
Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 417–424
Hong Kong, Nov 4, 2019. c©2019 Association for Computational Linguistics

417

Normalization of Indonesian-English Code-Mixed Twitter Data

Anab Maulana Barik, Rahmad Mahendra, Mirna Adriani
Faculty of Computer Science, Universitas Indonesia

Depok, Indonesia
maulanaanab@gmail.com, {rahmad.mahendra, mirna}@cs.ui.ac.id

Abstract

Twitter is an excellent source of data for NLP
researches as it offers a tremendous amount of
textual data. However, processing tweet to ex-
tract meaningful information is very challeng-
ing, at least for two reasons: (i) using non-
standard words as well as informal writing
manner, and (ii) code-mixing issues, which is
combining multiple languages in single tweet
conversation. Most of the previous works
have addressed both issues in isolated different
task. In this study, we work on normalization
task in code-mixed Twitter data, more specifi-
cally in Indonesian-English language. We pro-
pose a pipeline that consists of four modules,
i.e tokenization, language identification, lex-
ical normalization, and translation. Another
contribution is to provide a gold standard of
Indonesian-English code-mixed data for each
module.

1 Introduction

Twitter has gained interest from Natural Language
Processing (NLP) researchers over the last decade
because it offers various textual data, such as pub-
lic opinions, conversation, and breaking news, in
a huge number. However, tweets are mostly noisy
texts as they contain a lot of typos, slang terms,
and non-standard abbreviations. This noisy data
results dropping in the accuracy of the past NLP
systems (Liu et al., 2011).

Another common phenomenon found in social
media, including Twitter, is that people tend to
alternate between multiple languages in one ut-
terance. The embedding of linguistic units such
as phrases, words, and morphemes of one lan-
guage into the usage of other different languages
is known as code-mixing (Myers-Scotton, 1993).
The phenomenon of code-switching causing grief
for NLP systems due to the grammar and spelling
variations.

Indonesia, the most fourth populous country in
the world, is bilingual1. While Bahasa Indonesia
is the only official language, English is also used
in formal education and business. Nowadays, the
Indonesian young generation gets used to mix both
languages in daily life. Code-mixing is frequently
found in social media conversation in Indonesia.

In this paper, we design standardization system
for Indonesian-English code-mixed Twitter data.
Our solution is a pipeline of 4 modules, i.e. tok-
enization, language identification, lexical normal-
ization, and translation.

1. Tokenization: The tweet is tokenized into
several tokens. Each token may represent a
word, an idiom, an interjection (e.g. haha,
hehe, wkwkw), numbers, emoticon, punctua-
tion marks, and tweet entity (i.e link, hashtag,
mention). In this study, the name of entities
i.e movies, people, etc. is considered as one
single token.

2. Language Identification: Every token
within tweet is labeled with corresponding
language tag. The label ’en’ is assigned for
English token, ’id’ for Indonesian token, and
’rest’ for the token that not clearly belongs
to either English or Indonesian (e.g. proper
name, number).

3. Normalization: Tokens with label ’id’ or
’en’ are normalized into standard form. To
reduce the number of token variations in the
data set, we reduce character repetition to be
not more than two (e.g. the interjection token
”heheeee” is standardized into ”hehee”). The
tokens with label ”rest” are left as they are

1https://blog.swiftkey.com/celebrating-international-
mother-language-day/



418

4. Translation: We merge the sequence of nor-
malized tokens back into complete tweet, and
translate the tweet into Indonesian, with the
exception of the name entities that are kept in
original language (i.e term ”The Lion King”
is not translated into ”Raja Singa”).

To our knowledge, this is the first attempt
to normalize Indonesian-English code-mixed lan-
guage. For our experiment, we build the data set
consisting of 825 tweets.

2 Related Work

Text normalization has been studied for Twitter
data using a variety of supervised or unsuper-
vised methods. Liu et al. (2011) modelled lexi-
cal normalization as a sequence labelling problem,
by generating letter-level alignment from standard
words into nonstandard variant words, using Con-
ditional Random Field (CRF).

Beckley (2015) performed English lexical nor-
malization task in three steps. First, compiled
a substitution list of nonstandard into standard
words, then built a rule-based components for -ing
and duplication rule as it is often found in the data
set. Last, applied sentence-level re-ranker using
bigram Viterbi algorithm to select the best candi-
date among all the candidates generated from first
and second steps.

Sridhar (2015) proposed an unsupervised ap-
proach for lexical normalization by training a
word embedding model from large English cor-
pora. The model is used to create a mapping be-
tween non-standard into standard words. Hanafiah
et al. (2017) approached lexical normalization for
Indonesian language using the rule-based method
with the help of a dictionary and a list of slang
words. If the token is OOV, then they create a can-
didate list based on the consonant skeleton from
the dictionary.

For code-mixed data, Singh et al. (2018) cre-
ated clusters of words based on embedding model
(pre-trained on large corpora) for the semantic fea-
tures and Levenshtein distance for lexical features.
Then, one word is picked to become the parent
candidate for each cluster, and other words in each
cluster are normalized into the parent candidate.

Mave et al. (2018) worked a language iden-
tification task on code-mixed data. The experi-
ment shown that Conditional Random Field (CRF)
model outperformed Bidirectional LSTM.

Types Count
Number of tweets 825
Number of tokens 22.736
Number of ’id’ tokens 11.204
Number of ’en’ tokens 5.613
Number of ’rest’ tokens 5.919

Table 1: Data Set Detail

Dhar et al. (2018) augmented existing ma-
chine translation by using Matrix Language-
Frame Model proposed by Myers-Scotton (1997)
to increase the performance of the machine trans-
lations apply on code-mixed data.

Bhat et al. (2018) presented a universal depen-
dency parsing with the Hindi-English dataset us-
ing a pipeline comprised of several modules such
as language identification, back-transliteration,
normalization using encoder-decoder framework
and dependency parsing using neural stacking. It
is found that normalization improves the perfor-
mance of POS tagging and parsing models.

3 Data Set

We utilize three kinds of Twitter corpora in this
study i.e. English, Indonesian, and Indonesian-
English code-mixed corpus. We obtain 1.6M En-
glish tweets collection from ’Sentimen40’ (Go
et al., 2009) and 900K Indonesian tweets from
Adikara (2015). We collect 49K Indonesian-
English code-mixed tweets by scrapping them us-
ing Twitter API. To harvest those tweets, first we
take 100 English and Indonesian stopwords from
wiktionary2. To fetch code-mixed tweets, we use
the stopwords as query term and set the language
filter as the opposite of the stopword one (e.g. In-
donesian tweets are collected using a English stop-
word as a query, vice versa).

We select 825 tweets randomly from code-
mixed corpus for the experiment. The data is la-
beled by two annotators. The gold standard is con-
structed for four individual tasks.

The inter-annotator agreement has 97,92% for
language identification and 99,23% for normaliza-
tion. Our data has a code-mixing index (Das and
Gambäck, 2014) of 33.37, means that the level of
mixing between languages in the data is quite high
(see Table 1 for detail)

2https://en.wiktionary.org/wiki/Wiktionary:Frequency
lists



419

Figure 1: An Input-Output Example of Pipeline Model

4 Methods

The main objective of this study is to standardize
the lexical form of code-mixed tweets. To achieve
this, we propose a pipeline which is composed of
four modules, tokenization, language identifica-
tion, lexical normalization, and translation. The
pipeline takes the code-mixed Indonesian-English
tweet as the input, runs each module sequentially,
and produces tweet in well-formed Indonesian
language as output. Figure 1 depicts the pipeline
model with an example of input and output.

4.1 Tokenization
The tokenization module takes a single tweet as in-
put, and produces a sequence of tokens (one token
can be a multiword expression) as output. Default
delimiter in tokenization, i.e. whitespace, does not
work well for social media domain due to non-
standard writing style, for example, space disap-
pearance (of course not..absolutely not) and space
excesses (E N D). More specific problem found in
the Indonesian is writing inaccuracy of morpho-
logical affix ”di” as a preposition, and vice versa.
While whitespace is needed to separate preposi-
tion ”di” and the next word (e.g. ”di kelas”, in
English: ”at class”); this does not apply for affix-
ation case (e.g. ”dimakan”, in English: ”eaten”).

We approach this task as a sequence labeling at
the character level with inside/outside chunk rep-
resentation, as introduced by Ramshaw and Mar-
cus (1999). We use three different tags: B rep-
resents the beginning of a new chunk, I means
that the current token is inside the chunk, and O
indicates that the current token is outside of any
chunks. For instance, a sentence ”this car” will be
encoded into ”BIIIOBII”.

The features set used in tokenization comprises
of morphological information of the character i.e
current character, is alphabet, is digit, is upper-
case, and n-window character (n = 5). Sequence
labeling model is trained using Conditional Ran-
dom Field.

4.2 Language Identification

This module takes a sequence of tokens outputted
from the tokenization module as an input, and
identifies the language for each token. The lan-
guage tag is one of these labels: ’en’, ’id’, ’rest’.

The features set for language identification con-
sist of the current token in which the language to
be determined, morphological information of cur-
rent token, n-neighbor tokens, and n-gram charac-
ter of the current token (n = 5). For morpholog-
ical information, we use the binary features such
as is alphabet, is digit, is capital, contains alpha-
bet, contains digit, and has apostrophes. We do
not include Part-Of-Speech (POS) information in
our selected features, as recommended by Mave
et al. (2018). The model is trained using Condi-
tional Random Field.

4.3 Lexical Normalization

This module takes a sequence of tokens along with
their language tags as input, and normalize the
token one by one independently by substituting
out-of-vocabulary (OOV) tokens into their stan-
dard equivalents that exist in the vocabulary. We
identify nine common types of OOV token within
code-mixed data, as details in Table 2.

Our approach is unsupervised. We create a
mapping between OOV tokens into their stan-
dard forms using word distribution. However,
some types are specific to a language, and can-
not be solved with the word distribution informa-
tion only. Thus, we combine the distributional ap-
proach with the rule-based method. Our method is
outlined as follows.

1. OOV types which are encountered at both
languages is tackled using translation dictio-
nary built from word distribution approaches.

2. For ”reduplication with 2” problem, we re-
moves character 2, apply the reduplication,
and insert the hyphen in the text.



420

Types Language Example / Explanation
Non-standard spelling/typo ’en’, ’id’ lvie or youuuu

Informal Abbreviations ’en’, ’id’
”lht” for ”lihat” (in English: ”see”), ”ppl” for
”people”

Slang words ’en’, ’id’ ”epic” or ”gue” for ”saya” (in English: ”I”)

Spelled phonetically ’en’, ’id’
”plis” for ”please”, ”kalo” for ”kalau” (in English:
”if”)

Reduplication with 2 ’id’

In Indonesian, plural form of noun is written with
a hyphen, e.g. ”orang-orang” (in English: ”peo-
ple”). However, informal writing style often use
the number ”2” to indicate this (e.g. ”orang2”)

Hyphenless reduplication ’id’
On the other hand, the hyphen is sometimes not
written (e.g. ”orang orang”)

Contracted words ’en’ ”im” for ”i am”

Combining English word
with Indonesian prefix (nge-)

’en’

Indonesian people tend to use an informal prefix
(nge-) before the words to stress that the word is
a verb. For instance, the word ”vote” is written as
”ngevote”

Combining English word
with Indonesian suffix (-nya)

’en’

Suffix ”-nya” in Indonesian means the possessive
pronoun (e.g. ”miliknya” similar to ”hers” or
”his”). Suffix ”-nya” can also refers to the definite
article (in English: ”the”). Informally, the suffix is
used to follow English word usage in Indonesian
conversation, e.g. ”jobnya” (in English: ”the job”)

Table 2: Type of OOV Tokens

3. For ”reduplication without hyphen” problem,
we check whether the token consists of mul-
tiple words, then replace the space delimiter
with ”-” if it is a reduplication case.

4. For ”contracted words” problem, we normal-
ize them by utilizing the list provided by
Kooten 3.

5. For problem of ”combining English word
with Indonesian prefix (nge-)”, we remove
the prefix (-nge) from the word.

6. For problem of ”combining English word
with Indonesian suffix (-nya)”, we remove
the suffix (-nya) and add the word ”the” be-
fore the word.

There are two sub tasks in lexical normalization
module. First, create mapping between OOV to-
kens to their standard forms. Then, build the sys-
tem to incorporate the rule-based method with the
distributional semantics.

3https://github.com/kootenpv/contractions

4.3.1 Build OOV and normal word mapping
Word embedding can be used to cluster words be-
cause it can model word relatedness, both syntacti-
cally and semantically. We use embedding model
to construct mapping between OOV and its nor-
mal form. The word embedding model is trained
by using skip-gram architecture (Mikolov et al.,
2013). The procedure is described as follows:

1. Collect Indonesian and English vocabulary
from Kateglo4 and Project Gutebnberg5.

2. For each word normal word in the vocabu-
lary, get 100 most similar words from social
media corpus by using embedding model.

3. For each most similar words wi to
normal word

• If wi exists in the dictionary, it means
that wi is already normalized.
• otherwise, wi is OOV, then add a map-

ping instance between OOV word wi

into normal word.
4http://kateglo.com/
5http://www.gutenberg.org/ebooks/3201



421

4. If an OOV wj is mapped into several
normal word entries, choose one which has
the highest lexical similarity with wj .

We use the lexical similarity function (Has-
san and Menezes, 2013). The function is
based on the Longest Common Subsequence
Ration (LCSR), which is the ratio of the
length of the Longest Common Subsequence
(LCS) and the length of the longer token
(Melamed, 1999). The lexical similarity
function defined as:

lex sim(s1, s2) =
LCSR(s1, s2)

ED(s1, s2)
(1)

LCSR(s1, s2) =
LCS(s1, s2)

MaxLength(s1, s2)
(2)

We apply static mapping as our mapping mech-
anism instead of finding the replacement online
because of the execution time and memory perfor-
mance. It is much faster to look up at the mapping
rather than calculate it from the word embedding
model. Furthermore, the memory needed to store
the mapping is much smaller than the word em-
bedding model.

4.3.2 Combine rules with mapping list
Normalization system employs combination of
hand-crafted rules and mapping of words as fol-
lows.

1. Skip this procedure when the input is not a
word (e.g hastag, mention, link, emoticon).

2. If the token is a multiword (there are more
than one single word that is separated by
white space), split the token into the list of
single words. Try to normalize each word in-
dependently by applying the rules, and merge
them back into one token. For instance, put
the hyphen for reduplication case.

3. If the input is a word, then transform it into
lowercase format. Reduce character repeti-
tion to at most two and consider any pos-
sible transformation. For instance, word
”Pleasssseee” is transformed into ”pleassee”,
”pleasee”, ”pleasse”, and ”please”. Check
whether one of generated transformed word
is a normal form. If not, apply rule-based
strategy. Last, use the mapping list created
by utilizing word embedding.

4.4 Translation

This module aims to merge the list of tokens pro-
cessed in previous modules back into one tweet
and translates the tweet into Indonesian gram-
matical language. The module needs the Ma-
chine Translation (MT) system which is specific to
the Indonesian-English code-mixed text domain.
However, such MT system is not available at this
moment. Dhar et al. (2018) found similar problem
and tackled this by augmenting Matrix Language-
Frame (MLF) model on top of the existing state-
of-the-art MT system.

In the MLF model proposed by Myers-Scotton
(1997), the code-mixed sentence can be splitted
into the dominant language (the matrix language)
and the embedded language. The matrix language
grammar sets the morphosyntactic structure for
the code-mixed sentence, while the embedded lan-
guage borrows words from its vocabulary.

Thus, in this module, first, we merge the list
of tokens into one tweet. Then, we separate the
tweet into several sentences using sentence delim-
iter such as period (.), comma (,), the question
mark (?), the exclamation mark (!), etc. For each
sentence, we decide the language of the sentence
(English or Indonesian sentence). To do that, we
count how many words are English and how many
words are Indonesian. The language which has
a bigger frequency is the dominant language and
also the language of the sentence, and the language
which has a smaller frequency is the embedded
language. After we decide the language of the
sentence, we translate all the words into the lan-
guage of the sentence. Last, if the language of the
sentence in English, we translate the whole sen-
tence into Indonesian. We use Microsoft Machine
Translation6 as the MT system. Figure 2 shows an
example of input and output of translation module.

5 Experiments and Evaluation

We evaluate the performance of our implementa-
tion for each module and the pipeline model as
whole process. First two modules (tokenization
and language identification) are evaluated in su-
pervised way using 4-fold cross validation setting.

Tokenization is evaluated at both character-
level and token-level. The character-tagging
achieves 98.70 for F1-score, while token identi-
fication obtains 95.15 for F1-score.

6https://www.microsoft.com/en-
us/translator/business/machine-translation/



422

Figure 2: An Input-Output Example of Translation Module

The performance of our tokenization module
excels NLTK TweetTokenizer tool, which scores
F1 of 90.98 on evaluating token identification.

Language Identification module gets 89.58
F1-score and 90.11 accuracy. F1-score for label
’en’, ’id’, and ’rest’ are respectively 87.07, 91.99,
and 89.44 (the detail is in Table 3)

Language prec recall F1-score
en 89.90 84.42 87.07
id 88.13 96.22 91.99
rest 94.99 83.96 89.14

Table 3: Language Identification Experiment Result

For evaluation of lexical normalization, we
conduct a number of scenario. We test the dif-
ference of corpus source for building embedding
model, i.e. combined corpora vs separated cor-
pora. In first scenario, we only build single em-
bedding model from merging of Indonesian and
English corpus. While, in later, two distinct mod-
els are learned respective from each monolingual
corpus. We also examine the contribution of rule-
based strategy to enhance the word normalizer.

F1-score and accuracy are used as metric for
evaluation. Those are measured across all the
unique OOV words. If an OOV appears several
times in the corpus, it is counted once. False posi-
tive is defined as a word that is actually a normal-
ized form, but the system detects it as OOV word
and normalizes the word incorrectly. On the con-
trary, false negative is a word that is OOV, but the
system fails to detect it or fails to normalize the
word into its standard form.

The best result is 81.31 for F1-score and 68.50
for accuracy, achieved when the mapping list of
OOV and normal form is provided for separated
language. A set of rules double the performance
of normalization system. See Table 4) for detail.

Type F1-score Accuracy
Combined Corpora 47.49 31.14
Separated Corpora 48.34 31.87
Combined Corpora
+ Rule-based

80.96 68.01

Separated Corpora
+ Rule-based

81.31 68.50

Table 4: Lexical Normalization Experimental Result

Moreover, we investigate the errors by draw-
ing sample of misclassified cases. False positive
mostly happens in affixed words. In this case, af-
fixed word is forced to transform into stem form.
False negative occurs with words that supposed to
be slang words, but they do exist in the vocabu-
lary. For example, the word ”aja” is commonly
slang form of word ”saja” (in English: ”only”), but
”aja” is found in Indonesia dictionary with differ-
ent meanings.

When evaluating translation module, we test
the effect of augmenting Matrix Language-Frame
(MLF) Model into MT system. Incorporating MT
system with MLF Model achieves better perfor-
mance, 71.54 for BLEU and 19.50 for WER, as
presented in Table 6.

Type BLEU WER
Without MLF 66.69 21.45
With MLF 71.54 19.50

Table 5: Translation Experimental Result
(BLEU: higher is better, WER: lower is better)

As integration of aforementioned modules, we
evaluate the pipeline model by conducting four
experiments, 1) comparing raw tweets with final
tweets, 2) comparing raw tweets which have been
translated (without MLF model) into Indonesian
with final tweets, 3) comparing raw tweets which



423

have been translated (with MLF Model) into In-
donesian with final tweets, and 4) comparing raw
tweets which have been normalized and trans-
lated (with MLF Model) into Indonesian with final
tweets. From the experiments, our final pipeline
obtains 54.07 for BLEU and 31.89 for WER. From
Table 6, we can see that each module affects posi-
tively toward the performance of the pipeline. The
pipeline model increases BLEU score for 8 points,
and WER for 14 points compared to the baseline
(raw tweets).

Pipeline BLEU WER
Raw Tweets 46.07 45.75
Raw Tweets + Translation
(1 + 4 Module)

51.02 34.37

Raw Tweets + Translation
with MLF Model (1 + 2 +
4 Modules)

51.75 34.39

Raw Tweets + Normal-
ization + Translation
with MLF Model (Full
pipeline)

54.07 31.89

Table 6: Pipeline Experiment Result
(BLEU: higher is better, WER: lower is better)

6 Conclusion and Future Work

In this paper, we have proposed a pipeline model
comprising of four modules, i.e. tokenization,
language identification, lexical normalization, and
translation. In addition, we also have prepared
gold standard data consisting of 825 Indonesian-
English code-mixed tweets for four different tasks
corresponding to the modules. The data set
is freely available online for research purpose
only.7 We experiments with Indonesian-English
code-mixed Twitter data and the evaluation shows
that our model works satisfactorily. Overall, the
pipeline yields 54.07 scores for BLEU and 31.89
scores for WER.

However, the final result is not as high as the
performance at the translation module because the
final result uses the output from previous mod-
ules as inputs. The error from each module will
propagate to the next modules. At the normal-
ization module, using vector representations from
word embedding for Indonesian-English code-
mixed data quite good and applying the rule-based

7https://github.com/seelenbrecher/code-mixed-
normalization

approach for each language improve the perfor-
mance significantly. At the translation module,
there are some errors caused by the MT system,
but we could not do much about it since we use
the existing MT system.

Moving forward, we would like to augment
more data and enhance technique in order to im-
prove performance of the model. Currently, lex-
ical normalization module is much dependent of
handcrafted rules. While the rule-based approach
can increase the performance, it still not a robust
solution seen from how language evolved.

Acknowledgments

The authors acknowledge the support of Universi-
tas Indonesia through Hibah PITTA B 2019 Pen-
golahan Teks dan Musik pada Sistem Commu-
nity Question Answering dan Temporal Informa-
tion Retrieval.

References
Putra Pandu Adikara. 2015. Normalisasi kata pada

pesan/status singkat berbahasa indonesia. Master’s
thesis, Universitas Indonesia, Depok.

Russell Beckley. 2015. Bekli: A simple approach to
twitter text normalization. In Proceedings of the
Workshop on Noisy User-generated Text, pages 82–
86.

Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Manish Shri-
vastava, and Dipti Misra Sharma. 2018. Uni-
versal dependency parsing for hindi-english code-
switching. arXiv preprint arXiv:1804.05868.

Amitava Das and Björn Gambäck. 2014. Identifying
languages at the word level in code-mixed indian so-
cial media text. In Proceedings of the 11th Interna-
tional Conference on Natural Language Processing,
pages 378–387.

Mrinal Dhar, Vaibhav Kumar, and Manish Shrivas-
tava. 2018. Enabling code-mixed translation: Par-
allel corpus creation and mt augmentation approach.
In Proceedings of the First Workshop on Linguistic
Resources for Natural Language Processing, pages
131–140.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12):2009.

Novita Hanafiah, Alexander Kevin, Charles Sutanto,
Yulyani Arifin, Jaka Hartanto, et al. 2017. Text nor-
malization algorithm on twitter in complaint cate-
gory. Procedia computer science, 116:20–26.



424

Hany Hassan and Arul Menezes. 2013. Social text nor-
malization using contextual graph random walks. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1577–1586.

Fei Liu, Fuliang Weng, Bingqing Wang, and Yang Liu.
2011. Insertion, deletion, or substitution?: nor-
malizing text messages without pre-categorization
nor supervision. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies: short
papers-Volume 2, pages 71–76. Association for
Computational Linguistics.

Deepthi Mave, Suraj Maharjan, and Thamar Solorio.
2018. Language identification and analysis of code-
switched social media text. In Proceedings of the
Third Workshop on Computational Approaches to
Linguistic Code-Switching, pages 51–61.

I Dan Melamed. 1999. Bitext maps and alignment
via pattern recognition. Computational Linguistics,
25(1):107–130.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Carol Myers-Scotton. 1993. Common and uncommon
ground: Social and structural factors in codeswitch-
ing. Language in society, 22(4):475–503.

Carol Myers-Scotton. 1997. Duelling languages:
Grammatical structure in codeswitching. Oxford
University Press.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text
chunking using transformation-based learning. In
Natural language processing using very large cor-
pora, pages 157–176. Springer.

Rajat Singh, Nurendra Choudhary, and Manish Shri-
vastava. 2018. Automatic normalization of word
variations in code-mixed social media text. arXiv
preprint arXiv:1804.00804.

Vivek Kumar Rangarajan Sridhar. 2015. Unsupervised
text normalization using distributed representations
of words and phrases. In Proceedings of the 1st
Workshop on Vector Space Modeling for Natural
Language Processing, pages 8–16.


