@inproceedings{shwesin-etal-2019-ucsynlp,
title = "{UCSYNLP}-Lab Machine Translation Systems for {WAT} 2019",
author = "ShweSin, Yimon and
Pa, Win Pa and
Soe, KhinMar",
booktitle = "Proceedings of the 6th Workshop on Asian Translation",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5226",
doi = "10.18653/v1/D19-5226",
pages = "195--199",
abstract = "This paper describes the UCSYNLP-Lab submission to WAT 2019 for Myanmar-English translation tasks in both direction. We have used the neural machine translation systems with attention model and utilized the UCSY-corpus and ALT corpus. In NMT with attention model, we use the word segmentation level as well as syllable segmentation level. Especially, we made the UCSY-corpus to be cleaned in WAT 2019. Therefore, the UCSY corpus for WAT 2019 is not identical to those used in WAT 2018. Experiments show that the translation systems can produce the substantial improvements.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shwesin-etal-2019-ucsynlp">
<titleInfo>
<title>UCSYNLP-Lab Machine Translation Systems for WAT 2019</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yimon</namePart>
<namePart type="family">ShweSin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Win</namePart>
<namePart type="given">Pa</namePart>
<namePart type="family">Pa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">KhinMar</namePart>
<namePart type="family">Soe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Workshop on Asian Translation</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the UCSYNLP-Lab submission to WAT 2019 for Myanmar-English translation tasks in both direction. We have used the neural machine translation systems with attention model and utilized the UCSY-corpus and ALT corpus. In NMT with attention model, we use the word segmentation level as well as syllable segmentation level. Especially, we made the UCSY-corpus to be cleaned in WAT 2019. Therefore, the UCSY corpus for WAT 2019 is not identical to those used in WAT 2018. Experiments show that the translation systems can produce the substantial improvements.</abstract>
<identifier type="citekey">shwesin-etal-2019-ucsynlp</identifier>
<identifier type="doi">10.18653/v1/D19-5226</identifier>
<location>
<url>https://aclanthology.org/D19-5226</url>
</location>
<part>
<date>2019-nov</date>
<extent unit="page">
<start>195</start>
<end>199</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UCSYNLP-Lab Machine Translation Systems for WAT 2019
%A ShweSin, Yimon
%A Pa, Win Pa
%A Soe, KhinMar
%S Proceedings of the 6th Workshop on Asian Translation
%D 2019
%8 nov
%I Association for Computational Linguistics
%C Hong Kong, China
%F shwesin-etal-2019-ucsynlp
%X This paper describes the UCSYNLP-Lab submission to WAT 2019 for Myanmar-English translation tasks in both direction. We have used the neural machine translation systems with attention model and utilized the UCSY-corpus and ALT corpus. In NMT with attention model, we use the word segmentation level as well as syllable segmentation level. Especially, we made the UCSY-corpus to be cleaned in WAT 2019. Therefore, the UCSY corpus for WAT 2019 is not identical to those used in WAT 2018. Experiments show that the translation systems can produce the substantial improvements.
%R 10.18653/v1/D19-5226
%U https://aclanthology.org/D19-5226
%U https://doi.org/10.18653/v1/D19-5226
%P 195-199
Markdown (Informal)
[UCSYNLP-Lab Machine Translation Systems for WAT 2019](https://aclanthology.org/D19-5226) (ShweSin et al., EMNLP 2019)
ACL