
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 6256–6261,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

6256

ner and pos when nothing is capitalized

Stephen Mayhew, Tatiana Tsygankova, Dan Roth
University of Pennsylvania

Philadelphia, PA, 19104
{mayhew, ttasya, danroth}@seas.upenn.edu

Abstract

For those languages which use it, capitaliza-
tion is an important signal for the fundamen-
tal NLP tasks of Named Entity Recognition
(NER) and Part of Speech (POS) tagging. In
fact, it is such a strong signal that model per-
formance on these tasks drops sharply in com-
mon lowercased scenarios, such as noisy web
text or machine translation outputs. In this
work, we perform a systematic analysis of so-
lutions to this problem in English, modifying
only the casing of the train or test data using
lowercasing and truecasing methods. While
prior work and first impressions might suggest
training a caseless model, or using a truecaser
at test time, we show that the most effective
strategy is a concatenation of cased and lower-
cased training data, producing a single model
with high performance on both cased and un-
cased text. As shown in our experiments, this
result holds across tasks and input representa-
tions. Finally, we show that our proposed solu-
tion gives an 8% F1 improvement in mention
detection on noisy out-of-domain Twitter data.

1 Introduction

Many languages use capitalization in text, often
to indicate named entities. For tasks that are con-
cerned with named entities, such as named en-
tity recognition (NER) and part of speech tagging
(POS), this is an important signal, and models for
these tasks nearly always retain it in training.1

But capitalization is not always available. For
example, informal user-generated texts can have
inconsistent capitalization, and similarly the out-
puts of speech recognition or machine translation
are traditionally without case. Ideally we would
like a model to perform equally well on both cased
and uncased text, in contrast with current models.

1For POS tagging, this happens in tagsets that explicitly
mark proper nouns, such as the Penn Treebank tagset.

Test

Tool Task Cased Uncased

BiLSTM-CRF w/ ELMo NER 92.45 34.46

BiLSTM-CRF w/ ELMo POS 97.85 88.66

Table 1: Modern tools trained on cased data perform
well on cased test data, but poorly on uncased (low-
ercased) test data. For NER, we evaluate on the testb
set of CoNLL 2003, and the scores are reported as F1.
For POS, we evaluate on PTB sections 22-24, and the
scores represent accuracy. ELMo refers to contextual
representations from Peters et al. (2018).

Table 1 demonstrates how popular modern sys-
tems trained on cased data perform well on cased
data, but suffer dramatic performance drops when
evaluated on lowercased text.

Prior solutions have included models trained on
lowercase text, or models that automatically re-
cover capitalization from lowercase text, known as
truecasing. There has a been a substantial body
of literature on the effect of truecasing applied af-
ter speech recognition (Gravano et al., 2009), ma-
chine translation (Wang et al., 2006), or social me-
dia (Nebhi et al., 2015). A few works that evaluate
on downstream tasks (including NER and POS)
show that truecasing improves performance, but
they do not demonstrate that truecasing is the best
way to improve performance.

In this paper, we evaluate two foundational NLP
tasks, NER and POS, on cased text and lower-
cased text, with the goal of maximizing the av-
erage score regardless of casing. To achieve this
goal, we explore a number of simple options that
consist of modifying the casing of the train or test
data. Ultimately we propose a simple preprocess-
ing method for training data that results in a single
model with high performance on both cased and
uncased datasets.
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2 Related Work

This problem of robustness in casing has been
studied in the context of NER and truecasing.

Robustness in NER A practical, common
solution to this problem is summarized by the
Stanford CoreNLP system (Manning et al., 2014):
train on uncased text, or use a truecaser on test
data.2 We include these suggested solutions in our
analysis below.

In one of the few works that address this prob-
lem directly, Chieu and Ng (2002) describe a
method similar to co-training for training an up-
per case NER, in which the predictions of a cased
system are used to adjudicate and improve those
of an uncased system. One difference from ours is
that we are interested in having a single model that
works on upper or lowercased text. When tagging
text in the wild, one cannot know a priori if it is
consistently cased or not.

Truecasing Truecasing presents a natural so-
lution for situations with noisy or uncertain text
capitalization. It has been studied in the context of
many fields, including speech recognition (Brown
and Coden, 2001; Gravano et al., 2009), and ma-
chine translation (Wang et al., 2006), as the out-
puts of these tasks are traditionally lowercased.

Lita et al. (2003) proposed a statistical, word-
level, language-modeling based method for true-
casing, and experimented on several downstream
tasks, including NER. Nebhi et al. (2015) exam-
ine truecasing in tweets using a language model
method and evaluate on both NER and POS.

More recently, a neural model for truecasing
has been proposed by Susanto et al. (2016), in
which each character is associated with a label U
or L, for upper and lower case respectively. This
neural character-based method outperforms word-
level language model-based prior work.

3 Truecasing Experiments

We use our own implementation of the neural
method described in Susanto et al. (2016) as the
truecaser used in our experiments.3 Briefly, each
sentence is split into characters (including spaces)
and modeled with a 2-layer bidirectional LSTM,
with a linear binary classification layer on top.

We train the truecaser on a dataset from
2https://stanfordnlp.github.io/

CoreNLP/caseless.html
3cogcomp.org/page/publication_view/881

System Test set F1

(Susanto et al., 2016) Wikipedia 93.19

BiLSTM Wikipedia 93.01
CoNLL Train 78.85
CoNLL Test 77.35
PTB 01-18 86.91
PTB 22-24 86.22

Table 2: Truecaser word-level performance on English
data. This truecaser is trained on the Wikipedia cor-
pus. Wikipedia refers to the test set from Coster and
Kauchak (2011). CoNLL Test refers to testb. PTB is
the Penn Treebank.

Wikipedia, originally created for text simplifica-
tion (Coster and Kauchak, 2011), but commonly
used for evaluation in truecasing papers (Susanto
et al., 2016). This task has the convenient property
that if the data is well-formed, then supervision is
free. We evaluate this truecaser on several data
sets, measuring F1 on the word level (see Table
2). At test time, all text is lowercased, and case
labels are predicted.

First, we evaluate the truecaser on the same test
set as Susanto et al. (2016) in order to show that
our implementation is near to the original. Next,
we measure truecasing performance on plain text
extracted from the CoNLL 2003 English (Tjong
Kim Sang and De Meulder, 2003) and Penn Tree-
bank (Marcus et al., 1993) train and test sets.
These results contain two types of errors: idiosyn-
cratic casing in the gold data and failures of the
truecaser. However, from the high scores in the
Wikipedia experiment, we suppose that much of
the score drop comes from idiosyncratic casing.
This point is important: if a dataset contains id-
iosyncratic casing, then it is likely that NER or
POS models have fit to that casing (especially with
these two wildly popular datasets). As a result,
truecasing, since it can’t recover these idiosyn-
crasies, is not likely to be the best plan.

Notably, the scores on CoNLL are especially
low, likely because of elements such as titles, by-
lines, and documents that contain league standings
and other sports results written in uppercase.

The higher scores on Penn Treebank corpus
suggest that the capitalization standards are more
traditional. Many errors are where the truecaser
fails to correctly capitalize such words as “Fed-
eral” or “Central”. In addition, there are many

https://stanfordnlp.github.io/CoreNLP/caseless.html
https://stanfordnlp.github.io/CoreNLP/caseless.html
cogcomp.org/page/publication_view/881
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occasions where the truecaser fails to capitalize
named entities, for example “Mr. susulu”.

4 Methods

In this section, we introduce our proposed solu-
tions. In all experiments, we constrain ourselves
to only change the casing of the training or testing
data with no changes to the architectures of the
models in question. This isolates the importance
of dealing with casing, and makes our observa-
tions applicable to situations where modifying the
model is not feasible, but retraining is possible.

Our experiments aim to answer the extremely
common situation in which capitalization is noisy
or inconsistent (as with inputs from the internet).
In light of this goal, we evaluate each experiment
on both cased and lowercased test data, reporting
individual scores as well as the average. Our ex-
periments on lowercase text can also give insight
on best practices for when test data is known to
be all lowercased (as with the outputs of some up-
stream system).

We experiment on five different data casing sce-
narios described below.

1. Train on cased Simply apply a model
trained on cased data to unmodified test data,
as in Table 1.

2. Train on uncased Lowercase the train-
ing data and retrain. At test time, we low-
ercase all test data. If we did not do this,
then scores on the cased test set would suf-
fer because of casing mismatch between train
and test. Since lowercasing costs nothing,
we can improve average scores this way. As
such, cased and uncased test data will have
the same score.

3. Train on cased+uncased Concatenate orig-
inal cased and lowercased training data and
retrain a model. Test data is unmodified.

Since this concatenation results in twice
the number of training examples than other
methods, we also experimented with ran-
domly lowercasing 50% of the sentences in
the original training corpus. We refer to
this experiment as 3.5 Half Mixed. We also
tried ratios of 40% and 60%, but these were
slightly worse than 50% in our evaluations.

4. Train on cased, test on truecased Do noth-
ing to the train data, but truecase the test data.

Since we lowercase text before truecasing it,
the cased and uncased test data will have the
same score.

5. Truecase train and test Truecase the train
data and retrain. Truecase the test data also.
As in experiment 4, cased and uncased test
data will have the same score.

One way to look at these experiments is as
dropout for capitalization, where a sentence is
lowercased with respect to the original with prob-
ability p ∈ [0, 1]. In experiment 1, p = 0. In ex-
periment 2, p = 1. In experiment 3, p = 0.5. Our
implementation is somewhat different from stan-
dard dropout in that our method is a preprocessing
step, not done randomly at each epoch.

5 Experiments

Before we show results, we will describe our ex-
perimental setup. We emphasize that our goal is to
experiment with strong models in noisy settings,
not to obtain state-of-the-art scores on any dataset.

5.1 NER

We use the standard BiLSTM-CRF architecture
for NER (Ma and Hovy, 2016), using an Al-
lenNLP implementation (Gardner et al., 2018).

We experiment with pre-trained contextual em-
beddings, ELMo (Peters et al., 2018), which are
generated for each word in a sentence, and con-
catenated with GloVe word vectors (lowercased)
(Pennington et al., 2014), and character embed-
dings. ELMo embeddings are trained with cased
inputs, meaning that there will be some mismatch
when generating embeddings for uncased text.

In all experiments, we train on English CoNLL
2003 Train data (Tjong Kim Sang and De Meul-
der, 2003) and evaluate on the CoNLL 2003 Test
data (testb). We always evaluate on two different
versions: the original version, and a version with
all casing removed (e.g. everything lowercase).

5.2 POS Tagging

We use a neural POS tagging model built with a
BiLSTM-CRF (Ma and Hovy, 2016), and GloVe
embeddings (Pennington et al., 2014), charac-
ter embeddings, and ELMo pre-trained contextual
embeddings (Peters et al., 2018).

As our experimental data, we use the Penn Tree-
bank (Marcus et al., 1993), and follow the training
splits of (Ling et al., 2015), namely 01-18 for train,
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Exp. Test (C) Test (U) Avg

1. Cased 92.45 34.46 63.46
2. Uncased 89.32 89.32 89.32
3. C+U 91.67 89.31 90.49
3.5. Half Mixed 91.68 89.05 90.37

4. Truecase Test 82.93 82.93 82.93
5. Truecase All 90.25 90.25 90.25

Table 3: Results from NER+ELMo experiments, tested
on CoNLL 2003 English test set. C and U are Cased
and Uncased respectively. All scores are F1.

19-21 for validation, 22-24 for testing. As with
NER, we evaluate on both original and lowercased
versions of test.

6 Results

Results for NER are shown in Table 3, and results
for POS are shown in Table 4. There are several
interesting observations to be made.

Primarily, our experiments show that the ap-
proach with the most promising results was exper-
iment 3: training on the concatenation of original
and lowercased data. Lest one might think this is
because of the double-size training corpus, results
from experiment 3.5 are either in second place (for
NER) or slightly ahead (for POS).

Conversely, we show that the folk-wisdom ap-
proach of truecasing the test data (experiment 4)
does not perform well. The underwhelming per-
formance can be explained by the mismatch in cas-
ing standards as seen in Section 3. However, ex-
periment 5 shows that if the training data is also
truecased, then the performance is good, espe-
cially in situations where the test data is known
to contain no case information.

Training only on uncased data gives good per-
formance in both NER and POS – in fact the high-
est performance on uncased text in POS – but
never reaches the overall average scores from ex-
periment 3 or 3.5.

We have repeated these experiments for NER
in several different settings, including using only
static embeddings, using a non-neural truecaser,
and using BERT uncased embeddings (Devlin
et al., 2019). While the relative performance of the
experiments varied, the conclusion was the same:
training on cased and uncased data produces the
best results.

When using uncased BERT embeddings, we

Exp. Test (C) Test (U) Avg

1. Cased 97.85 88.66 93.26
2. Uncased 97.45 97.45 97.45
3. C+U 97.79 97.35 97.57
3.5. Half Mixed 97.85 97.36 97.61

4. Truecase Test 95.21 95.21 95.21
5. Truecase All 97.38 97.38 97.38

Table 4: Results from POS+ELMo experiments, tested
on WSJ 22-24, from PTB. C and U are Cased and Un-
cased respectively. All scores are accuracies.

found that performance on the uncased test set (U)
was typically higher than that of ElMo, while the
maximum performance on the cased test set (C)
was typically lower. This again exemplifies the
challenge of using capitalization as a signal while
being robust to its absence.

7 Application: Improving NER
Performance on Twitter

To further test our results, we look at the Broad
Twitter Corpus4 (Derczynski et al., 2016), a
dataset comprised of tweets gathered from a broad
variety of genres, and including many noisy and
informal examples. Since we are testing the ro-
bustness of our approach, we use a model trained
on CoNLL 2003 data. Naturally, in any cross-
domain experiment, one will obtain higher scores
by training on in-domain data. However, our goal
is to show that our methods produce a more ro-
bust model on out-of-domain data, not to maxi-
mize performance on this test set. We use the rec-
ommended test split of section F, containing 3580
tweets of varying length and capitalization quality.

Since the train and test corpora are from differ-
ent domains, we evaluate on the level of mention
detection, in which all entity types are collapsed
into one. The Broad Twitter Corpus has no anno-
tations for MISC types, so before converting to a
single generic type, we remove all MISC predic-
tions from our model.

Results are shown in Table 5, and a familiar pat-
tern emerges. Experiment 3 outperforms exper-
iment 1 by 8 points F1, followed by experiment
3.5 and experiment 5, showing that our approach
holds when evaluated on a real-world data set.

4https://github.com/GateNLP/broad_
twitter_corpus

https://github.com/GateNLP/broad_twitter_corpus
https://github.com/GateNLP/broad_twitter_corpus
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Exp. Mention Detection F1

1. Cased 58.63
2. Uncased 53.13
3. C+U 66.14
3.5. Half Mixed 64.69

4. Truecase Test 58.22
5. Truecase All 62.66

Table 5: Results on NER+ELMo on the Broad Twitter
Corpus, set F, measured as mention detection F1.

8 Conclusion

We have performed a systematic analysis of the
problem of unknown casing in test data for NER
and POS models. We show that commonly-held
suggestions (namely, lowercase train and test data,
or truecase test data) are rarely the best. Rather,
the most effective strategy is a concatenation of
cased and lowercased training data. We have
demonstrated this with experiments in both NER
and POS, and have further shown that the results
play out in real-world noisy data.
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