
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 172–176
Hong Kong, November 4, 2019. c©2019 Association for Computational Linguistics

172

Node Embeddings for Graph Merging: Case of Knowledge Graph
Construction

Ida Szubert Mark Steedman
School of Informatics

University of Edinburgh
Edinburgh, Scotland, UK

k.i.szubert@sms.ed.ac.uk, steedman@inf.ed.ac.uk

Abstract

Combining two graphs requires merging the
nodes which are counterparts of each other.
In this process errors occur, resulting in incor-
rect merging or incorrect failure to merge. We
find a high prevalence of such errors when us-
ing AskNET, an algorithm for building Knowl-
edge Graphs from text corpora. AskNET node
matching method uses string similarity, which
we propose to replace with vector embedding
similarity. We explore graph-based and word-
based embedding models and show an overall
error reduction of from 56% to 23.6%, with a
reduction of over a half in both types of incor-
rect node matching.

1 Introduction

The work we present here is an extension of the
graph building algorithm of AskNET (Harrington
and Clark, 2008). The overall task we consider
is to automatically extract information from text
and integrate it into one resource, a knowledge
graph. In this paper we focus on one aspect of the
AskNET graph building algorithm – the process of
merging document-level graphs into a corpus level
one. We propose improvements which reduce the
rates of two common and non-trivial errors which
arise when matching nodes between two graphs.

Merging two graphs, with an assumption that
they potentially represent overlapping informa-
tion, requires node matching. We need to decide
which nodes should be merged, and this can re-
sult in two types of errors: merging two nodes
even if they do not represent the same thing, or not
merging nodes which do. As an example, Figure
1 shows a sample graph representing information
from a news article and a new sentence together
with its own graph. In merging the two graphs
we could correctly decide to match and merge
the Williams node to the Rowan Williams one. If
we matched to Justin Welby we would merge the

Figure 1: A graph representing a news article about Arch-
bishop appointment and a sentence to be integrated into the
graph. Green dotted arrow shows correct node matching, the
red match leads to spurious merging, and the blue arrow and
node represent no match found and a spurious addition.

nodes incorrectly, resulting in conflation of infor-
mation about two different people. If we did not
find a match at all the result would be the pres-
ence of two nodes representing the same person.
We call the first error spurious merging, and the
second spurious addition.

Both of those problems occur in graphs built
with the AskNET algorithm, which uses string
similarity as a tool for node matching. We propose
to modify the algorithm with using vector embed-
dings instead. We explore word-based and graph-
based ways of obtaining graph node embeddings
and show that both lead to reduction in merging
and addition errors.

2 Methods

In this paper we explore a modification of the
AskNET algorithm. We provide an overview
of the KG-building approach of (Harrington and
Clark, 2008), and a more detailed explanation of
the step which we improve upon.



173

2.1 AskNET

The AskNET system uses a semantic parser
(Boxer (Bos, 2005)) to obtain graph representation
of sentential content in a large corpus and incre-
mentally combines them, first into document level
graphs (DG), and then into one semantic network,
which we are calling a knowledge graph (KG)1.
The central challenge in the process of graph
merging is, as described before, node matching.
In AskNET the matching problem is approached
with an iterative message passing (aka activation
spreading) procedure, the intuition behind which
is to find, for a node nDG from DG, a node nKG

in the KG such that the neighbourhoods of nDG

and nKG in their respective graphs are similar.
Given a node nDG, the algorithm selects a can-

didate set CKG of KG nodes such that it likely
contains the correct matching nKG. Afterwards
in an iterative procedure for each of the DG nodes
the scores of each element of CKG are updated
until convergence. The pre-selection step is cru-
cial for ensuring time and space efficiency of the
algorithm.However it also means that if the qual-
ity of CKG is a limiting factor for the correctness
of the output. If the correct match is not present
in CKG, either spurious merging or addition will
result. Moreover, errors will also arise when CKG

does contain the correct match, but it is easily con-
fused with the rest of the set members.

As Harrington (2009) recognizes, spurious ad-
dition and merging are challenging errors to fix,
and the AskNET algorithm does not attempt it. In
our implementation of AskNET, only about 44%
of nodes are correctly matched, with the rest di-
vided between spurious addition (24%) and merg-
ing(32%). We approach this issue by improving
the candidate node sets with the aim of minimiz-
ing the problems. The task we consider is thus:
given a KG, a DG, and node nDG, produce a set
CKG such that it (1) contains the true match and
(2) minimizes merging and addition errors. In the
approach of (Harrington and Clark, 2008) the se-
lection is based on approximate string matching
between the name associated with nDG and the
names associated with the KG nodes. This sim-
ilarity measure is not reliable in contexts where

1Semantic parses used in AskNET follow a version of
Discourse Representation Theory as implemented by the
Boxer parser; in our replication we represent the information
contained by a sentence with a set of entity-relation triples,
which express all the binary relations involving at least one
named entity

one entity can be called by various names and ti-
tles, as is especially common in news text in which
repetitions are avoided. In our evaluation, only
about 55% of candidate sets generated with string
similarity actually contain a correct match. Our
contribution is investigating the use of vector em-
beddings for candidate node selection. We show
that both word-based and graph-based embedding
models provide a better notion of similarity, and
that combining them brings optimal benefits.

2.2 Dataset

For our experiments we use a subsection of the
NewsSpike corpus (Zhang and Weld, 2013). For
purposes of efficiency and ease of evaluation we
decided to build a KG of around 15k nodes (size
in line with the FB15k dataset (Bordes et al., 2013)
popular in graph embedding literature), which we
achieved by selecting 127,221 documents from
the NewsSpike corpus. We preprocessed the
NewsSpike corpus using the DBPedia entity linker
(Nguyen et al., 2014) which enabled us to identify
the most frequently occurring named entities. We
chose top n named entities such that when a KG
is created of all the documents mentioning those n
entities, the graph has approximately 15k nodes.2

Documents in our dataset are relatively short, av-
eraging 338 words. The average number of named
entities per document is 10.3. We held out 10 ran-
domly selected documents each for development
and test sets, and the rest forms the training set.

2.3 Base KG

The KG used in our experiments is built out of the
training set documents using the original AskNET
algorithm. To obtain graphs representing indi-
vidual sentences we use the semantic parser of
(Reddy et al., 2014) and extract binary relations
from its output. We only use relations which in-
volve at least one named entity. The nodes in
the graph are labeled with a set containing all
strings from the original documents which have
been linked to that node (e.g. a set containing
Rowan Williams, Williams, Rev. Williams, Arch-
bishop of Canterbury). The edges are labeled with
relation names, where the relation set is open and
can include any two place predicate used in the
source documents.

2The graph also includes nodes representing non-named
entities.



174

2.4 Graph-based embeddings

The first way of generating DG and KG node em-
beddings is using a graph embedding method. We
decided to use the GraphSAGE model of (Hamil-
ton et al., 2017) which generates node representa-
tions by taking into account the features of each
node and the structure of it’s neighborhood. This
model, as compared to numerous recent graph em-
bedding models, is particularly well suited to our
use case. It can be trained with an unsupervised
objective, once trained can produce embeddings
for unseen nodes and even nodes in unseen graphs,
and leverages node features, e.g. text attributes.
We train GraphSAGE, in an unsupervised setting3

and mean aggregators, on the base KG. The initial
node features are node degree and mean of one-
hot encoding of the node labels. The model learns
a set of aggregator functions, which not only gen-
erate final embeddings for the KG nodes, but also
for DG nodes in the development and test sets.

2.5 Word-based embeddings

Another approach to obtaining node embeddings
is through word embeddings. We make use of
of the ELMo model for deep contextualized word
representation (Peters et al., 2018). We represent
a node in a KG as an average of the word em-
beddings of every entity that has been resolved to
that node during graph building. In other words,
given a document we generate ELMo embeddings
for every mention of every entity4, and in the DG
a node representing an entity is assigned an em-
bedding which is an average of all the mentions
of that entity. When nodes are merged during in-
tegration of the DG into the KG, the embedding
of the KG node is updated so that it is always an
average of the embeddings of all document-level
nodes resolved to that KG node. For the purposes
of our experiments we perform this embedding ag-
gregation when building the base KG so that em-
beddings for all of its nodes are available. How-
ever, we do not use those embeddings to aid in the
building process.

We use the original large pre-trained ELMo
model (ELMo large), which has been trained on

3with the objective of maximizing the similarity of close
by nodes and minimizing that of distant nodes, where the
closeness is determined by co-occurrence on fixed-length
random walks

4Because of pre-processing the documents in our corpus
with an entity linker we know which word sequences consti-
tute entity names and we treat them as single lexical item.

the same genre as our corpus. For the purposes
of meaningful comparison with the graph-based
embeddings, which cannot be pre-trained, we also
train an ELMo model on our corpus only (ELMo
small and exeriment with the resulting embed-
dings.

2.6 Hybrid embeddings

We expect that the two methods might provide
complementary benefits: GraphSAGE make use
of the structure of the KG, and ELMo accumulate
information from the original texts, including in-
formation which is not present in the KG. We pro-
pose to combine them by using the GraphSAGE
model with initial node features being node degree
and the ELMo large embedding of the node.

3 Experiments

We propose to find the set CKG by evaluating
embedding similarity, rather than string similar-
ity, between embeddings of the nDG and all KG
nodes. We treat the string-similarity method as a
baseline. We expect relying on embedding simi-
larity to result in better candidate sets and in re-
duced number of merging and addition errors.

Regardless of the embedding method, candidate
selection requires us to pick k closest neighbours
for a given node from all of the nodes of the KG.
To do that we use random projection-based ap-
proximate nearest neighbour search algorithm im-
plemented in the Annoy library5. For candidate se-
lection in the original string-based method we use
the SimString library which performs approximate
string matching according to the method proposed
in (Okazaki and Tsujii, 2010), and we define the
similarity between nd and nKG as the edit distance
divided by the length of the shorter of the names.
We use the development set to set k to 7 and string
similarity threshold to 0.36.

For each test document, we build a DG using the
original AskNET method. Each node in that graph
is associated with a set of names and ELMo large
and ELMo small embeddings. Using the Graph-
SAGE and hybrid models trained on the base KG
we assign each node in DG a GraphSAGE and
hybrid embeddings. Then, for each DG node we
find five CKG sets, one for each method, and run
the rest of the AskNEt algorithm for each set to

5https://github.com/spotify/annoy
6We also use the development data to set various AskNET

hyperparameters not discussed in this work

https://github.com/spotify/annoy


175

errors
good CKG correct merging addition

baseline 54.5 44.2 24.2 31.6
GraphSAGE 67.3 61.8 18.2 20.0
ELMo small 63.6 55.1 19.4 25.5
ELMo large 71.5 64.2 13.9 21.9

hybrid 82.4 76.4 10.9 12.7

Table 1: Node matching results: percentage of CKG con-
taining a correct match (higher is better); percentage of test
nodes correctly resolved (higher is better), spuriously merged
with some KG node and spuriously added to KG as a new
node (lower is better)

recover the one (or none) final match for each
method.

3.1 Evaluation

Evaluation of information graph building methods
is inherently challenging in the absence of gold-
standard KGs. In our experimental setting the base
KG is automatically constructed and as such is
noisy. We then ask how well are different meth-
ods capable of matching DG nodes to the nodes
in the noisy KG. There is no ground truth, and
so our evaluation relies on a human annotator in-
specting the neighbourhoods of the candidate KG
nodes and making a judgment about how likely is
it that they are a match to the DG node. When the
annotator finds no likely matches in the set, they
search the KG (by keywords, names, etc.) to ascer-
tain whether likely matches are present in the KG
at all. The annotator has access to the test set docu-
ments, document-level graphs, and can inspect the
KG.

For each node in a DG in the test set, we man-
ually evaluate the candidate sets produced by the
five methods (baseline, GraphSAGE, ELMo large,
ELMo small, hybrid) and the one (or none) node
returned by the AskNET algorithm as the final
match. There are 165 nodes in the 10 test set doc-
uments.

We evaluate the candidate sets by manually as-
sessing whether any of the candidates can be rea-
sonably considered to be a match, and if so the set
is deemed to be correct. For the final match de-
cision we perform a 3-way classification: correct
KG node selected or correct in choosing no KG
node; incorrect KG node selected and leading to
spurious merging; or incorrectly selecting no KG
node and leading to spurious addition.

4 Results

Overall, both graph- and word-based embedding
similarity outperform string similarity as a candi-

date node selection tool, and the most benefit is to
be had by using a hybrid model. Both the percent-
age of good candidate sets and the percentage of
correct matches are significantly increased. More-
over, the difference between the two measures is
smaller for our proposed methods than for base-
line, indicating that our candidate sets are less con-
founding for the AskNET algorithm.

As can be seen in table 1 word- and graph-
based embedding differ in what kind of confound-
ing candidates they introduce to the sets alongside
the correct match. This is reflected in the different
rates of spurious merging and addition they result
in. GraphSAGE reduces addition more then merg-
ing. Given a node nDG, using GraphSAGE we
select KG nodes whose neighbourhood is similar,
in terms of features and structure, to that of nDG.
This makes it more likely that the correct match
is in CKG, thus reducing spurious addition. How-
ever, the subsequent steps of the AskNET algo-
rithm also rely on estimating the similarity of the
neighborhoods which means that the candidates
selected using this method are easy to confuse.

An opposite tendency can be observed for
ELMo embeddings, where CKG includes entities
mentioned in similar textual context as nDG. If
the correct match is present in the set, it is eas-
ier for the AskNET algorithm to identify it using
the neighbourhood information, because the can-
didates are likely to have diverse neighbourhoods.
Therefore merging mistakes are significantly re-
duced.

5 Conclusions

We show that modern context-aware word embed-
dings and graph-based embeddings can both be
used, separately or in conjunction, to improve KG
building from text. Our experiments show that we
can reduce both of the two difficult problems with
resolving entities to KG nodes: spurious merging
of separate entities into one node and spurious ad-
dition of nodes for entities which are already rep-
resented in the KG. We explore how different em-
bedding methods are better suited to solving one
of the problems than the other, and how combin-
ing them provides synergistic effects. While we
explore the proposed methods from the point of
view of KG creation, the same methods could be
used for other KG-based tasks, e.g. question an-
swering.



176

References
Antoine Bordes, Nicolas Usunier, Alberto Garcia-

Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Johan Bos. 2005. Towards wide-coverage semantic in-
terpretation. In Proceedings of Sixth International
Workshop on Computational Semantics IWCS, vol-
ume 6, pages 42–53.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs.
In Advances in Neural Information Processing Sys-
tems, pages 1024–1034.

Brian Harrington. 2009. ASKNet: automatically creat-
ing semantic knowledge networks from natural lan-
guage Text. Ph.D. thesis, Oxford University.

Brian Harrington and Stephen Clark. 2008. Asknet:
Creating and evaluating large scale integrated se-
mantic networks. International Journal of Semantic
Computing, 2(03):343–364.

Dat Ba Nguyen, Johannes Hoffart, Martin Theobald,
and Gerhard Weikum. 2014. AIDA-light: High-
Throughput Named-Entity Disambiguation. In
Workshop on Linked Data on the Web, pages 1–10,
Seoul, Korea.

Naoaki Okazaki and Jun’ichi Tsujii. 2010. Sim-
ple and efficient algorithm for approximate dictio-
nary matching. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics,
pages 851–859. Association for Computational Lin-
guistics.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics, 2:377–392.

Congle Zhang and Daniel S Weld. 2013. Harvest-
ing parallel news streams to generate paraphrases of
event relations. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1776–1786.

http://aclweb.org/anthology/Q14-1030
http://aclweb.org/anthology/Q14-1030

