order to improve
the training signal. The dev set, however, was kept
intact to ensure strict evaluation. The resulting
distribution of relations is highly skewed towards
the negative labels (‘No relation’); the training set
has the following distribution (No relation:
0.939, GOF: 0.017, LOF: 0.03,
REG: 0.012, COM: 0.0007) while for the
dev set, it is (No relation: 0.935,
LOF: 0.027, GOF: 0.019, REG:
0.016, COM: 0.003). ‘COM‘ is the
least represented relationship with only two
examples in the train set and two in the dev set.

3 Method

This task can be decomposed into an NER step
to obtain all gene-disease mention pairs in an ab-
stract followed by a relation extraction (RE) step
to predict the relation type for each mention pair
found.

For NER, we use Pubtator (Wei et al., 2013) to
recognise spans tagged as genes or diseases. The
main focus of our paper is performing relation ex-
traction given NER labels. The reported results,
however, don’t assume gold NER labels.

Relation Extraction Model Our model is a
simple extension of SciBERT (Beltagy et al.,
2019) for use in relation extraction, inspired
by the encoding of mention pairs and textual
context used in (Alt et al., 2019). SciBERT,
which utilises the same model architecture as
BERT-base, consists of 12 stacked transformer
encoders each with 12 attention heads. It is
pre-trained using two objectives: Masked lan-
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guage modelling (Cloze task (Taylor, 1953))
and next sentence prediction. When trained,
it is provided with sentence pairs represented
as follows: [CLS] This is sentence 1
[SEP] This is sentence 2 [SEP]. The
[SEP] token indicates when each sequence ends.
The final hidden state of the [CLS] token is fed
into a classifier to predict whether the two sen-
tences appear sequentially in the corpus. As a
result, the final hidden state of the [CLS] token
learns a representation of the relationship between
the two input sentences.

We adapt SciBERT for relation extraction
by fine-tuning the representation learnt by
the [CLS] hidden state. We encode each
pair of gene-disease mentions along with the
corresponding PubMed abstract in the fol-
lowing format: [CLS] gene-mention
disease-mention [SEP] This is the
PubMed abstract [SEP]. This input data
is fed into SciBERT and the final hidden state
of its [CLS] token is passed into a single linear
layer to predict the relation type expressed in that
abstract for that gene-disease mention pair. The
[CLS] hidden state which was pre-trained to
learn a representation of the relationship between
two sentences is now fine-tuned to learn which
relationship class exists between a gene-disease
pair (first ‘sentence’) and a PubMed abstract
(second ‘sentence’). Our encoding is similar to
the approach proposed in (Alt et al., 2019). This
adaptation, while simple, is powerful because
it is completely agnostic to domain-specific
idiosyncrasies; for example, it can be used for any
entity types and relation labels. Further, as it has
already been pre-trained on a large unstructured
corpus, it can be fine-tuned using a considerably
smaller dataset.

Model training We use negative log likelihood
of the true labels as a loss function. We train for
at most 40 epochs with early stopping based on
the dev set performance. We used two early stop-
ping criteria alternatives: the macro-averaged F1-
score over all labels and over just the positive la-
bels. Training stops if the score used as stopping
criterion does not increase on the dev set for 10
consecutive epochs or the maximum number of
epochs has been reached. The batch size is chosen
to be 32 and the maximum sequence length of each
input sequence is set to be 350 Wordpiece (sub-
word) tokens. This is due to memory constraints.

P R F1 Supp.
No rel 0.934 0.372 0.532 627
REG 0.174 0.087 0.116 11
COM 0 0 0 2
LOF 0.076 0.307 0.122 19
GOF 0.022 0.577 0.042 12
Micro-all 0.368 0.368 0.368
Macro-all 0.241 0.268 0.162
Micro-pos 0.033 0.322 0.060
Macro-pos 0.068 0.243 0.070

Table 1: Model results on the four pre-defined classes,
as well as ‘No rel’ (the negative class) when the macro-
averaged F1-score (over the positive labels only) is
used as our early stopping criterion. P, R and F1
stand for Precision, Recall and F1-score respectively;
support = true positives + false negatives. Micro-all
and Macro-all are the micro- and macro-averaged met-
rics for all classes while Micro-pos and Macro-pos are
the micro- and macro-averaged metrics for only the
positive classes (i.e. four classes excluding ‘No rel’).

For each batch, we used down-sampling to ensure
that each class was represented equally on aver-
age. When training, we observed that our results
were very sensitive to the classifier layer weight
initialisations. This same behaviour was reported
in the original BERT paper (Devlin et al., 2018).
To address this, we performed 20 random restarts
and selected the model that performs the best on
the dev set (for each of the two stopping criteria).

4 Experiments and results

We report the standard classification metrics on
the dev set: precision (P), recall (R), and F1-score
(F1). For each one of these metrics, we include
the macro-averaged values, the micro-averaged
values i) over all relation labels and ii) restricted to
just the positive ones. We also report the per-class
values (in a one-vs-all fashion). The best results
are shown for both of the early stopping criteria
used (see Tables 1 and 2).

Random sampling-based baseline We com-
pare our model performance against a simple base-
line that predicts the class label by sampling from
the categorical distribution of labels as calculated
from the training set. Given the strongly skewed
class distribution (which has low entropy of 0.46
bits, compared to 2.32 bits for a 5-class uniform
distribution, and is therefore highly predictable),
this is a strong baseline, especially for metrics re-
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P R F1 Supp.
No rel 0.937 0.761 0.840 627
REG 0 0 0 11
COM 0 0 0 2
LOF 0.214 0.040 0.067 19
GOF 0.038 0.429 0.070 12
Micro-all 0.722 0.722 0.722
Macro-all 0.238 0.246 0.196
Micro-pos 0.037 0.141 0.059
Macro-pos 0.063 0.117 0.034

Table 2: Model results on the four pre-defined classes,
as well as ‘No rel’ (the negative class) when the macro-
averaged F1-score (over all labels) is used as our early
stopping criterion. All terms used here as defined in
Table 1.

P R F1 Supp.
No rel 0.934 0.92 0.927 627
REG 0 0 0 11
COM 0 0 0 2
LOF 0.043 0.053 0.048 19
GOF 0 0 0 12
Micro-all 0.862 0.863 0.863
Macro-all 0.195 0.195 0.195
Micro-pos 0.019 0.023 0.021
Macro-pos 0.011 0.013 0.012

Table 3: Baseline results on the four pre-defined
classes, as well as ‘No rel’ (the negative class). All
terms used here as defined in Table 1.

ported on frequent classes. Table 3 summarises the
results, which have been averaged over 1,000 ran-
dom sampling experiments. As expected, all met-
rics can achieve high scores on the negative (and
by far the largest) class, illustrating how mislead-
ing micro-averaging with large classes can be as
an indicator of model performance. Some classes
have zero scores, which is unsurprising given their
very low support in the dev set.

Discussion For both early stopping criteria men-
tioned above, our model significantly outper-
formed the random baseline on macro-averaged
metrics and per-class metrics. The model obtained
relatively good performance on the positive labels
especially when taking into account the consid-
erable class imbalance. When optimised to the
macro-averaged F1-score over just the positive la-
bels, the model performance was unsurprisingly
slightly superior over the positive labels compared

to when optimised using the macro-averaged F1-
score over all labels. However, this came at the
expense of a loss in recall on the negative labels.
To generate predictions on the test set, we chose
the model optimised using the macro-averaged F1-
score over just the positive labels.

Pubtator NER performance The performance
of our relation extraction model is dependent on
the results of the named entity recognition tool.
Here we briefly summarise the performance of the
Pubtator NER tool on the dev set. There are 44
entity pairs with positive labels in the dev set. Of
these 44, Pubtator correctly identified 24 of them
with an exact string match. For the remaining 20,
14 were identified but it was not an exact string
match, and for the other 6, at least one of the en-
tities was not found. We were fairly strict for our
dev set evaluation, and so unless there was a per-
fect string match, the entities were not considered
aligned to the labelled data. This would have de-
graded our performance metrics.

5 Related work

Many biomedical relation extraction systems have
often relied hand-crafted linguistic features (Gu
et al., 2016; Peng et al., 2016) but recently also
convolutional neural networks (Nguyen and Ver-
spoor, 2018; Choi, 2018), LSTM (Li et al., 2017;
Sahu and Anand, 2018) or a combination of ma-
chine learning models and neural-network-based
encoders (Zhang et al., 2018; Peng et al., 2018).
A recent paper (Verga et al., 2018) achieves state-
of-the-art results on biomedical relation classifi-
cation for chemically-induced diseases (CDR (Li
et al., 2016)) and ChemProt (CPR (Krallinger M.,
2017)), by using a Transformer encoder (Vaswani
et al., 2017) and end-to-end Named Entity Recog-
nition and relation extraction, without, however,
leveraging transformer-based language model pre-
training. In the general domain, (Pawar et al.,
2017) and (Smirnova and Cudr-Mauroux, 2019)
provide a comprehensive review of different rela-
tion extraction paradigms and methods that have
been developed to date.

6 Conclusions and further work

We have presented a system that extracts mentions
of biomedical entities and classifies them into one
of four function change relations (or absence of a
relation). Our system leverages widely available
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language representations pre-trained on biomedi-
cal data and utilises minimal task-specific archi-
tecture, while not relying on specially engineered
linguistic features. Despite the model simplicity
and the class imbalance in the data (even within
the four non-negative classes), our model is able
to significantly outperform the random baseline.

Our model can be improved by using more re-
cent language modeling methods, such as XLNet
(Yang et al., 2019), and different ways of encoding
the mention pairs and textual context (e.g. by us-
ing not only the hidden state of the [CLS] token
but also the hidden states of the entity mentions
as input to the relationship classifier). Different
methods can be explored for addressing class im-
balance (e.g. a cost-sensitive classifier, data aug-
mentation etc). Further, an end-to-end Named En-
tity Recognition and Relation Extraction architec-
ture can be devised. It would also be interesting
to compare our model against more competitive
baselines.
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