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Abstract

Timeline summarization (TLS) automatically
identifies key dates of major events and pro-
vides short descriptions of what happened on
these dates. Previous approaches to TLS have
focused on extractive methods. In contrast, we
suggest an abstractive timeline summarization
system. Our system is entirely unsupervised,
which makes it especially suited to TLS where
there are very few gold summaries available
for training of supervised systems. In addition,
we present the first abstractive oracle exper-
iments for TLS. Our system outperforms ex-
tractive competitors in terms of ROUGE when
the number of input documents is high and the
output requires strong compression. In these
cases, our oracle experiments confirm that our
approach also has a higher upper bound for
ROUGE scores than extractive methods. A
study with human judges shows that our ab-
stractive system also produces output that is
easy to read and understand.

1 Introduction

Many newsworthy events are not isolated inci-
dents but part of long-lasting developments. For
example, the events of the Syrian civil war in 2019
are intrinsically linked to events that happened
during the beginning of that war in 2011. As the
amount of reporting grows, it can be difficult to
keep track of important events that may have hap-
pened a long time ago. Timeline summarization
(TLS) alleviates this problem by providing users
with automatically generated timelines that iden-
tify key dates in a larger development along with
short summaries of the events on these dates. Ta-
ble 1 shows an example of a timeline.

Prior TLS systems are extractive, i.e. they
identify important sentences in a corpus and copy
them directly to the timeline (Nguyen et al., 2014;
Chieu and Lee, 2004; Yan et al., 2011b,a; Wang

2011-03-15
First protests after calls on Facebook for a
“Day of Dignity.”
2011-08-18
US President Barack Obama and his allies
urge Assad to quit. Western and Arab states
later impose sanctions on his regime.
2011-10-02
Creation of the opposition Syrian National
Council SNC.

Table 1: Beginning of an example timeline about the
Syrian civil war. (Source: Crisis dataset (Tran et al.,
2015))

et al., 2016; Tran et al., 2015, 2013b,a; Martschat
and Markert, 2018). However, TLS aggregates
information from input corpora that are orders
of magnitude larger than for traditional multi-
document summarization (MDS) tasks. In addi-
tion, documents typically come from many differ-
ent sources. In this setting, it might be advanta-
geous to generate abstractive summaries that com-
bine information from different sentences. While
the state of the art in abstractive summarization is
achieved by neural networks (Celikyilmaz et al.,
2018), these systems require many document/gold
summary pairs for training. TLS datasets, on the
other hand, have many input documents, but only
contain very few gold-standard timelines (between
19 and 22) (Tran et al., 2015, 2013b). Thus,
very few input/gold timeline pairs are available for
training.

We therefore introduce an unsupervised ab-
stractive TLS system that is inspired by the abstrac-
tive MDS system in Banerjee et al. (2015). We
make the following contributions:

1. We introduce the first abstractive system for
TLS and show that it outperforms current ex-
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tractive TLS systems such as Martschat and
Markert (2018) when the input corpora are
large with low compression rate.1

2. We show that our system delivers signifi-
cantly better performance than an abstractive
neural model not adapted for TLS.

3. We conduct the first abstractive oracle exper-
iments for TLS. Our abstractive approach im-
proves the ROUGE upper bound on large cor-
pora with low compression rate.

A human evaluation confirms that our sys-
tem outputs readable sentences. Our system
does not need any supervision and only requires
lightweight preprocessing. This makes it easy to
adapt to other languages. The source code for our
system is available online.2

2 Task

2.1 Definition
We follow the formalization of TLS of Martschat
and Markert (2018). Given a collection of news
documents D about the topic for the timeline
(such as the Syrian civil war), we seek to gener-
ate a timeline that summarizes the most important
events related to the topic in D. The timeline is
a sequence of dates d1, . . . dn and their associated
daily summaries v1, . . . vn. As in most prior work,
we require that d1, . . . dn refer to a specific day.

We constrain the maximum number of dates
that may be included in the timeline, the maxi-
mum number of sentences or tokens per daily sum-
mary, and the time span the timeline is supposed
to cover. We discuss how we set these constraints
in Section 4.2.

2.2 Differences to MDS
While both TLS and Multi-Document Summariza-
tion (MDS) generate summaries from multiple in-
put documents, there are substantial differences
between the two tasks. Specifically, Martschat and
Markert (2018) cite the following differences:

1. MDS does not have a temporal dimension.

2. Typical MDS datasets do not require systems
to summarize multiple events instead focus-
ing on non-event topics or singular events.

1In summarization, a low compression rate means that a
long input must be condensed to a short summary.

2github.com/julmaxi/
Abstractive-Timeline-Summarization
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Figure 1: A graphical overview of our system. We can
see that not all clusters are included in the timeline.

Even where MDS systems are evaluated on
corpora with multiple events, evaluation does
not consider the temporal dimension.

3. TLS corpora are larger than MDS corpora
with lower compression rates, making con-
tent selection and scalability more important.

3 Architecture

We generate timelines in a three step process, out-
lined in Figure 1. We first cluster sentences that
are likely to describe the same event. We then
use Multi-Sentence-Compression (MSC) to gener-
ate candidate sentences to summarize each cluster.
Finally, we score the candidates and select the best
ones up to a length limit. Each of our steps is com-
pletely unsupervised, which allows us to sidestep
the lack of training data in TLS and also makes our
system readily adaptable to different datasets.

3.1 Clustering

We need to cluster sentences that describe the
same event (such as the formation of the Syrian
national council in Table 1) so that the MSC sys-
tem can generate concise summaries from the re-
sulting clusters. We use Affinity Propagation (AP)
clustering (Frey and Dueck, 2007) for this pur-
pose. AP is able to automatically determine the
appropriate number of clusters for a dataset. This
is advantageous, as different inputs contain differ-
ent numbers of events. By choosing the number of
clusters dynamically, our system can adapt to that
without supervision.

AP selects a set of exemplars from the input
data points, which can be understood as the centers
of the clusters. Non-exemplar points select one
of the exemplars to form a cluster with. The al-
gorithm operates over an affinity matrix A, where
Aij expresses the appropriateness of item i pick-

github.com/julmaxi/Abstractive-Timeline-Summarization
github.com/julmaxi/Abstractive-Timeline-Summarization
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ing item j as an exemplar. The diagonal of the ma-
trix A, the so-called preference values, determines
how suitable an item is to become an exemplar and
thus regulates the number of exemplars.

We construct A using TF-IDF vector cosine
similarity between the input sentences, which has
been shown to be a useful similarity metric for
TLS (Martschat and Markert, 2018; Chieu and
Lee, 2004). However, sentences in the same clus-
ter should not only be similar but also describe the
same dates. To determine which date a sentence
refers to, we make the following assumptions:

• Every sentence can refer to the document cre-
ation time (DCT).

• Sentences with one or more time expressions
can refer either to one of the dates in the ex-
pressions or to the DCT

• Time expressions that refer to a range of days,
such as a month, may refer to any date within
that range.

The set of possible references for a sentence s
is called dates(s). A date reference d1 contains
another reference d2 if one of the following holds:

1. d1, d2 refer to the same exact day.

2. d1 refers to a range of dates which contains
d2, and d2 is an exact date.

A sentence s2 may select a sentence s1 as an ex-
emplar if there is a d1 ∈ dates(s1) and a d2 ∈
dates(s2 ) so that d2 contains d1. We set Aij =
cos(~si, ~sj), if si may select sj , and Aij = −∞
otherwise. Preference values are the median of in-
coming similarities (Frey and Dueck, 2007).

This procedure can still form ”incorrect” clus-
ters. If an exemplar sentence contains two or more
incompatible date references d1, d2, the resulting
cluster can contain sentences tagged with only d1
or only d2. However, this is an infrequent problem
as sentences need to be similar to be clustered.

To determine the date of the event a cluster C
describes, we let

date(C) = argmax
d∈

⋃
s∈C{dates(s)|d exact}

cnt(C, d) (1)

where cnt(C, d) is the frequency of d being men-
tioned as a time expression in the sentences in C.

3.2 Sentence Generation
Following Banerjee et al. (2015), we use the un-
supervised, low-cost MSC-system by Filippova
(2010) to generate summary candidates for each
cluster.

Given the sentence clusterC, the algorithm con-
structs a word-adjacency graph. The nodes are
POS-tagged tokens and directed edges indicate ad-
jacency of these tokens in one of the sentences.
Occurrences of the same content word in different
sentences are mapped to the same node. Given an
edge eij , its weight w(eij) is:

w(eij) =
freq(i) + freq(j)

freq(i) ∗ freq(j) ∗
∑

s∈C diff (s, i, j)
(2)

where freq(i) is the number of tokens that have
been mapped to node i and diff (s, i, j) indicates
whether the words that were mapped to the nodes
i, j in the sentence s appear close together. This is
defined in terms of the position pos(s, i) of a token
i in the sentence s:

diff (s, i, j) = max(0, (pos(s, j)− pos(s, i))−1)
(3)

We generate new sentences from this graph by
finding paths from the sentence start node to the
sentence end node. We use the shortest path
algorithm of Yen (1971) as implemented in the
networkx-library (Hagberg et al., 2008) to gener-
ate up to 2500 candidate summary sentences per
cluster. Following Filippova (2010), we filter out
sentences that do not contain a verb or are shorter
than eight tokens. We also include the original
sentences in the selection candidates. Each can-
didate g is assigned the date of the cluster it was
generated from: date(g) := date(cluster(g)).

To prevent ungrammatical or spurious sentence
merges, we introduce additional filtering based on
dependency parses. Specifically, we only accept
a path P through the word-adjacency graph if for
every node i ∈ P at least one of the following
holds:

1. i is a stopword node

2. At least one token mapped to i is the root
node in its dependency tree

3. The head of at least one token mapped to i is
contained in the path

Consider the following two input sentences:
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An armed attack on a government build-
ing was met with international shock .

The people responsible for the attack
have yet to be determined.

Without the constraint, it is valid to generate An
armed attack have yet to be determined. The con-
straint prevents this as none of the heads of attack
(i.e. met and for) are in the path.

3.3 Sentence Scoring and Selection

Given the set of generated sentences, we wish to
find sentences that are well-formed and informa-
tive about important dates and events. We encode
these aspects into multiple scoring functions.

3.3.1 Linguistic Quality
To encourage a readable output, we compute a lin-
guistic quality score for each candidate sentence
g by using the average probability of the tokens
according to a 3-gram language model (Banerjee
et al., 2015). We use the KenLM library (Heafield,
2011) with a pretrained model3. We compute the
LM-score fLM as follows:

fLM (g) =
1

1−
∑

wi∈g log(p(wi|wi−1:i−3))/|g|
(4)

Additionally, we include information from the
MSC system by preferring sentences which were
generated from shorter paths. We let fpath(g) =
(1 + w(g))−1 where w(g) is the length of the
weighted path that generated candidate g.

3.3.2 Date Importance
We determine the importance dimp(d) of a date d
by counting how often it is mentioned in the input
(Martschat and Markert, 2018). The score fdate of
a sentence g is fdate(g) = dimp(date(g)).

3.3.3 Informativeness
We construct a keyword-based scoring function
using TextRank (Mihalcea and Tarau, 2004) to ef-
ficiently score the importance of our candidates.
TextRank scores keywords by constructing an
undirected graph of content words where words
are connected if they appear near each other. A
score is computed for each node similarly to the
PageRank algorithm (Page et al., 1999) using the

3 www.keithv.com/software/giga/lm_giga_
20k_nvp_3gram.zip

following iterative formula:

TR(t+1)(wi) = (1−α)+α·
∑

wj∈adj (wi)

TR(t)(wj)

|adj (wj)|
(5)

where adj (wi) is the set of nodes neighbouring wi

and α = 0.85 is the dampening factor.
Let Dd be the set of all sentences s in the in-

put corpus D whose cluster cluster(s) was as-
signed the date d as per Equation 1. We compute
one TextRank vector TRd for each date d by run-
ning TextRank over all sentences in Dd. To make
scores comparable across different Dd, we rescale
the scores in TRd to a 0 to 1 range. The TextRank-
score fTR(g) for a candidate g is then defined as
the sum of the scores of its tokens.

We also hypothesize that larger clusters are as-
sociated with more important events. We thus use
the cluster size as a scoring function: fcluster(g) =
|cluster(g)|
maxC∈Ĉ |C|

where Ĉ is the set of all clusters.

3.3.4 Selection
We determine the final score of each candidate g
as the product of the scoring functions:

score(g) =
∏
f∈F

f(g) (6)

where F is the set of scoring functions, i.e. F =
{fpath, fLM , fTR, fdate, fcluster}.

We select sentences greedily starting with the
highest scoring ones as long as selecting them
does not break any constraints. To reduce redun-
dancy, we select at most one candidate from each
cluster (Banerjee et al., 2015) and skip sentences
with a cosine similarity of more than 0.5 to a pre-
viously selected sentence.

4 Evaluation

4.1 Data

We evaluate on the only two publicly available
TLS datasets: Crisis (Tran et al., 2015) and Time-
line 17 (TL17) (Tran et al., 2013b). Both contain
human written timelines about topics such as civil
wars or the BP oil disaster, collected from major
news outlets. Each topic also has a set of related
news articles scraped from the web (see Table 2).

We also report the median compression rate and
the median spread of the datasets. The compres-
sion rate is the ratio of sentences in a timeline to
the number of input sentences. The spread is the

www.keithv.com/software/giga/lm_giga_20k_nvp_3gram.zip
www.keithv.com/software/giga/lm_giga_20k_nvp_3gram.zip
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Corp. #Tops #TLs #Sen/Top. Comp. Spr.
TL17 13 19 27,222 0.0019 0.279
Crisis 4 22 150,429 0.0002 0.081

Table 2: Dataset statistics, including number of topics,
timelines and the average number of sentences to be
summarized for each topic. We also report the median
compression and spread of the timelines.

ratio of dates with summaries in the timeline to
the number of dates in the timeline span. Low
compression rate and spread are typically indica-
tive of a more difficult TLS instance (Martschat
and Markert, 2018). We find that the datasets have
very different characteristics, with Crisis having
lower compression rate and spread.

4.1.1 Corpus Cleaning and Preporcessing
We found that some of the news articles to be sum-
marised in both datasets contained full or partial
gold timelines. This might cause TLS systems
to inadvertently ”cheat” by using the leaked gold
timelines. We have manually removed 19 such
documents in TL17 and 28 in Crisis.4

We preprocess all corpora with Stanford
CoreNLP (Manning et al., 2014) and use Hei-
deltime (Strötgen and Gertz, 2013) for resolving
time expressions. Unlike several other TLS sys-
tems (Martschat and Markert, 2018; Chieu and
Lee, 2004), we do not filter sentences with topic-
specific keywords (e.g. war or Syria) to be less
dependent on additional human input.5

4.2 Experimental Setup and Constraints

Like Martschat and Markert (2018), we generate
one timeline per reference. We limit the number of
dates to that in the reference, while the number of
sentences per summary is set to the average num-
ber of sentences per summary in the reference.

As abstractive systems generate new text, they
could exploit sentence limits by generating very
long sentences. We control for this by limiting the
number of tokens instead in one algorithm varia-
tion. We estimate the maximum number of tokens
in the same way as for the sentence constraint.

4.3 Evaluation Metrics

Summarization is usually evaluated with ROUGE
(Lin, 2004). This, however, ignores the temporal

4The corresponding document ids can be found at
www.cl.uni-heidelberg.de/˜steen/tls/
docids.txt.

5However, we do let the competitor systems use filtering.

dimension of TLS. We thus use the two TLS mea-
sures proposed by Martschat and Markert (2017):

agree Compute ROUGE only between daily sum-
maries which have the same dates.

align Align summaries in the output with those in
the reference based on similarity and the dis-
tance between their dates, then compute the
ROUGE score between aligned summaries.
Distant alignments are punished.

We also report ROUGE concat, where we con-
catenate all entries in gold and system timeline and
compute ROUGE between the results discarding
all date information. While this measure is sub-
optimal for TLS (Martschat and Markert, 2017),
it has been previously used as an evaluation mea-
sure (Yan et al., 2011b,a; Wang et al., 2016). We
report the F1 score for all ROUGE metrics. To as-
sess how well the systems are at date selection, we
compute the F1 score between the dates that have
a summary in the gold timeline and in the system
timeline. Finally, we report the copy rate as the
proportion of sentences copied directly from the
corpus into the summary. We use an approximate
randomization test (Noreen, 1989) to check statis-
tical significance and the Bonferroni correction to
correct for comparing on two datasets (Dror et al.,
2018).

4.4 Oracle Summaries
One advantage of abstractive summarization is
its potential to increase the maximum attainable
scores by forming more succinct sentences. We
investigate this potential with an oracle to estab-
lish an upper bound on summary scores, follow-
ing similar work for generic summarization (Hirao
et al., 2017). As an oracle over all summaries is in-
tractable, we approximate it by replacing the scor-
ing function (Equation 6) with an oracle that pre-
dicts the ROUGE-1-agree F1-score of sentences.
The rest of our pipeline remains unchanged.

For the extractive oracle, we greedily select
from all sentences in the input documents instead.
The date of a sentence is the first exact time ex-
pression that appears in the sentence, or its DCT if
there is none (Chieu and Lee, 2004).

4.5 Comparison Systems
4.5.1 Extractive Systems
We compare our full system with three extractive
comparison systems. The first two are from a col-

www.cl.uni-heidelberg.de/~steen/tls/docids.txt.
www.cl.uni-heidelberg.de/~steen/tls/docids.txt.
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lection of TLS systems created by Martschat and
Markert (2018).6

Chieu is a reimplementation of Chieu and Lee
(2004), which uses the average cosine similarity
of a sentence in a time-window around its date to
determine importance and greedy selection. This
system is often seen as a baseline for TLS systems
(Martschat and Markert, 2018; Tran et al., 2015).

Submod is the state-of-the-art submodular sys-
tem in Martschat and Markert (2018). Addition-
ally, we have created a version of Submod with
a token constraint. The same is not possible for
Chieu, as it always selects one sentence per date.

Extractive is an extractive version of our sys-
tem. It uses fTR and fdate to score sentences.
Dates are determined as for the extractive oracle

4.5.2 Neural Baseline

As an abstractive comparison, we use the pop-
ular Pointer Generator (See et al., 2017) (Neu-
ral). It was trained on the CCN/Daily Mail single
document summarization corpus (Hermann et al.,
2015). We adapt it to TLS as follows:

1. We select the dates for the timeline by rank-
ing them by their frequency dimp(d).

2. For each selected date d, we collect all sen-
tences Sd from the corpus that refer to d.

3. For each collection Sd, we construct a pseudo
document for the summarizer. Following
Zhang et al. (2018) we use the LexRank score
(Erkan and Radev, 2004) to rank the sen-
tences in Sd. We add the top sentences to the
document until we reach the maximum input
size for the pointer generator (400 tokens).7

During our experiments, we found that the self-
stopping nature of the pointer generator causes it
to generate daily summaries that exceed the token
length constraint described in Section 4.2 in 83%
of daily summaries. To see if this disadvantages
the pointer generator, we tried applying this to-
ken constraint to its output. However, this results
in lower scores, so we only report results without
length constraint.

6github.com/smartschat/tilse
7In an alternative setup, we tried selecting the centroid

document for each date and then summarize it. This performs
comparably or worse, depending on the corpus.

5 Results

5.1 Oracle Results

While both the extractive and the abstractive ora-
cle perform equally on TL17, the abstractive ora-
cle outperforms the extractive oracle significantly
on Crisis. The abstractive copy rate on TL17 is
also much higher than on Crisis. (73.7% vs 38.3%
for sentence constraints). We hypothesize that this
is related to the lower compression rate and greater
size of Crisis (see Table 2). Abstractive TLS can
only achieve its full potential when a variety of dif-
ferent texts needs to be compressed to short sum-
maries. We investigate this in Section 5.5.

5.2 System Results

5.2.1 Extractive Systems
Our system outperforms Extractive, demonstrat-
ing the importance of our abstractive components.
While Chieu performs better than our system in
ROUGE-1 concat on Crisis, it is much worse in
all date-sensitive measures and on TL17.

When comparing Submod and our abstractive
system, we see behaviour similar to the oracles.
On TL17, Submod achieves higher scores, though
the differences are mostly not significant. On Cri-
sis, however, we outperform Submod across all
date-sensitive metrics and almost double the score
in ROUGE-2 for agree and align. All improve-
ments are significant except for ROUGE-1 align.

5.2.2 Neural
Neural performs slightly better than our system on
the ROUGE-1 concat metric on Crisis, but per-
forms significantly worse than us on almost all
other content measures. This underlines the im-
portance of TLS specific approaches.

5.2.3 Effect of Length Constraints
The token constraint has a small positive influence
on our system while resulting in lower results for
Submod. This shows that our system does not un-
fairly exploit the sentence constraint.

5.3 Example Timeline

Table 4 shows an example timeline generated by
our system. Most entries describe events that are
directly relevant to the civil war, though only two
appear in the corresponding reference timeline.
This demonstrates the difficulty of content selec-
tion in TLS, where even human timelines on the

github.com/smartschat/tilse


27

Date Concat F1 Agree F1 Align F1 Copy
F1 R1 R2 R1 R2 R1 R2 Rate

Timeline 17
Chieu 0.195 0.223 0.049 0.024 0.008 0.046 0.012 1.000
Neural 0.518 0.320 0.055 0.061 0.012 0.069 0.013 0.000
Submod (s) 0.5433 0.364 0.087 0.0923 0.021 0.1033 0.024 1.000
Extr. (s) 0.514 0.294 0.063 0.071 0.018 0.081 0.020 1.000
Abstractive (s) 0.5121 0.34912∗ 0.08112∗ 0.07512 0.02012 0.08712 0.0222 0.446
Extr. Oracle (s) 0.893∗ 0.501 0.180 0.317 0.143 0.320 0.144 1.000
Abs. Oracle (s) 0.883 0.504 0.179 0.322 0.142 0.324 0.142 0.729

Submod (t) 0.530 0.353 0.087 0.088 0.020 0.100 0.022 1.000
Extr. (t) 0.514 0.321 0.066 0.071 0.018 0.081 0.020 1.000
Abstractive (t) 0.512a 0.366ab∗ 0.084ab∗ 0.081ab 0.021a 0.093ab∗ 0.024b 0.424
Ext. Oracle (t) 0.891 0.511 0.183 0.317 0.143 0.320 0.144 1.000
Abs. Oracle (t) 0.885 0.513 0.183 0.325∗ 0.147 0.327∗ 0.147 0.704
Crisis
Chieu 0.146 0.348 0.065 0.026 0.006 0.047 0.010 1.000
Neural 0.279 0.343 0.047 0.049 0.008 0.064 0.010 0.000
Submod (s) 0.288 0.333 0.071 0.056 0.012 0.076 0.015 1.000
Extr. (s) 0.273 0.225 0.046 0.037 0.009 0.052 0.011 1.000
Abstractive (s) 0.2971 0.324∗ 0.0702∗ 0.06612∗ 0.024123∗ 0.0801∗ 0.02612∗ 0.382
Extr. Oracle (s) 0.934 0.509 0.167 0.359 0.142 0.359 0.142 1.000
Abs. Oracle (s) 0.936 0.530∗ 0.190∗ 0.396∗ 0.168∗ 0.397∗ 0.168∗ 0.475

Submod (t) 0.264 0.331 0.065 0.053 0.012 0.072 0.015 1.000
Extr. (t) 0.273 0.229 0.045 0.036 0.009 0.051 0.011 1.000
Abstractive (t) 0.297a 0.333∗ 0.071b∗ 0.069abc∗ 0.025abc∗ 0.082ab∗ 0.027abc∗ 0.331
Ext. Oracle (t) 0.933 0.503 0.164 0.352 0.139 0.353 0.139 1.000
Abs. Oracle (t) 0.936 0.530∗ 0.186∗ 0.386∗ 0.163∗ 0.387∗ 0.163∗ 0.472

Table 3: Result of our system, the oracles, and comparison systems. (s) and (t) indicate sentence or token constraint
where applicable. ∗ indicates statistically significant difference between abstractive and extractive oracle and
our abstractive system and Extractive respectively. 123 indicate significant differences between our system with
sentence constraint and Chieu, Neural, and Submod with sentence constraint respectively. abc indicate the same
for the token constraint (p < 0.05). Bold entries indicate best non-oracle results, italic ones best oracle results.

same topic can vary widely (Martschat and Mark-
ert, 2018; Tran et al., 2013b).

Most sentences have been edited by the MSC al-
gorithm. We can observe some minor ungrammat-
icalities resulting from this process, like the phrase
”on march” in the first daily summary. The time-
line also exhibits some redundancy as the state-
ment about the Red Cross is repeated twice.

5.4 Ablation Experiments

To study the effects of our scoring functions, we
conduct an ablation study where we remove one
scoring function at a time and rerun our system.
The results can be found in Table 5.8 We find all
features contribute to ROUGE scores. Removing
fTR and fpath has a small negative effect on date
F1 but a big effect on ROUGE, while fdate mostly
affects date F1. It appears that content and date

8To preserve space, we focus on the Crisis dataset with
sentence constraint. Results are similar on TL17, but remov-
ing features there has generally a smaller effect.

selection can to some extent be improved inde-
pendently even with date-sensitive metrics. This
might warrant future investigation.

5.5 Utility analysis

Our experiments show that the usefulness of our
system is corpus-dependent. We investigate three
factors that might explain this difference in perfor-
mance: The number of input sentences, the com-
pression rate, and the spread (see Section 4.1).

We compute the Spearman-correlation of all
three factors with the difference in ROUGE-2-
align F1 score between the two oracles as well as
between our system and Submod. The result can
be found in Table 6. For the oracles, we observe a
strong negative correlation with compression (plus
a weaker one with spread) and a positive one with
the number of sentences. With more material the
MSC system can generate more new sentences. In
the same vein, a lower compression rate makes
fusing sentences more useful. The difference be-
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2011-03-15
the conflict erupted on march 2011 when
protesters inspired by arab world uprisings
took to the streets to call for democratic
change.
2012-02-04
russia and china vetoed a draft resolution
that backed an arab plan to facilitate polit-
ical transition in syria.
2012-06-13
talk of civil war in syria is not consistent
with reality... what is happening in syria is a
war against armed groups that choose terror-
ism, ”syrian state news agency sana quoted
a foreign ministry statement as saying.
2012-07-15
red cross said sunday it now considers the
conflict a civil war, meaning international
humanitarian law applies throughout the
country.
2012-07-16
the international committee of the red cross
declared the conflict a civil war.
2012-07-18
on july blast at the syrian national security
building in damascus during a high - level
government crisis meeting killed four top
regime officials, including the defense min-
ister.

Table 4: Beginning of the timeline generated by our ab-
stractive system with sentence constraint for the time-
line in Table 1. Red color indicates sentences that were
copied directly from the input corpus. Blue color indi-
cates events which can also be found in the reference
timeline.

Feat. Date R1 R2
−fdate -0.049 -0.007∗ -0.002
−fTR +0.004 -0.024∗ -0.008
−fpath +0.002 -0.028∗ -0.015∗

−fcluster -0.004 -0.012∗ -0.010∗

Table 5: Ablation results on Crisis, showing changes of
ROUGE align and date selection F1. ∗ indicates signif-
icant differences to the full model (p < 0.05).

Comparison ]sents Compr. Spread
Abs. Or. - Ext. Or. 0.48 -0.61 -0.31
Abs. - Submod 0.45 -0.41 -0.24

Table 6: Spearman correlation of the score difference
between systems and timeline properties.

tween our system and Submod exhibits similar, al-
though less extreme behaviour. These results, to-
gether with the difference in size and compression
rate between the datasets observed in Table 2, ex-
plain why our system outperforms the state of the
art only on the more compressive Crisis dataset.

6 Readability Analysis

We assess the readability of the summaries gen-
erated by our abstractive system, the abstractive
oracle (both with sentence constraint) and Neural.

We sampled 100 daily summaries for each sys-
tem and from the gold summaries. We ensured
that an approximately equal number of summaries
was sampled from each generated timeline. Addi-
tionally, we sampled another 100 gold summaries
and randomly deleted 25% of their tokens to sim-
ulate a compressive system without regard for lin-
guistic quality. We call these summaries Delete25.
We asked annotators from Amazon Mechanical
Turk9 to rate how well they are able to understand
the summaries on a scale from 1 (completely un-
understandable) to 5 (easily understood). The de-
scriptions of the rating scale presented to the work-
ers can be seen in Table 7. Items were grouped in
randomly ordered batches, so that each batch had
one summary from each system.

Table 8 shows readability results. Unsurpris-
ingly, Gold receives the highest score. Delete25
receives an unexpectedly high score, though no-
tably lower than other systems. We find many sen-
tences remain understandable even after deletions
as in the following example: Saif al-islam has
been detained several bodyguards near the town
obari by fighters in town of zintan, the justice min-
ister and other officials said. He not wounded.

Among the systems, ours receives the highest
score. The oracle performs slightly worse. We
speculate that this is due to the fact that the oracle
does not include language model information. In
both cases, over 80% of the sentences are easily
understood (4 or 5). We also outperform Neural.
This might be a result of its higher abstractiveness,
which allows more errors.

7 Related Work

7.1 TLS

To the best of our knowledge, all systems pro-
posed specifically for TLS have been extractive

9mturk.com
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5 I can understand the text without prob-
lems. It does not have any grammatical-
ity or fluency issues.

4 The text has some minor grammatical-
ity or fluency issues but I can still un-
derstand it without problems.

3 I can understand the entire text, but it is
difficult to do so.

2 I can understand the text only partially.
1 I can not understand the text at all.

Table 7: Rating scale for the readability task.

System Avg. #5 #4 #3 #2 #1
Neural 4.02 102 131 41 23 3
Abs. Or. 4.27 142 112 34 10 2
Abs. 4.40 165 103 21 9 2
Delete25 3.43 38 117 90 46 9
Gold 4.52 187 89 17 6 1

Table 8: Results of the readability evaluation. We also
report the number of times each category was chosen.

(Nguyen et al., 2014; Chieu and Lee, 2004; Yan
et al., 2011b,a; Wang et al., 2016; Tran et al., 2015,
2013b,a; Martschat and Markert, 2018). Several
of these evaluate on corpora that are not pub-
licly available (Chieu and Lee, 2004; Yan et al.,
2011a,b) so that we cannot compare to their re-
sults. Since the advent of TL17 and Crisis, several
evaluations have been performed on these datasets
(Tran et al., 2015, 2013b,a; Martschat and Mark-
ert, 2018; Wang et al., 2016), but only Martschat
and Markert (2018) evaluate with appropriate TLS
measures. As code and original output are mostly
unavailable, it is difficult to compare to them.

7.2 TLS-related Tasks

TLS is related to the TREC real-time summariza-
tion task (Lin et al., 2016). Unlike TLS, this task
focuses on detecting novel information in a stream
of social media posts in real time. TLS, on the
other hand, assumes an offline setting and gener-
ates timelines for much longer timespans, focus-
ing on the challenges of date selection and dating
of information, which are not present in TREC.

There are also several papers that produce time-
lines by generating a summary for every single
date in a given timespan, thus timeline generation
without date selection (Wang et al., 2015; Allan
et al., 2001). In these cases, the overall compres-
sion rate is not as low as for our setting and not

comparable to the human timelines in our corpora.
TLS is also related to Task 4 in SEMEVAL 2015

(Minard et al., 2015). In this task, systems need
to extract all events a query entity participates in.
Unlike TLS the output is not a textual summary
but a complete collection of the events in the in-
put. Barros et al. (2019) have proposed narrative
abstractive timeline summarization (NATSUM) in
which they generate abstractive textual descrip-
tions for the events in the SEMEVAL dataset.
However, their work is markedly different from
TLS in that ”NATSUM [...] aims to generate nar-
rative summaries and not timelines” (Barros et al.,
2019, page 15). As a consequence, they do not
perform any date selection and do not evaluate
with appropriate date-sensitive metrics.

7.3 Generic Summarization

We have already described the differences be-
tween TLS and MDS and the limited direct appli-
cability of MDS systems to TLS in Section 2.2.
However, our methodology is inspired by the
MDS system of Banerjee et al. (2015). We made
major adaptations to this system for TLS by (i) us-
ing AP clustering to cluster sentences in a date-
sensitive way that dynamically adapts to the cor-
pus size and (ii) augmenting sentence scoring and
selection to the needs of TLS. Our system is also
related to neural abstractive summarization (See
et al., 2017; Gehrmann et al., 2018; Cohan et al.,
2018; Paulus et al., 2018). However, these meth-
ods require large training corpora unavailable for
TLS.

8 Conclusion

We have presented a system for abstractive TLS
which outperforms the state-of-the-art extractive
TLS system when corpora are large and need sub-
stantial compression. Our analysis reveals a corre-
lation between the difficulty of a TLS instance (as
measured by compression and spread) and the ad-
vantage of an abstractive over a purely extractive
approach.

Our system requires no supervision, which
makes it well suited for TLS where the low num-
ber of available timelines makes training super-
vised systems difficult. We also require only
lightweight annotations on the input, which allows
for easy adaption to other settings and languages.
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