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Abstract
While recent work in abstractive summariza-
tion has resulted in higher scores in automatic
metrics, there is little understanding on how
these systems combine information taken from
multiple document sentences. In this paper, we
analyze the outputs of five state-of-the-art ab-
stractive summarizers, focusing on summary
sentences that are formed by sentence fusion.
We ask assessors to judge the grammaticality,
faithfulness, and method of fusion for sum-
mary sentences. Our analysis reveals that sys-
tem sentences are mostly grammatical, but of-
ten fail to remain faithful to the original article.

1 Introduction

Modern abstractive summarizers excel at finding
and extracting salient content (See et al., 2017;
Chen and Bansal, 2018; Celikyilmaz et al., 2018;
Liu and Lapata, 2019). However, one of the key
tenets of summarization is consolidation of infor-
mation, and these systems can struggle to combine
content from multiple source texts, yielding output
summaries that contain poor grammar and even in-
correct facts. Truthfulness of summaries is a vi-
tally important feature in order for summarization
to be widely accepted in real-world applications
(Reiter, 2018; Cao et al., 2018b). In this work, we
perform an extensive analysis of summary outputs
generated by state-of-the-art systems, examining
features such as truthfulness to the original doc-
ument, grammaticality, and method of how sen-
tences are merged together. This work presents the
first in-depth human evaluation of multiple diverse
summarization models.

We differentiate between two methods of short-
ening text: sentence compression and sentence fu-
sion. Sentence compression reduces the length of
a single sentence by removing words or rephras-
ing parts of the sentence (Cohn and Lapata, 2008;
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Wang et al., 2013; Li et al., 2013, 2014; Filip-
pova et al., 2015). Sentence fusion reduces two or
more sentences to one by taking content from each
sentence and merging them together (Barzilay and
McKeown, 2005; McKeown et al., 2010; Thadani
and McKeown, 2013). Compression is considered
an easier task because unimportant clauses within
the sentence can be removed while retaining the
grammaticality and truth of the sentence (McDon-
ald, 2006). In contrast, fusion requires selection of
important content and stitching of that content in
a grammatical and meaningful way. We focus on
sentence fusion in this work.

We examine the outputs of five abstractive sum-
marization systems on CNN/DailyMail (Hermann
et al., 2015) using human judgments. Particularly,
we focus on summary sentences that involve sen-
tence fusion, since fusion is the task that requires
the most improvement. We analyze several dimen-
sions of the outputs, including faithfulness to the
original article, grammaticality, and method of fu-
sion. We present three main findings:

• 38.3% of the system outputs introduce incorrect
facts, while 21.6% are ungrammatical;

• systems often simply concatenate chunks of text
when performing sentence fusion, while largely
avoiding other methods of fusion like entity re-
placement;

• systems struggle to reliably perform complex
fusion, as entity replacement and other methods
result in incorrect facts 47–75% of the time.

2 Evaluation Setup

Evaluation of summarization systems relies heav-
ily on automatic metrics. However, ROUGE (Lin,
2004) and other n-gram based metrics are limited
in evaluation power and do not tell the whole story
(Novikova et al., 2017). They often focus on infor-
mativeness, which misses out on important facets
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System
ROUGE Created By Avg Summ

R-1 R-2 R-L Compress Fuse Copy Fail Sent Len
PG (See et al., 2017) 39.53 17.28 36.38 63.14 6.44 30.24 0.18 15.7
Novel (Kryciski et al., 2018) 40.19 17.38 37.52 71.25 19.77 5.39 3.59 11.8
Fast-Abs-RL (Chen and Bansal, 2018) 40.88 17.80 38.54 96.65 0.83 2.21 0.31 15.6
Bottom-Up (Gehrmann et al., 2018) 41.22 18.68 38.34 71.15 16.35 11.76 0.74 10.7
DCA (Celikyilmaz et al., 2018) 41.69 19.47 37.92 64.11 23.96 7.07 4.86 14.5
Reference Summaries - - - 60.65 31.93 1.36 6.06 19.3

Table 1: Comparison of state-of-the-art summarization systems. Middle column describes how summary sentences are gener-
ated. Compress: single sentence is shortened. Fuse: multiple sentences are merged. Copy: sentence is copied word-for-word.
Fail: did not find matching source sentences.

of summaries such as faithfulness and grammati-
cality. In this paper we present a thorough inves-
tigation of several abstractive summarization sys-
tems using human evaluation on CNN/DailyMail.
The task was accomplished via the crowdsourcing
platform Amazon Mechanical Turk. We particu-
larly focus on summary sentences formed by sen-
tence fusion, as it is arguably a harder task and is
a vital aspect of abstractive summarization.

2.1 Summarization Systems

We narrowed our evaluation to five state-of-the-art
summarization models1, as they represent some of
the most competitive abstractive summarizers de-
veloped in recent years. The models show diver-
sity across several dimensions, including ROUGE
scores, abstractiveness, and training paradigm. We
briefly describe each system, along with a compar-
ison in Table 1.

• PG (See et al., 2017) The pointer-generator net-
works use an encoder-decoder architecture with
attention and copy mechanisms that allow it to
either generate a new word from the vocabulary
or copy a word directly from the document. It
tends strongly towards extraction and copies en-
tire summary sentences about 30% of the time.

• Novel (Kryciski et al., 2018) This model uses an
encoder-decoder architecture but adds a novelty
metric which is optimized using reinforcement
learning. It improves summary novelty by pro-
moting the use of unseen words.

• Fast-Abs-RL (Chen and Bansal, 2018) Docu-
ment sentences are selected using reinforcement
learning and then compressed/paraphrased us-
ing an encoder-decoder model to generate sum-
mary sentences.

1The summary outputs from PG, Bottom-Up, and Fast-
Abs-RL are obtained from their corresponding Github repos.
Those from Novel and DCA are graciously provided to us by
the authors. We thank the authors for sharing their work.

• Bottom-Up (Gehrmann et al., 2018) An ex-
ternal content selection model identifies which
words from the document should be copied to
the summary; such info is incorporated into the
copy mechanism of an encoder-decoder model.

• DCA (Celikyilmaz et al., 2018) The source text
is divided among several encoders, which are all
connected to a single decoder using hierarchical
attention. It achieves one of the highest ROUGE
scores among state-of-the-art.

2.2 Task Design
Our goal is to assess the quality of summary sen-
tences according to their grammaticality, faithful-
ness and method of fusion. We design a crowd
task consisting of a single article with six sum-
mary sentences: one sentence is guaranteed to be
from the reference summary, the other five are
taken from system summaries. An annotator is in-
structed to read the article, then rate the following
characteristics for each summary sentence:

Faithfulness For a summary to be useful, it must
remain true to the original text. This is particularly
challenging for abstractive systems since they re-
quire a deep understanding of the document in or-
der to rephrase sentences with the same meaning.

Grammaticality System summaries should fol-
low grammatical rules in order to read well. Main-
taining grammaticality can be relatively straight-
forward for sentence compression, as systems gen-
erally succeed at removing unnecessary clauses
and interjections (See et al., 2017). However, sen-
tence fusion requires greater understanding in or-
der to stitch together clauses in a grammatical way.

Method of Merging Each summary sentence in
our experiments is created by fusing content from
two document sentences. We would like to under-
stand how this fusion is performed. The following
possibilities are given:
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Figure 1: Annotation interface. A sentence from a random summarization system is shown along with four questions.

• Replacement: a pronoun or description of an en-
tity in one sentence is replaced by a different
description of that entity in the other sentence.

• Balanced concatenation: a consecutive part of
one sentence is concatenated with a consecutive
part of the other sentence. The parts taken from
each sentence are of similar length.

• Imbalanced concatenation: similar to the case
of “balanced concatenation,” but the part taken
from one sentence is larger than the part taken
from the other sentence.

• Other: all remaining cases.

Coverage An annotator is asked to rate how well
highlighted article sentences “covered” the infor-
mation contained in the summary sentence. Two
article sentences that best match a summary sen-
tence are selected according to a heuristic devel-
oped by Lebanoff et al. (2019). The same heuristic
is also used to determine whether a summary sen-
tence is created by compression or fusion (more
details later in this section). Given the importance
of this heuristic for our task, we would like to mea-
sure its effectiveness on selecting article sentences
that best match a given summary sentence.

We provide detailed instructions, including ex-
amples and explanations. We randomly select 100
articles from the CNN/DailyMail test set. This re-
sults in 100 tasks for annotators, where each task
includes an article and six summary sentences to
be evaluated—one of which originates from the
reference summary and the other five are from any
of the system summaries. Each task is completed
by an average of 4 workers. All workers are re-
quired to have the “Master” qualification, a des-
ignation for high-quality annotations. Of the 600
summary sentences evaluated, each state-of-the-
art system contributes as follows—Bottom-Up:
146, DCA: 130, PG: 37, Novel: 171, Fast-Abs-RL:

16, and Reference: 100. The number of sentences
we evaluate for each system is proportional to the
number of observed fusion cases.

In order to answer the Method of Merging and
Coverage questions, the annotator must be pro-
vided with which two article sentences were fused
together to create the summary sentence in ques-
tion. We use the heuristic proposed by Lebanoff
et al. (2019) to estimate which pair of sentences
should be chosen. They use averaged ROUGE-1, -
2, -L scores (Lin, 2004) to represent sentence sim-
ilarity. The heuristic calculates the ROUGE simi-
larity between the summary sentence and each ar-
ticle sentence. The article sentence with the high-
est similarity is chosen as the first sentence, then
overlapping words are removed from the summary
sentence. It continues to find the article sentence
most similar to the remaining summary sentence,
which is chosen as the second sentence. Our inter-
face automatically highlights this pair of sentences
(Figure 1).

The same heuristic is also employed in decid-
ing whether a summary sentence was generated
by sentence compression or fusion. The algorithm
halts if no article sentence is found that shares
two or more content words with the summary sen-
tence. If it halts after only one sentence is found,
then it is classified as compression. If it finds a
second sentence, then it is classified as fusion.

3 Results

We present experimental results in Table 2. Our
findings suggest that system summary sentences
formed by fusion have low faithfulness (61.7% on
average) as compared to the reference summaries.
This demonstrates the need for current summa-
rization models to put more emphasis on improv-
ing the faithfulness of generated summaries. Sur-
prisingly, the highest performing systems, DCA
and Bottom-Up, according to ROUGE result in
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System Faithful Grammatical Coverage
DCA 47.0 72.4 62.6
Bottom-Up 56.9 78.9 78.5
Novel 58.5 78.5 75.3
Fast-Abs-RL 69.0 77.6 82.8
PG 76.9 84.6 89.5
Reference 88.4 91.6 74.9

Table 2: Percentage of summary sentences that are faithful,
grammatical, etc. according to human evaluation of several
state-of-the-art summarization systems (see §2 for details).

the lowest scores for being faithful to the article.
While we cannot attribute the drop in faithfulness
to an over-emphasis on optimizing automatic met-
rics, we can state that higher ROUGE scores does
not necessarily lead to more faithful summaries,
as other works have shown (Falke et al., 2019).
Bottom-Up, interestingly, is 20 points lower than
PG, which it is closely based on. It uses an ex-
ternal content selector to choose what words to
copy from the article. While identifying summary-
worthy content improved ROUGE, we believe that
Bottom-Up stitches together sections of content
that do not necessarily belong together. Thus, it
is important to identify not just summary-worthy
content, but also mergeable content.

System summary sentences created by fusion
are generally grammatical (78.4% on average),
though it is still not up to par with reference sum-
maries (91.6%). The chosen state-of-the-art sys-
tems use the encoder-decoder architecture, which
employs a neural language model as the decoder,
and language models generally succeed at encod-
ing grammar rules and staying fluent (Clark et al.,
2019). The coverage for reference summaries is
moderately high (74.9%), demonstrating the effec-
tiveness of the heuristic of identifying where sum-
mary content is pulled from. Especially for most
of the systems, the heuristic successfully finds the
correct source sentences. As it is based mostly on
word overlap, the heuristic works better on sum-
maries that are more extractive, hence the higher
coverage scores among the systems compared to
reference summaries, which are more abstractive.

Figure 2 illustrates the frequency of each merg-
ing method over the summarization systems. Most
summary sentences are formed by concatenation.
PG in particular most often fuses two sentences
using concatenation. Surprisingly, very few refer-
ence summaries use entity replacement when per-
forming fusion. We believe this is due to the ex-
tractiveness of the CNN/DailyMail dataset, and

Figure 2: Frequency of each merging method. Concatena-
tion is the most common method of merging.

System Faithful Grammatical Coverage
Bal Concat 82.55 86.91 94.43
Imbal Concat 69.40 80.25 84.58
Replacement 53.06 82.04 77.55
Other 25.20 68.23 27.04

Table 3: Results for each merging method. Concatenation
has high faithfulness, grammaticality, and coverage, while
Replacement and Other have much lower scores.

would likely have higher occurrences in more ab-
stractive datasets.

Does the way sentences are fused affect their
faithfulness and grammaticality? Table 3 provides
insights regarding this question. Grammaticality
is relatively high for all merging categories. Cov-
erage is also high for balanced/imbalanced con-
catenation and replacement, meaning the heuris-
tic works succesfully for these forms of sentence
merging. It does not perform as well on the Other
category. This is understandable, since sentences
formed in a more complex manner will be harder
to identify using simple word overlap. Faithful-
ness has a similar trend, with summaries generated
using concatenation being more likely to be faith-
ful to the original article. This may explain why
PG is the most faithful of the systems, while being
the simplest—it uses concatenation more than any
of the other systems. We believe more effort can
be directed towards improving the more complex
merging paradigms, such as entity replacement.

There are a few potential limitations associated
with the experimental design. Judging whether a
sentence is faithful to the original article can be a
difficult task to perform reliably, even for humans.
We observe that the reference summaries achieve
lower than the expected faithfulness and grammat-
icality of 100%. This can have two reasons. First,
the inter-annotator agreement for this task is rela-
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tively low and we counteract this by employing an
average of four annotators to complete each task.
Second, we make use of an automatic heuristic to
highlight sentence pairs from the article. While
it generally finds the correct sentences—average
Coverage score of 77.3%—the incorrect pairs may
have biased the annotators away from sentences
that humans would have found more appropriate.
This further exemplifies the difficulty of the task.

4 Related Work

Sentence fusion aims to produce a single summary
sentence by fusing multiple source sentences. De-
pendency graphs and discourse structure have
proven useful for aligning and combining multi-
ple sentences into a single sentence (Barzilay and
McKeown, 2005; Marsi and Krahmer, 2005; Fil-
ippova and Strube, 2008; Cheung and Penn, 2014;
Gerani et al., 2014). Mehdad et al. (2013) con-
struct an entailment graph over sentences for sen-
tence selection, then fuse sentences together using
a word graph. Abstract meaning representation
and other graph-based representations have also
shown success in sentence fusion (Liu et al., 2015;
Nayeem et al., 2018). Geva et al. (2019) fuse pairs
of sentences together using Transformer, focusing
on discourse connectives between sentences.

Recent summarization research has put special
emphasis on faithfulness to the original text. Cao
et al. (2018a) use seq-to-seq models to rewrite
templates that are prone to including irrelevant en-
tities. Incorporating additional information into a
seq-to-seq model, such as entailment and depen-
dency structure, has proven successful (Li et al.,
2018; Song et al., 2018). The closest work to our
human evaluation seems to be from Falke et al.
(2019). Similar to our work, they find that the
PG model is more faithful than Fast-Abs-RL and
Bottom-Up, even though it has lower ROUGE.
They show that 25% of outputs from these state-
of-the-art summarization models are unfaithful to
the original article. Cao et al. (2018b) reveal a sim-
ilar finding that 27% of the summaries generated
by a neural sequence-to-sequence model have er-
rors. Our study, by contrast, finds 38% to be un-
faithful, but we limit our study to only summary
sentences created by fusion. Our work examines
a wide variety of state-of-the-art summarization
systems, and perform in-depth analysis over other
measures including grammaticality, coverage, and
method of merging.

5 Conclusion

In this paper we present an investigation into sen-
tence fusion for abstractive summarization. Sev-
eral state-of-the-art systems are evaluated, and we
find that many of the summary outputs generate
false information. Most of the false outputs were
generated by entity replacement and other com-
plex merging methods. These results demonstrate
the need for more attention to be focused on im-
proving sentence fusion and entity replacement.
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