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Abstract 

Understanding the pathogenesis of genetic 
diseases through different gene activities 
and their relations to relevant diseases is 
important for new drug discovery and drug 
repositioning. In this paper, we present a 
joint deep learning model in a multi-task 
learning paradigm for gene mutation-
disease knowledge extraction,  
DeepGeneMD, which adapts the state-of-
the-art hierarchical multi-task learning 
framework for joint inference on named 
entity recognition (NER) and relation 
extraction (RE) in the context of the AGAC 
(Active Gene Annotation Corpus) track at 
2019 BioNLP Open Shared Tasks 
(BioNLP-OST). It simultaneously extracts 
gene mutation related activities, diseases, 
and their relations from the published 
scientific literature. In DeepGeneMD, we 
explore the task decomposition to create 
auxiliary subtasks so that more interactions 
between different learning subtasks can be 
leveraged in model training. Our model 
achieves the average F1 score of 0.45 on 
recognizing gene activities and disease 
entities, ranking 2nd in the AGAC NER 
task; and the average F1 score of 0.35 on 
extracting relations, ranking 1st in the 
AGAC RE task.   

1 Introduction 

Drug repositioning has been regarded as a highly 
promising strategy for translational medicine 
(Wang and Zhang, 2013). One pharmacological 
hypothesis is that if a disease is caused by a 
mutated gene with gain of function (GOF) or loss 
of function (LOF), an antagonist/agonist chemical 
targeting the GOF/LOF mutated gene is a drug 
                                                             
* Correspondence: feifan.liu@umassmed.edu 
† Two authors contribute equally.   

candidate for this disease (Wang and Zhang, 
2013). Therefore, identifying and understanding 
the pathogenesis of genetic diseases as well as 
drug actions becomes an essential task. Among 
ways to test the above drug discovery hypothesis, 
computational methods through data mining (i.e. 
in silico) attract increasing attention over 
experimental methods (i.e. in vivo or in vitro) as 
the former ones are more cost-effective and time-
efficient (Gachloo et al., 2019).  
    PubMed contains over 28 million biomedical 
article abstracts (Fiorini et al., 2018) and continues 
to grow rapidly, providing a valuable data resource 
to mine and extract this type of knowledge in a 
large scale. The 2019 AGAC shared tasks (Wang 
et al., 2018) are organized to facilitate efforts of 
extracting gene mutation-disease knowledge. In 
this study, we will focus on task 1 and task 2. Task 
1 is a NER task where 12 concept entities 
representing different gene activities (e.g. 
variation, interaction, cell physiological activity, 
gene, protein, etc.), diseases, and regulatory 
actions (e.g. regulation, positive_regulation, 
negative_regulation, etc.) will be identified from 
free-text PubMed abstracts, while Task 2 is a RE 
task where “ThemeOf” and “CauseOf” relations 
will be extracted among entities recognized in 
Task 1. For instance, in the sentence “The 
[mutation]Variation resulted in a severe 
[loss]Negative_Regulation of [DAX1]Gene [repressor 
activity]Molecular_Physiological_Activity.”, there are three 
relations among 4 entities: (1) CauseOf: 
“mutation” ® “loss”; (2) ThemeOf: “repressor 
activity” ® “loss”; (3): ThemeOf: “DAX1” ® 
“repressor activity”. Detailed definitions of each 
entity and relation may be found in (Wang et al., 
2018).   
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Recently, text mining approaches have been 
developed to assist in the discovery of novel 
associations between existing drugs and new 
indications for hypothesis generation in 
connection with drug repurposing (Andronis et al., 
2011). The emergence of deep learning 
approaches in natural language processing (NLP) 
propelled text-mining based drug knowledge 
discovery research, especially on the NER task 
(Gachloo et al., 2019). Effectively training deep 
neural networks, however, typically requires a 
large number of labeled samples, which are often 
prohibitively expensive to obtain in real-life 
applications (Zhang and Yang, 2018). As a popular 
solution to this data insufficient problem, Multi-
Task Learning (MTL) (Caruana, 1997) has been 
widely applied and has led to successes across all 
applications of machine learning, including speech 
recognition (Deng et al., 2013), NLP (Collobert 
and Weston, 2008), computer vision (Ren et al., 
2015) and drug discovery (Ramsundar et al., 
2015).    

In this paper, we proposed DeepGeneMD, a 
joint deep learning approach in a multi-task 
learning setting for mining gene mutation-disease 
knowledge from the biomedical literature. Inspired 
by the state-of-the-art hierarchical multi-task 
learning (HMTL) approaches (Sanh et al., 2018), 
we further explore how to create additional 
subtasks interacting with each other in a 
hierarchical manner. To this end, we take into 
account the task’s inherent compositionality and 
decompose the NER task into three subtasks. 
Compared with HMTL, this creates additional 
levels of learning hierarchy between NER 
decomposed subtasks and original NER. The 
hypothesis is that through task decomposition, we 
can enrich the interactions among the semantic 
representations learned at each level of the 
hierarchy, which enables DeepGeneMD to 
incorporate diverse signals from related tasks to 
learn more effective representations for each task 
with optimal generalizability. The contributions of 
this study are: 

(1) Propose DeepGeneMD to extend 
hierarchical multi-task learning through task 
decomposition and enriched inter-task inter-
actions. 

(2) Apply advanced word representations to 
initialize semantic representations of input 
sentences. 

(3) Demonstrate the effectiveness of the 
proposed approach given limited annotated data. 

2 Hierarchical Multi-Task Learning 

The hierarchical model trained in the multi-task 
setup (Hierarchical Multi-Task Learning, HMTL) 
introduces a hierarchical inductive bias between 
different tasks by supervising low-level tasks at the 
bottom layers of the model architecture and 
supervising higher-level tasks at higher layers 
(Hashimoto et al., 2017; Sanh et al., 2018). The 
assumption is that lower-level tasks require less 
linguistic understanding than higher-level complex 
tasks while learning different levels of linguistic 
properties in the hierarchical end-to-end fashion 
enables the higher-level tasks to leverage the 
shared representation of the low-level tasks.  

We formulated the 2019 AGAC task 1 and 2 into 
a hierarchical multi-task learning problem, which 
can be addressed using the HMTL architecture 
similar to (Sanh et al., 2018). As shown in Figure 
1, the task 1 (NER, recognize gene activity 
concepts and disease entities) is considered as a 
lower-level task while task 2 (RE, extract 
relationship among concept/entity pairs) as a 
higher-level task, and the dashed lines indicate 
interactions among tasks. For a given input 
sentence, the embedding layer concatenates the 
Glove word-level embedding (Pennington et al., 
2014), contextual ELMo (Peters et al., 2018) word 
embeddings and convolutional neural network 
(CNN) based Character-level word embeddings 
(Chiu and Nichols, 2016) as each word’s expanded 
embeddings (𝑒"). The encoder of Task 1 takes the 
word embedding through multilayer BiLSTM 
(Lample et al., 2016) and outputs an encoded 
sequence (𝑒$%&)  into the final Conditional 
Random Field (CRF) layer for inferring the NER 
output. The encoder of Task 2 takes as the input the 

 

Figure 1: The HMTL (Sanh et al.) architecture for 
AGAC tasks 
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concatenated word embedding, i.e. 𝑒" , with the 
learned vector representation, i.e. 𝑒$%& , from the 
encoder of Task 1 into a linear scorer (Sanh et al., 
2018) for RE inferences. Note that the two tasks 
don’t depend on each other’s output explicitly, but 
RE does use the intermediate encoder 
representation from NER to make better decisions.  

3 The DeepGeneMD System 

Most existing efforts in HMTL approaches are 
limited to existing tasks of interest, however, 
auxiliary tasks have been shown helpful in multi-
task learning (Liebel and Körner, 2018; Niu et al., 
2019). Motivated by this idea, we introduced the 
DeepGeneMD model to create auxiliary subtasks 
into the HMTL structure to further explore the 
potential of HMTL approaches. Compared with 
previous work, the following summarizes the 
differences in our model: 
 
• Upgrade the word representations using state-

of-the-art counterparts as well as customized 
ones trained on domain data. 

• Integrate task decomposition to enable more 
interactions in the HMTL learning structure. 

• Design the hierarchical linking structure to 
accommodate decomposed subtasks, as 
shown in Figure 2. 

3.1 Word Embeddings 
Although Glove is trained on a very large corpus, 
it may still lack domain coverage when processing 
medical texts. To overcome this challenge, we 
utilized in our model a customized word 
embedding (Jagannatha and Yu, 2016) trained 
through skip-gram setting using all PubMed open 
access articles, 99,700 EHR notes, and English 
Wikipedia articles in 2015. This embedding 
contains 3 billion tokens and the embedding 
dimension is 200.  

BERT (Bidirectional Encoder Representations 
from Transformers) builds upon recent work in 
pre-training contextual representations, and have 
demonstrated new state-of-the-art performance 
when applied on various NLP tasks (Devlin et al., 
2018), compared with previous models, e.g. ELMo 
(Peters et al., 2018). Therefore, we exploited the 
BERT representations in the DeepGeneMD model 
to provide contextual representations of each word 
in the input sentence. Following  (Sanh et al., 2018), 
we also used character CNN word embeddings to 
accommodate the out of vocabulary (OOV) 
problems. As shown in Figure 2, the input of our 
model will be mapped to a concatenated vector of 
customized embedding, BERT, and character CNN 
embeddings.   

3.2 Task Decomposition 
The rationale of task decomposition is two-folds. 
First, it could create auxiliary subtasks to be 
engaged in the HMTL structure, and the 
supervision on those auxiliary tasks is expected to 
provide additional information through sharing 
their learned language representations. Second, 
decomposed subtasks reduce the complexity 
compared with the original task, holding the 
potential of learning from a unique perspective. In 
this study, we applied the task decomposition on 
the AGAC NER task in which there are 12 types of 
entities to be identified, such that each subtask 
recognizes a subset of entity types. We empirically 
set the number of subtasks as 3 based on the 
hypothesis that too many subtasks may introduce 
noise during model training.  

To determine which entity goes to which 
subtask, we calculated a statistical measure, 
roleRatio, for each entity as in equation (1) which 
is expected to capture statistical characteristics 
regarding the role each entity plays when relating 
to other entities.  

𝑟𝑜𝑙𝑒𝑅𝑎𝑡𝑖𝑜 = 𝐹𝑟𝑒𝑞234_6378/𝐹𝑟𝑒𝑞234_:7;4     (1) 

 

Figure 2: The architecture of the proposed 
DeepGeneMD model 
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Here “Freqrel_head” and “Freqrel_tail” indicate 
respectively how many times the entity serves as 
the head and tail of a participating relationship in 
the training data. Each relation starts from the head 
entity and points to the tail entity. Based on the 
value of roleRatio, we split all the entities into 3 
subgroups, each containing 4 entity types:  

Subgroup Entities 

A 
PosReg (positive regulation), NegReg 
(negative regulation), Reg (regulation), 
Interaction 

B Gene, Pathway, Protein, Disease 

C 
Enzyme, Var (variation), CPA (cell 
physiological activity), MPA 
(Molecular physiological activity) 

Table 1: Subgroups of 12 Entities for Task 
Decomposition  

In subgroup A, the roleRatio values of all the 
entities are all less than 1 indicating they are more 
likely to be the tail entity of a relation. For entities 
in subgroup B and C, we split them in a stratified 
way, each of them containing both high and low 
roleRatio entities, e.g. Gene from subgroup B and 
Enzyme from subgroup C have the largest 
roleRatio of 27 and 14.5 respectively.  

The corresponding subtasks to identify those 
subgroups are denoted as NER-A, NER-B, and 
NER-C respectively, and the original NER for 12 
entities as NER.  

3.3 Interaction Linking Structure 
There are different ways to link different subtasks 
in the HMTL structure. In our model, we designed 
the structure as shown in Figure 2. The dashed 
lines indicate interaction connections between 
tasks. The task pointed by the arrow is on the 
higher-level of HMTL layer, which has access to 
the learned language representations from all the 
other tasks pointing to it. For instance, the outputs 
of BiLSTM encoders for NER-A, NER-B, and 
NER-C are concatenated as the part of the input of 
another two higher-level tasks: (1) NER for 12 
entities (Task 1) (2) RE for two relations (Task 2). 
In addition, as NER-A, NER-B and NER-C can 
also produce outputs for Task 1, we can combine 
their prediction result in a simple ensemble 
manner, which may lead to better performance. 

4 Experiments 

4.1 Preprocessing 
We randomly selected 25 (10%) documents from 
the training data as the validation set. The model is 

trained on the remaining 225 documents and the 
performance evaluated on the validation set is used 
for model tuning. All the entities are labeled 
through BIOUL (Begin, Inside, Outside, Unit, Last) 
labeling schema.  

4.2 Hyperparameters and Implementation 
Details 

We applied the same hyperparameter setting used 
in (Sanh et al., 2018) except the following 
adjustment based on validation performance: (1) 
we increased the dropout rate from 0.2 to 0.25 for 
NER related tasks; (2) We increased the dropout 
rate from 0.2 to 0.3 for the RE task.  

We used various batch sizes (4, 8, 16, 32 and 64) 
for the RE task when training the DeepGeneMD 
system. The resulting five settings are denoted as 
DeepGeneMD-4, DeepGeneMD-8, DeepGene-
MD-16, DeepGeneMD-32, and DeepGeneMD-64. 
We also trained an HMTL Model using the 
structure in Figure 1 but with our new word 
representations, denoted as HMTL-New.  

We adopted the same training method called 
proportional-sampling as in (Sanh et al., 2018): 
after each parameter update, a task is randomly 
selected and a batch of the dataset attached to this 
task is also randomly sampled. The probability of 
sampling a task is proportional to the relative size 
of each dataset compared to the size of all the 
datasets. 

4.3 Results 
As mentioned earlier, NER results can be taken 
from different subtask module, and RE results can 
be taken from different training settings with 
different batch size. We tried different merging 
strategies when submitting results to the 
organization committee. In total, we submitted 
three runs: 

• Run1: DeepGeneMD-4 for task 1;  
HMTL-New for task 2. 

• Run2: Merged results from original NER 
task in DeepGeneMD-4 and three 
subtasks (NER-A, NER-B, NER-C) in 
DeepGeneMD-16 for task 1; 
DeepGeneMD-8 for task 2.  

• Run3: Merged results from original NER 
task in DeepGeneMD-4, NER-A subtask 
in DeepGeneMD-16, NER-B subtask in 
DeepGeneMD-32 and NER-C subtask in 
DeepGeneMD-64 for task 1; 
DeepGeneMD-8 for task 2.  

When merging results from different task 
outputs, conflicts are empirically handled by 
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prioritizing outputs from three subtasks (NER-A, 
NER-B, NER-C) based on the assumption that 
they are tailored specifically to a subset of entities.  

The overall performance of our three submitted 
runs is shown in Table 2. It is observed that Run 2 
achieved the best F1 score of 0.35 for RE and Run 
1 yielded the best F1 score of 0.45 for NER. It 
suggests that DeepGeneMD-8 benefits from task 
decomposition and more inter-task interactions for 
RE tasks. More experiments are needed to analyze 
each component’s contribution to the whole 
learning structure.  

The entity-level performance for our best-
performing NER run (Run 1) is presented in Table 
3. The performance on each entity type varies, and 
most of them achieve higher recall (e.g. 0.77 for 
Var and 0.7 for Gene) except for Protein (recall of 
0.08). There are three types of entities which the 
system fails to recognize: Pathway, Enzyme, 
Interaction. It may be due to the lack of training 
instances for those entities, which is demonstrated 
in Table 4. Those three entities have less than 30 
examples (less than 1%) in training, compared with 
more than 200 examples in most entity types. It 
also explains the low recall for protein as it has less 
than 100 (2.77%) training instances.   

Table 5 shows the detailed performance of the 
best-performing run of our system on the relation 
extraction task. The system achieved similar recall 
value (~0.31-0.32) on both relations, but the much 
higher precision score for the "CauseOf” relation 
(0.54) than “ThemeOf” (0.35).  

5 Error Analysis 

We conducted some error analysis on the 
validation dataset and some examples are shown 
below.  

• False Negatives 

[Loss of function]Var in [ROBO1]Gene is 
[associated]Reg with [tetralogy of 
Fallot]Disease and septal defects. 

In this sentence, our system only 
recognized “ROBO1” as Gene but failed 
on other entities. It could be due to the 
limited training data restricting the 
learning capacity of the model. 

• False Positives 

In 2006, mutations in progranulin gene 
(GRN) that cause haploinsufficiency 
were found in familial cases of 
frontotemporal dementia (FTD). 

Submission Precision Recall F1 

NER 
Run1 0.36 0.59 0.45 
Run2 0.33 0.64 0.44 
Run3 0.34 0.62 0.44 

RE 
Run1 0.47 0.25 0.33 
Run2 0.4 0.31 0.35 
Run3 0.4 0.3 0.34 

Table 2:  Official Submission Results in AGAC 

 
Entity Name Precision Recall F1 
Var 0.38 0.77 0.5 
Pathway - 0 0 
MPA 0.19 0.48 0.27 
CPA 0.12 0.14 0.13 
Reg 0.63 0.46 0.53 
PosReg 0.35 0.65 0.46 
NegReg 0.41 0.66 0.5 
Disease 0.45 0.57 0.5 
Gene 0.33 0.7 0.45 
Protein 0.42 0.08 0.14 
Enzyme - 0 0 
Interaction - 0 0 
Overall 0.36 0.59 0.45 

Table 3:  Entity-level NER Performance of Run1 

 

 

Relation Precision Recall F1 
CauseOf 0.54 0.32 0.4 
ThemeOf 0.35 0.31 0.33 
Overall 0.4 0.31 0.35 

Table 5:  Relation-level RE Performance of Run2  

 

 Entity Name  Count Percentage 
Var 733 22.07% 
Gene 526 15.84% 
MPA 417 12.56% 
NegReg 370 11.14% 
Disease 334 10.06% 
PosReg 327 9.85% 
CPA 227 6.84% 
Reg 215 6.47% 
Protein 92 2.77% 
Enzyme 29 0.87% 
Interaction 27 0.81% 
Pathway 24 0.72% 
Overall 3321 100% 

Table 4: Entity Statistics of Training Data 
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In this case, our model incorrectly 
recognized “haploinsufficiency” as Var 
which is not annotated in the ground-
truth. Here the contextual language (e.g. 
GRN, cause) confuses the system.  

• Potential Annotation Error 

Gain-of-function mutations in PDR1, … 

For this example, the system identified 
“mutations” as Var, and “PDR1” as Gene 
which seems reasonable, but those are not 
annotated in the ground-truth.  

 

6 Conclusion and Discussion 

We developed the DeepGeneMD system in the 
hierarchical multi-task learning setup and applied 
it to extract gene mutation-disease knowledge 
from PubMed biomedical literature. By exploring 
task decomposition and new word embeddings, the 
resulting model demonstrated promising results, 
ranking 2nd in the NER Task and 1st in the RE Task 
among all participant teams. The idea of task 
decomposition and creating additional interactions 
among different subtasks can also apply to other 
applications in the hierarchical multi-task learning 
setting. 

There are several limitations to this study. First, 
we applied a heuristic approach based on roleRatio 
value for the task decomposition, which is 
relatively ad-hoc and may not be optimal. Second, 
there are different structure candidates to engage 
different subtasks in an HMTL setting, and we 
simply made an empirical design for the current 
DeepGeneMD system, which may have limited the 
potential of mutual benefits of multiple learning 
tasks. Third, when merging results from different 
components, we assume that decomposed subtasks 
may have learned better knowledge regarding the 
corresponding subset of entities, but that 
assumption may not hold. 

For future work, we plan to tune the hyper-
parameters extensively and investigate whether 
applying different interaction linking structures 
among subtasks and leveraging various ways of 
task decomposition can further improve the 
system’s performance. In addition, we will apply 
our framework on various datasets from different 
domains to evaluate its generalizability and 
robustness.  
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