
Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 68–75
Hong Kong, Nov 4, 2019. c©2019 Association for Computational Linguistics

68

Large Scale Question Paraphrase Retrieval with
Smoothed Deep Metric Learning

Daniele Bonadiman
University of Trento

Trento, Italy
d.bonadiman@unitn.it

Anjishnu Kumar
Amazon Alexa
Seattle, USA

anjikum@amazon.com

Arpit Mittal
Amazon Alexa
Cambridge, UK

mitarpit@amazon.com

Abstract

The goal of a Question Paraphrase Retrieval
(QPR) system is to retrieve similar questions
that result in the same answer as the orig-
inal question. Such a system can be used
to understand and answer rare and noisy re-
formulations of common questions by map-
ping them to a set of canonical forms. This
task has large-scale applications for commu-
nity Question Answering (cQA) and open-
domain spoken language question-answering
systems. In this paper, we describe a new
QPR system implemented as a Neural Infor-
mation Retrieval (NIR) system consisting of a
neural network sentence encoder and an ap-
proximate k-Nearest Neighbour index for ef-
ficient vector retrieval. We also describe our
mechanism to generate an annotated dataset
for question paraphrase retrieval experiments
automatically from question-answer logs via
distant supervision. We show that the standard
loss function in NIR, triplet loss, does not per-
form well with noisy labels. We propose the
smoothed deep metric loss (SDML), and with
our experiments on two QPR datasets we show
that it significantly outperforms triplet loss in
the noisy label setting.

1 Introduction

In this paper, we propose a Question Paraphrase
Retrieval (QPR) (Bernhard and Gurevych, 2008)
system that can operate at industrial scale when
trained on noisy training data that contains some
number of false-negative samples. A QPR sys-
tem retrieves a set of paraphrase questions for a
given input, enabling existing question answering
systems to answer rare formulations present in in-
coming questions. QPR finds natural applications
in open-domain question answering systems, and
is especially relevant to the community Question
Answering (cQA) systems.

Open-domain QA systems provide answers to a

user’s questions with or without human interven-
tion. These systems are employed by virtual as-
sistants such as Alexa, Siri, Cortana and Google
Assistant. Most virtual assistants use noisy chan-
nels, such as speech, to interact with users. Ques-
tions that are the output of an Automated Speech
Recognition (ASR) system could contain errors
such as truncations and misinterpretations. Tran-
scription errors are more likely to occur for rarer
or grammatically non-standard formulations of a
question. For example ‘Where Michael Jordan
at?’ could be a reformulation for ‘Where is
Michael Jordan?’. QPR systems mitigate the im-
pact of this noise by identifying an answerable
paraphrase of the noisy query and hence improves
the overall performance of the system.

Another use of QPR is with cQA websites such
as Quora or Yahoo Answers. These websites
are platforms in which users interact by asking
questions to the community and answering ques-
tions that have been posted by other users. The
community-driven nature of these platforms leads
to problems such as question duplication. There-
fore, having a way to identify paraphrases can
reduce clutter and improve the user experience.
Question duplication can be prevented by present-
ing users a set of candidate paraphrase questions
by retrieving them from the set of questions that
have been already answered.

Despite some similarities, QPR task differs
from the better known Paraphrase Identification
(PI) task. In order to retrieve the most similar
question to a new question, QPR system needs
to compare the new question with all other ques-
tions in the dataset. Paraphrase Identification (Mi-
halcea et al., 2006; Islam and Inkpen, 2009; He
et al., 2015) is a related task where the objec-
tive is to recognize whether a pair of sentences
are paraphrases. The largest dataset for this task

69

was released by Quora.com1. State-of-the-art ap-
proaches on this dataset use neural architectures
with attention mechanisms across both the query
and candidate questions. (Parikh et al., 2016;
Wang et al., 2017; Devlin et al., 2019). However,
these systems are increasingly impractical when
scaled to millions of candidates as in the QPR set-
ting, since they involve a quadratic number of vec-
tor comparisons per question pair, which are non-
trivial to parallelize efficiently.

Information Retrieval (IR) systems have been
very successful to operate at scale for such tasks.
However, standard IR systems, such as BM25
(Robertson et al., 2004), are based on lexical over-
lap rather than on a deep semantic understanding
of the questions (Robertson et al., 2009), mak-
ing them unable to recognize paraphrases that lack
significant lexical overlap. In recent years, the
focus of the IR community has moved towards
neural network-based systems that can provide a
better representation of the object to be retrieved
while maintaining the performance of the standard
model. Neural representations can capture latent
syntactic and semantic information from the text,
overcoming the shortcomings of systems based
purely on lexical information. Moreover, repre-
sentations trained using a neural network can be
task-specific, allowing them to encode domain-
specific information that helps them outperform
generic systems. The major components of a Neu-
ral Information Retrieval (NIR) system are a neu-
ral encoder and a k-Nearest Neighbour (kNN) in-
dex (Mitra and Craswell, 2017). The encoder is a
neural network capable of transforming an input
example, in our case a question, to a fixed size
vector representation. In a standard setting, the
encoder is trained via triplet loss (Schroff et al.,
2015; Rao et al., 2016) to reduce the distance be-
tween a paraphrase vector when compared to a
paraphrase vector with respect to a non-paraphrase
vector. After being trained for this task, the en-
coder is used to embed the questions that can be
later retrieved at inference time. The encoded
questions are added to the kNN index for efficient
retrieval. The input question is encoded and used
as a query to the index, returning the top k most
similar questions

Public datasets, such as Quora Question Pairs,
are built to train and evaluate classifiers to iden-

1https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs

tify paraphrases rather than evaluating retrieval
systems. Additionally, the Quora dataset is not
manually curated, thus resulting in a dataset that
contains false-negative question paraphrases. This
problem introduces noise in the training procedure
when minimizing the triplet loss, since each ques-
tion is compared with a positive and a negative
example, that could be a false negative, at each
training step. This noise is further exacerbated
in approaches for training that exploit the concept
of hard negatives, i.e., mining the non-paraphrase
samples that are close to paraphrase samples in the
vector space (Manmatha et al., 2017; Rao et al.,
2016). Rather than treating these false negatives
as a quirk of our data generation process, we rec-
ognize that false negatives are unavoidable in all
large scale information retrieval scenarios with or-
ders of millions or billions of documents - it is not
feasible to get complete annotations as that would
be of quadratic complexity in the number of doc-
uments. Usually, in these settings, randomly se-
lected documents are treated as negative examples
- thus the presence of noisy annotations with a bias
towards false negatives is a recurring phenomenon
in machine-learning based information retrieval.

In this work, we propose a loss function that
minimizes the effect of false negatives in the train-
ing data. The proposed loss function trains the
model to identify the valid paraphrase in a set
of randomly sampled questions and uses label
smoothing to assign some probability mass to neg-
ative examples, thus mitigating the impact of false
negatives.

The proposed technique is evaluated on two
datasets: a distantly supervised dataset of ques-
tions collected from a popular virtual assistant sys-
tem, and a modified version of the Quora dataset
that allows models to be evaluated in a retrieval
setting. The effect of our proposed loss and the
impact of the smoothing parameters are analyzed
in Section 4.

2 Question Paraphrase Retrieval

In QPR the task is to retrieve a set of candidate
paraphrases for a given query. Formally, given a
new query qnew, the task is to retrieve k-questions,
Qk (|Qk| = k), that are more likely to be para-
phrases of the original question. The questions
need to be retrieved from a given set of questions
Qall such that Qk ⊆ Qall, e.g., questions already
answered in a cQA website.

70

2.1 System overview
The QPR system described in this paper is made
of two core components: a neural encoder and an
index. The encoder φ is a function (φ : Q → Rn)
that takes as input a question q ∈ Q and maps
it to a dense n-dimensional vector representation.
The index is defined as the encoded set of all the
questions that can be retrieved {φ(q′)|q′ ∈ Qall}
using the standard kNN search mechanism.

2.1.1 Encoder
The encoder φ used by our system is a neural
network that transforms the input question to a
fixed size vector representation. To this end, we
use a convolutional encoder since it scales bet-
ter (is easily parallelizable) compared to a re-
current neural network encoder and transformers
(Vaswani et al., 2017), that have quadratic com-
parisons while maintaining good performance on
sentence matching tasks (Yin et al., 2017). Addi-
tionally, convolutional encoders are less sensitive
to the global structure of the sentence then recur-
rent neural network thus being more resilient to
noisy nature of user-generated text The encoder
uses a three-step process:

1. An embedding layer maps each word wi in
the question q to its corresponding word em-
bedding xi ∈ Redim and thereby generating
a sentence matrix Xq ∈ Rl×edim , where l is
number of words in the question. We also use
the hashing trick of (Weinberger et al., 2009)
to map rare words to m bins via random pro-
jection to reduce the number of false matches
at the retrieval time.

2. A convolutional layer (Kim, 2014) takes
the question embedding matrix Xq as in-
put and applies a trained convolutional filter
W ∈ Redimwin iteratively by taking at each
timestep i a set of win word embeddings.
This results in the output:

hwini = σ(Wxi−win
2

:i+win
2

+ b) (1)

, where σ is a non linearity function, tanh in
our case, and b ∈ R is the bias parameter. By
iterating over the whole sentence it produces
a feature map hwin = [hwin1 , .., hwinl].

3. A global max pooling operation is applied
over the feature map (ĥwin = max(hwin))
to reduce it into a single feature value. The

convolutional and global max pooling steps
described above are applied multiple times
(cdim times) with varying window size with
resultant ĥ values concatenated to get a fea-
ture vector h ∈ Rcdim which is then lin-
early projected to an n-dimensional output
vector using a learned weight matrix Wp ∈
Rn×cdim .

2.1.2 kNN Index
Despite there is no restriction on the type of kNN
index that can be used, for performance reasons,
we use FAISS2 (Johnson et al., 2017) as an ap-
proximate kNN index3. All the questions (Qall)
are encoded offline using the encoder φ and added
to the index. At retrieval time a new question is en-
coded and used as a query to the index. The kNN
index uses a predefined distance function (e.g. Eu-
clidean distance) to retrieve the nearest questions
in the vector space.

3 Training

Typical approaches for training the encoder use
triplet loss (Schroff et al., 2015; Rao et al., 2016).
This loss attempts to minimize the distance be-
tween positive examples while maximizing the
distance between positive and negative examples.

The loss is formalized as follows:

N∑
i

[‖φ(qai)− φ(qpi)‖
2
2−‖φ(qai)− φ(qni)‖22 +α]+

(2)
where qai is a positive (anchor) question, qpi is a

positive match to the anchor (a valid paraphrase),
qni is a negative match (i.e. a non-paraphrase), α
is a margin parameter and N is the batch size.

In a recent work by Manmatha et al. 2017 the
authors found that better results could be obtained
by training the above objective with hard nega-
tive samples. These hard negatives are samples
from the negative class that are the closest in vec-
tor space to the positive samples, hence most likely
to be misclassified.

However, in our case, and in other cases with
noisy training data, this technique negatively im-
pacts the performance of the model since it starts
focusing disproportionately on any false-negative
samples in the data (i.e. positive examples labelled

2https://github.com/facebookresearch/
faiss

3FAISS provides efficient implementations of various ap-
proximated kNN search algorithms for both CPU and GPU

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss

71

Encoder

Who is Obama?

Paraphrase
Vector Indexing

Encoder

What is a Car?

Encoder

Define Car

Training

Encoder

Where is Rome?

Index

Inference

......

Top K
paraphrasesEncodingIndexingEncoding

Figure 1: System

as negative due to noise) making the learning pro-
cess faulty. For example in the Quora dataset pos-
itive examples are marked as paraphrase, dupli-
cate, by users using the website however there is
no manual check for the negative examples, thus
leading to a number of false negatives that hap-
pens to be close in the vector space.

3.1 Smoothed Deep Metric Learning

In this paper, we propose a new loss function that
overcomes the limitation of triplet loss in the noisy
setting. Instead of minimizing the distance be-
tween positive examples with respect to negative
examples, we view the problem as a classifica-
tion problem. Ideally, we would like to classify
the paraphrases of the original question amongst
all other questions in the dataset. This process
is infeasible due to time and memory constraints.
We can, however, approximate this general loss by
identifying a valid paraphrase in a set of randomly
sampled questions (Kannan et al., 2016). We map
vector distances into probabilities similar to Gold-
berger et al. 2005 by applying a softmax operation
over the negative squared euclidean distance:

p̂(a, i) =
e−‖φ(q

a)−φ(qi)‖22∑N
j e
−‖φ(qa)−φ(qj)‖22

(3)

where qa is an anchor question and qj and qi

are questions belonging in a batch of size N con-
taining one paraphrase and N − 1 randomly sam-
pled non-paraphrases. The network is then trained
to assign a higher probability, hence a shorter dis-
tance, to pair of questions that are paraphrases.

Additionally, we apply the label smoothing reg-
ularization technique (Szegedy et al., 2016) to re-
duce impact of false negatives. This technique
reduces the probability of the ground truth by a

smoothing factor ε and redistributes it uniformly
across all other values, i.e.,

p′(k|a) = (1− ε)p(k|a) +
ε

N
(4)

where p(k|a) is the probability for the gold label.
The new smoothed labels computed in this way
are used to train the network using Cross-Entropy
(CE) or Kullback-Leibler (KL) divergence loss4.
In our setting, the standard cross-entropy loss tries
to enforce the euclidean distance between all ran-
dom points to become infinity, which may not
be feasible and could lead to noisy training and
slow convergence. Instead, assigning a constant
probability to random interactions tries to position
random points onto the surface of a hypersphere
around the anchor which simplifies the learning
problem.

The sampling required for this formulation can
be easily implemented in frameworks like Py-
Torch (Paszke et al., 2017) or MxNet (Chen et al.,
2015) using a batch of positive pairs< q1,j , q2,j >
derived from a shuffled dataset, as depicted in Fig-
ure 2. In this setting, each question q1,i would have
exactly one paraphrase, i.e., q2,i andN−1 all other
questions q2,j when j 6= i would serve as counter-
examples. This batched implementation reduces
training time and makes sampling tractable by
avoiding sampling N questions for each example,
reducing the number of forward passes required to
encode the questions in a batch from O(N2) in a
naive implementation to O(2N).

4In this setting, CE loss and KL divergence loss are equiv-
alent in expected values. However, we use the KL divergence
loss for performance reasons.

72

0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8

q2,1 q2,2 q2,3

q1,1

q1,2

q1,3

Figure 2: Batched implementation of the loss with
smoothing parameter ε = 0.3 and batch size N = 3.
Each paraphrase pair< q1,j , q2,j > in the batch is com-
pared with all the others questions in the batch.

4 Experiments

In this section, we present the experimental setup
used to validate our approach for QPR using the
Smoothed Deep Metric Learning (SDML) tech-
nique.

4.1 Datasets

In order to generate a dataset for question para-
phrase retrieval, we propose a technique that uses
distant supervision to create it automatically from
high-precision question-answer (QA) logs. Addi-
tionally, due to the proprietary nature of our in-
ternal dataset, we tested our approach on a modi-
fied version of the Quora paraphrase identification
dataset that has been adapted for the paraphrase
retrieval task.

4.1.1 Open Domain QA dataset
Our open domain Q&A dataset is created by weak
supervision method using high precision QA logs
of a large scale industrial virtual assistant. From
the logs, we retrieve ‘clusters’ of questions that
are mapped to the same answer. However, we
notice that this may generate clusters where un-
related questions are mapped to a generic answer.
For instance, many different math questions may
map to the same answer; e.g. a given number. To
further refine these clusters, the data is filtered us-
ing a heuristic based on an intra-cluster similarity
metric that we call cluster coherence, denoted as c.
We define this metric as the mean Jaccard similar-
ity (Levandowsky and Winter, 1971) of each ques-
tion in a cluster to the cluster taken as the whole.

Mathematically, for a given cluster A =
{q1, q2...qn} and defining Tqi = {wi1 , wi2 , ...wik}
as shorthand for the set of unique tokens present

in a given question, the coherence of the cluster is
defined as:

S =

n⋃
i=1

Tqi (5)

c =
1

n
Σn
i=1

|Tqi ∩ S|
|S|

(6)

In practice, we found that even a small coher-
ence filter (c < 0.1) can eliminate all incoherent
question clusters. Our approach to weak supervi-
sion can be considered as a generalized instance of
the candidate-generation noise-removal pipeline
paradigm used by Kim et al. 2018. Once the in-
coherent clusters are removed from the dataset,
the remaining clusters are randomly split in an
80:10:10 ratio into training, validation and test sets
and question pairs are generated from them5. A
second filter is applied to remove questions in the
validation and test sets that overlap with questions
in the training set. The final output of the weak su-
pervision process is a set of silver labelled clusters
with > 99% accuracy based on spot-checking, a
random sample of 200 clusters.

4.1.2 Quora dataset
We introduce a variant of the Quora dataset for
QPR task. The original dataset consists of pairs
of questions with a positive label if they are para-
phrases, and a negative label if they are not. Simi-
larly to Haponchyk et al. (2018), we identify ques-
tion clusters in the dataset by exploiting the transi-
tive property of the paraphrase relation in the orig-
inal pairs, i.e., if q1 and q2 are paraphrases, and q2
and q3 are paraphrases then q1 and q3 are also para-
phrases, hence q1, q2, and q3 belong to the same
cluster. After iterating over the entire dataset, we
identified 60, 312 question clusters. The question
clusters are split into the training, validation and
test sets such that the resulting validation and test
set contains roughly 5, 000 question pairs each,
and the training set contains 219, 369 question
pairs6. The kNN index is composed of all the
questions in the original Quora datasets (includ-
ing questions that appear only as negative, thus not
being part of any cluster) for a total of 556, 107
questions.

5The open-domain QA dataset contains on order of 100k
- 1M training clusters, 10k - 100k clusters each for validation
and testing, and a search index of size ≈ 10M .

6The code to generate the splits will be released upon ac-
ceptance.

73

4.2 Experimental setup

We described the architecture of our encoder pre-
viously in section 2.1.1. For experimentation, we
randomly initialized word embeddings. The size
of vocabulary for Quora dataset is fixed at 50,000
whereas for the bigger open-domain QA dataset
we used a vocabulary of size 100,000. To map
rare words we use the hashing trick (Weinberger
et al., 2009) with 5,000 bins for the Quora dataset
and 10,000 bins for the QA dataset.

We set the dimensionality of word embeddings
at 300 (i.e., edim = 300); the convolutional layer
uses a window size of 5 (i.e., win = 5) and the en-
coder outputs a vector of size n = 300. For triplet
loss the network is trained with margin α = 0.5.
The default batch size for all the experiments is
512 (i.e., N = 512) and the smoothing factor
for SDML, ε, is 0.3. For all experiments train-
ing is performed using the Adam optimizer with
learning rate λ = 0.001 until the model stops im-
proving on the validation test, using early stop-
ping (Prechelt, 1998) on the ROC AUC metric
(Bradley, 1997).

4.3 Evaluation

We use IVF2000, Flat configuration of the FAISS
library as our index, which is a hierarchical in-
dex consisting of an index of k-means centroids
as the top-level index. For evaluation, we re-
trieve 20 questions with 10 probes into the in-
dex each returning a pair of paraphrase questions,
with an average query time of < 10 ms. These
questions are used to measure the system per-
formance via standard information retrieval met-
rics, Hits@N (H@N) and Mean Reciprocal Rank
(MRR). H@N measures if at least one question
in the first N that are retrieved is a paraphrase
and MRR is the mean reciprocal rank (position)
at which the first retrieved paraphrase is encoun-
tered.

4.4 Results

In the first set of experiments, we measured the
impact of varying the smoothing factor ε. The re-
sults for the Quora validation set are presented in
Table 1. We observe that the presence of smooth-
ing leads to a significant increase over the baseline
(simple cross-entropy loss) and increasing this pa-
rameter has a positive impact up to ε = 0.3.

In our second experiment, we hold the ε con-
stant at 0.3 and experiment with varying the num-

ε H@1 H@10 MRR
0 0.5568 0.7381 0.6217
0.1 0.5901 0.7841 0.6591
0.2 0.6030 0.8090 0.6762
0.3 0.6133 0.8113 0.6837
0.4 0.6107 0.8144 0.6815

Table 1: Impact of smoothing factor ε on the Quora
validation set.

N H@1 H@10 MRR
32 0.5389 0.7444 0.6103
64 0.5710 0.7726 0.6410
128 0.6093 0.8085 0.6777
256 0.6112 0.8141 0.6833
512 0.6133 0.8113 0.6837
1024 0.6081 0.8008 0.6764

Table 2: Impact of the batch size N on the Quora
validation set. For computing SDML a batch consists
of a paraphrase and N − 1 negative examples.

ber of negative samples. Table 2 shows the effect
of an increase in the number of negative examples
in a batch. The model’s performance reaches its
maximum value at N = 512, i.e., with 511 nega-
tive samples for each positive sample. We want to
point out that we limited our exploration to 1024
due to memory constraints. However, better per-
formance may be achieved by further increasing
the number of examples, since the batch becomes
a better approximation of the real distribution.

Table 3 and 4 compare the proposed loss with
the triplet loss with random sampling, TL(Rand).
We compared the proposed approach with two
variants of triplet loss that uses different distance
functions Euclidean Distance (EUC) and Sum of
Squared Differences (SSD). The Euclidean dis-
tance is the standard distance function for triplet
loss implementation present in popular deep learn-
ing frameworks, PyTorch and Mxnet, whereas
SSD is the distance function used in the original
paper of Schroff et al. 2015. Our approach im-
proves over the original triplet loss considerably
on both datasets. The SSD distance also outper-
forms the EUC implementation of the loss.

Tables 5 and 6 show the results on the open do-
main QA dataset validation and test set. TL(Rand)
is the triplet loss with random sampling of nega-
tive examples, whereas TL(Hard) is a variant with
hard negative mining. In both cases, the SDML
outperforms triplet loss by a considerable mar-

74

Loss Dist H@1 H@10 MRR
TL (Rand) EUC 0.4742 0.6509 0.5359
TL (Rand) SSD 0.5763 0.7640 0.6421
SDML SSD 0.6133 0.8113 0.6837

Table 3: Comparison of different loss functions on
Quora validation set.

Loss Dist H@1 H@10 MRR
TL (Rand) EUC 0.4641 0.6523 0.5297
TL (Rand) SSD 0.5507 0.7641 0.6265
SDML SSD 0.6043 0.8179 0.6789

Table 4: Comparison of different loss functions on
Quora test set.

Loss Dist H@1 H@10 MRR
TL (Rand) EUC 0.5738 0.7684 0.6428
TL (Rand) SSD 0.6506 0.8579 0.7252
TL (Hard) EUC 0.5549 0.7534 0.6256
TL (Hard) SSD 0.5233 0.7077 0.5870
SDML EUC 0.6526 0.8832 0.7361
SDML SSD 0.6745 0.8817 0.7491

Table 5: Comparison of different loss functions on
open domain QA dataset validation set.

Loss Dist H@1 H@10 MRR
TL (Rand) EUC 0.5721 0.7695 0.6431
TL (Rand) SSD 0.6538 0.8610 0.7271
TL (Hard) EUC 0.5593 0.7593 0.6304
TL (Hard) SSD 0.5201 0.7095 0.5863
SDML EUC 0.6545 0.8846 0.7382
SDML SSD 0.6718 0.8830 0.7480

Table 6: Comparison of different loss functions on
open domain QA dataset test set.

gin. It is important to note that, since our dataset
contains noisy examples, triplet loss with random
sampling outperforms hard sampling setting, in
contrast with the results presented in Manmatha
et al. 2017.

The results presented in this section are consis-
tent with our expectations based on the design of
the loss function.

5 Conclusion

We investigated a variant of the paraphrase identi-
fication task - large scale question paraphrase re-
trieval, which is of particular importance in indus-
trial question answering applications. We devised

a weak supervision algorithm to generate training
data from the logs of an existing high precision
question-answering system and introduced a vari-
ant of the popular Quora dataset for this task. In
order to solve this task efficiently, we developed
a neural information retrieval system consisting of
a convolutional neural encoder and a fast approxi-
mate nearest neighbour search index.

Triplet loss, a standard baseline for learning-
to-rank setting, tends to overfit to noisy examples
in training. To deal with this issue, we designed
a new loss function inspired by label smooth-
ing, which assigns a small constant probability to
randomly paired question utterances in a training
mini-batch resulting in a model that demonstrates
superior performance. We believe that our batch-
wise smoothed loss formulation will be applicable
to a variety of metric learning and information re-
trieval problems for which triplet loss is currently
widespread. The loss function framework we de-
scribe is also flexible enough to experiment with
different priors - for e.g. allocating probability
masses based on the distances between the points.

References
Delphine Bernhard and Iryna Gurevych. 2008. An-

swering learners’ questions by retrieving question
paraphrases from social q&a sites. In Proceedings
of the third workshop on innovative use of NLP for
building educational applications, pages 44–52. As-
sociation for Computational Linguistics.

Andrew P Bradley. 1997. The use of the area under
the roc curve in the evaluation of machine learning
algorithms. Pattern recognition, 30(7):1145–1159.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan
Zhang, and Zheng Zhang. 2015. Mxnet: A flex-
ible and efficient machine learning library for het-
erogeneous distributed systems. arXiv preprint
arXiv:1512.01274.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Jacob Goldberger, Geoffrey E Hinton, Sam T Roweis,
and Ruslan R Salakhutdinov. 2005. Neighbourhood
components analysis. In Advances in neural infor-
mation processing systems, pages 513–520.

75

Iryna Haponchyk, Antonio Uva, Seunghak Yu, Olga
Uryupina, and Alessandro Moschitti. 2018. Super-
vised clustering of questions into intents for dialog
system applications. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2310–2321.

Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-
perspective sentence similarity modeling with con-
volutional neural networks. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1576–1586.

Aminul Islam and Diana Inkpen. 2009. Semantic sim-
ilarity of short texts. Recent Advances in Natural
Language Processing V, 309:227–236.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias
Kaufmann, Andrew Tomkins, Balint Miklos, Greg
Corrado, Laszlo Lukacs, Marina Ganea, Peter
Young, et al. 2016. Smart reply: Automated re-
sponse suggestion for email. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 955–
964. ACM.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Young-Bum Kim, Dongchan Kim, Anjishnu Kumar,
and Ruhi Sarikaya. 2018. Efficient large-scale neu-
ral domain classification with personalized attention.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 2214–2224.

Michael Levandowsky and David Winter. 1971. Dis-
tance between sets. Nature, 234(5323):34.

R Manmatha, Chao-Yuan Wu, Alexander J Smola,
and Philipp Krähenbühl. 2017. Sampling matters
in deep embedding learning. In Computer Vision
(ICCV), 2017 IEEE International Conference on,
pages 2859–2867. IEEE.

Rada Mihalcea, Courtney Corley, Carlo Strapparava,
et al. 2006. Corpus-based and knowledge-based
measures of text semantic similarity.

Bhaskar Mitra and Nick Craswell. 2017. Neural
models for information retrieval. arXiv preprint
arXiv:1705.01509.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. arXiv preprint
arXiv:1606.01933.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

Lutz Prechelt. 1998. Early stopping-but when? In
Neural Networks: Tricks of the trade, pages 55–69.
Springer.

Jinfeng Rao, Hua He, and Jimmy Lin. 2016. Noise-
contrastive estimation for answer selection with
deep neural networks. In Proceedings of the 25th
ACM International on Conference on Information
and Knowledge Management, pages 1913–1916.
ACM.

Stephen Robertson, Hugo Zaragoza, and Michael Tay-
lor. 2004. Simple bm25 extension to multiple
weighted fields. In Proceedings of the Thirteenth
ACM International Conference on Information and
Knowledge Management, CIKM ’04.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends R© in Information Re-
trieval, 3(4):333–389.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 815–823.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethink-
ing the inception architecture for computer vision.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. In Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence,
pages 4144–4150. AAAI Press.

Kilian Weinberger, Anirban Dasgupta, Josh Attenberg,
John Langford, and Alex Smola. 2009. Feature
hashing for large scale multitask learning. arXiv
preprint arXiv:0902.2206.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich
Schütze. 2017. Comparative study of cnn and rnn
for natural language processing. arXiv preprint
arXiv:1702.01923.

