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Abstract 

This paper describes the UCSYNLP-Lab 

submission to WAT 2019 for Myanmar-

English translation tasks in both direction. 

We have used the neural machine 

translation systems with attention model 

and utilized the UCSY-corpus and ALT 

corpus. In NMT with attention model, we 

use the word segmentation level as well as 

syllable segmentation level. Especially, we 

made the UCSY-corpus to be cleaned in 

WAT 2019. Therefore, the UCSY corpus 

for WAT 2019 is not identical to those 

used in WAT 2018. Experiments show that 

the translation systems can produce the 

substantial improvements.  

1 Introduction 

In recent years, Neural Machine Translation 

(NMT) (Bahdanau et al., 2015) as achieved state-

of-the-art performance on various language pairs 

(Sennrich et al., 2016) and often outperforming 

traditional Statistical Machine Translation (SMT) 

techniques. Therefore, a lot of researchers have 

been attracted to investigate the machine 

translation based on neural methods. This paper 

describes the NMT systems of UCSYNLP-Lab 

for the WAT 2019 evaluation. We participated in 

Myanmar-English and English-Myanmar  

translations in both directions.  

Although Myanmar sentences are clearly 

delimited by a sentence boundary maker but 

words or phrases are not always delimited by 

spaces. In Myanmar language, words are 

composed of one or more syllables and syllables 

are composed of characters. And syllables are not 

usually separated by white space. Therefore, word 

segmentation and syllable segmentation are 

essential steps for machine translation systems. 

Figure 1 describes the formation of Myanmar 

word and Myanmar syllable in one sentence. 

 

Moreover, Myanmar language is one of the 

low resource languages and there are a few 

parallel corpus. . It is necessary to be cleaned 

these corpus. So, we made the UCSY-corpus to 

be cleaned, therefore, the UCSY corpus for WAT 

2019 is not identical to those used in WAT 2018. 

To enhance the performance of the model, we 

tried NMT with attention model with word level 

as well as syllable level. We employed NMT with 

attention model as our baseline model and built 

our translation system based on OpenNMT
1
 open 

source toolkit. 

The remainder of this paper is organized as 

follows: section 2 describes about the dataset. 

Section 3 describes the experimental set up and 

results are presented in section 4. Finally, we 

conclude in section 5. 

2 Dataset 

This section describes the dataset provided by 

WAT 2019 for the translation task. The datasets 

for Myanmar-English translation tasks at 

WAT2019 consists of parallel corpora from two 

different domains, namely, the ALT corpus and 

UCSY corpus. The ALT corpus is one part from 

                                                           
1 http://github.com/OpenNMT/OpenNMT-py 
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Figure 1: Formation of Myanmar sentence. 
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the Asian Language Treebank (ALT) project (Riza 

et al., 2016), consisting of twenty thousand 

Myanmar-English parallel sentences from the 

Wikinews. The UCSY corpus (Yi Mon Shwe Sin 

and Khin Mar Soe, 2018) is constructed by the 

NLP Lab, University of Computer Studies, 

Yangon (UCSY), Myanmar. The corpus consists 

of 200 thousand Myanmar-English parallel 

sentences collected from different domains, 

including news articles and textbooks. 

ALT corpus size is extremely small, so  a larger 

out-of-domain corpus for the same language pair 

also known as the UCSY corpus is provided. The 

UCSY corpus and a portion of the ALT corpus are 

used as training data, which are around 220,000 

lines of sentences and phrases. The development 

and test data are from the ALT corpus. Therefore, 

the training data for Myanmar-English and 

English-Myanmar translation tasks is a mix 

domain data collected from different sources. 

Table 1 shows data statistics used for the 

experiments. 

 

Data 

Type 

File Name Number of 

Sentences 

TRAIN train.ucsy.[my|en]    208,638 

train.alt.[my|en]      17,965 

DEV dev.alt.[my|en]           993 

TEST tet.alt.[my|en]        1.007 

Table 1:  Statistics of Datasets. 

UCSY corpus was collected from bilingual 

sentences from various websites, and it contains 

some erroneous sentences, misspelled words, 

encoding problems and duplicate sentences. 

Therefore, we decided to remove these useless data 

after WAT 2018. Therefore, these problems are 

corrected manually at WAT2019 task to improve 

the quality of Machine Translation by removing 

duplicate sentences, spell checking, and 

normalizing different encodings. 

3 Experimental Setup  

We adopted a neural machine translation (NMT) 

with attention mechanism as a baseline system 

and we used OpenNMT
1
 (Klein et al., 2017) as 

the implementation of the baseline NMT systems. 

3.1 Training Data 

The UCSY corpus and a portion of the ALT 

corpus are used as training data, which are around 

220,000 lines of sentences and phrases. The 

development and test data are from the ALT 

corpus. Therefore, the training data for Myanmar-

English and English-Myanmar translation tasks is 

a mix domain data collected from different 

sources. Table 2 shows the data about the training 

detail. 

 

Domain Number of Word Myanmar 

Syllable 

tokens 

Myanmar English 

ALT  698,347 436,923 1,138,297 

UCSY 2,966,666 2,255,630 6,455,588 

Total 36,650,13 2,692,553 6,569,417 

Table 2:  Training Details Information. 

3.2 Tokenization 

The collected raw sentences are not segmented 

correctly and some do not have almost no 

segmentation is essential for the quality 

improvement of Machine Translation. We used 

UCSYNLP word segmenter(Win Pa Pa and Ni 

Lar Thein, 2008)  for Myanmar word 

segmentation and Myanmar syllable segmenter
2
 

for syllable segmentation. 

UCSYNLP word segmenter is implemented a 

combined model, bigram and word juncture. This 

segmenter works by longest matching and bigram 

method with a pre-segmented corpus of 50,000 

words collected manually from Myanmar Text 

Books, Newspapers, and Journals. The corpus is 

in Unicode encoding. After segementing the 

Myanmar sentence by UCSYNLP word 

segmenter the “_ ” from the result is removed and 

replaced with space. Figure 2 shows the process 

of UCSYNLP word segmenter. It is not able to 

segment when "?" and "%" contains in Myanmar 

sentences. Examples are shown in Figure 3 and 

Figure 4. These sentences are segmented 

manually.  

                                                           
2
 https://github.com/ye-kyaw-thu/sylbreak 
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Figure 2: The process of word level segmentation.  

 

Figure 3: Sentences that are manually segmented.  

 
Figure 4: Sentences that are manually segmented. 

 

For Myanmar syllable-based neural machine 

translation model, "sylbreak" is used to segment 

the Myanmar sentence into syllable level. 

Syllable segmentation is an important preprocess 

for many natural language processing (NLP) such 

as romanization, transliteration and grapheme-to-

phoneme (g2p) conversion. "sylbreak" is a 

syllable segmentation tool for Myanmar language  

(Burmese) text encoded with Unicode (e.g. 

Myanmar3, Padauk). After segmenting the 

Myanmar sentence into syllable segmentation, the 

"|" from the result is removed and replaced with 

space and leading the trim process. Figure 5 

shows the process of syllable segmentation for 

Myanmar syllable-based NMT model. 

 
Figure 5: The process of syllable level 

segmentation. 

3.3 NMT with attention 

Our NMT system is built upon NMT with 

attention model that links blocks of Long Short-

Term Memory (LSTM) in an RNN. We used open 

source OpenNMT. The experiments were run on 

Tesla K80 GPU. We trained the word-based NMT 

and Myanmar Syllable-based NMT. Based on 

different parameter settings, the training time is 

different. Table 3 shows the settings of network 

hyper-parameters for NMT models. 

The basic architecture of the Encoder-Decoder 

model includes two recurrent neural networks 

(RNNs). A source recurrent neural network 

(RNN) encoder reads the source sentence x = 

(x1,…, xi) and encodes it into a sequence of 

hidden states h = (h1,…, hi). The target decoder is 

a recurrent neural network that generates a 

corresponding translation y = (y1,…, yj) based on 

the encoded sequence of hidden states h. The 

encoder and decoder are join to train to produce 

the maximum log-probability of the correct 

translation. 

In attention based encoder-decoder 

architecture, encoder uses a bi-directional 

recurrent unit that gets a better performance for 

long sentences. Encoder encodes the annotation 

of each source word to summarize getting the 

preceding word and the following word. 

Likewise, the decoder also becomes a GRU and 

each word yj is predicted based on a recurrent 

hidden state, the previously predicted word yj-1, 

and a context vector. Unlike the previously 

encoder-decoder approach, the probability is 

conditioned on a distinct vector for each target 

word.  This context vector is obtained from the 

weighted sum of the annotations hk, which is 

computed through an alignment model  jk. 

Training is performed using stochastic gradient 

descent on a parallel corpus. 

 

Hyper-parameter  NMT models 

src vocab size  25,087 (Word Level) 

tgt vocab size   50,004 (Word Level) 

src vocab size 25,087(Syllable Level) 

tgt vocab size 50,004 (Syllable Level) 

Number of  

hidden units    
 

500 

Encoder layer   2 

Decoder layer 2 

Learning rate    1.0 

Dropout rate  0.3 

Mini-batch size   64 

Table 3:  Hyper-parameter of NMT models. 

4 Experimental Results 

Our systems are evaluated on the ALT test set 

using the evaluation metrics such as Bilingual 

Evaluation Understudy (BLEU) and Rank-based 
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Intuitive Bilingual Evaluation Score (RIBES). 

Table 4 and Table 5 show the different evaluation 

metrics for Myanmar-English and English-

Myanmar translation pairs. We also investigated 

how segmentation level affects the MT 

performance in all experiments. The experimental 

results reveal that word level segmentation can 

give better performance for Myanmar to English 

NMT with attention model while syllable level 

segmentation can give better performance for 

English to Myanmar NMT. 

 

 BLEU  RIBES 

Word 19.64 0.707789 

Syllable 15.96 0.657564 

Table 4:  Myanmar to English Translation. 

 BLEU RIBES 

Word 14.84 0.697153 

Syllable 20.86 0.698507 

Table 5:  : English to Myanmar Translation. 

In Myanmar to English translation, word-

based NMT model outperforms Myanmar 

Syllable-based NMT model in terms of BLEU 

score and the RIBES score. For Myanmar to 

English NMT system, word level segmentation 

NMT system performed much better than syllable 

level segmentation NMT system. That is, nearly 4 

BLEU scores. However, Myanmar syllable-based 

NMT model gets higher score than word-based 

NMT in English to Myanmar translation. 

Interestingly, there is little difference in scores of 

RIBES in Myanmar syllable-based NMT model 

for English to Myanmar translation. For English 

to Myanmar NMT system, syllable level 

segmentation NMT system got the high BLEU 

scores that is nearly 6 BLEU scores. Best scores 

among those of the experimental results are 

submitted in this description. 

5 Conclusions 

In this system description for WAT2019, we 

submitted our NMT systems, which are NMT 

with attention. We evaluated our systems on 

Myanmar-English and English-Myanmar 

translations at WAT 2019. In the future, we will 

collect the more parallel sentences to get a large-

sized MT corpus. And we also intend to do more 

and more experiments with more recent 

evolutions of the translation models.  
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